research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(naphthalen-2-yl)-2-oxo-6-phenyl-1,2-di­hydro­pyridine-3-carbo­nitrile

crossmark logo

aFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: phamchienthang@hus.edu.vn

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 19 July 2023; accepted 19 October 2023; online 26 October 2023)

The synthesis and crystal structure of the title compound, C22H14N2O, are described. The title compound was synthesized by a three-component one-pot reaction in DMSO involving chalcone, cyano­acetamide and elemental sulfur as catalyst. The compound was characterized by spectroscopic methods and single-crystal X-ray diffraction. The structure consists of inversion-related dimers produced by N—H⋯O hydrogen bonding, which further inter­act through ππ contacts.

1. Chemical context

Pyridine skeletons play a pivotal role in drug discovery with more than 7000 existing drugs containing this moiety (De et al., 2022[De, S., Kumar S K, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385-15406.]). Recent investigations of 3-cyano­pyrid-2-one derivatives have shown that the unsaturated and cyanide moieties significantly increase their biological activities compared to the original pyridine skeleton. The practical value of these compounds and the broad spectrum of bio­logical activities (ranging from anti­tumor, anti-tuberculosis, anti-inflammatory, anti­microbial activities to anti-SARS-CoV-2) have made the 3-cyano­pyrid-2-ones become the subject of intensive research in pyridine chemistry (Saleh et al., 2021[Saleh, N. M., Abdel-Rahman, A. A.-H., Omar, A. M., Khalifa, M. M. & El-Adl, K. (2021). Arch. Pharm. 354, 8, e2100085.]). Beside their promising biological activity, the 3-cyano­pyrid-2-ones are also used in materials chemistry involving production of OLED devices, dyes, pigments, and other important applications.

Based on a substituted pyridone scaffold, Cheney et al. (2007[Cheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679-1683.]) identified a novel series of Pim-1 kinase inhibitors that could compete and inter­fere with Pim-1 ATP utilization (Cheney et al., 2007[Cheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679-1683.]).

By performing a high throughput screening and an NMR-based fragment screen, 3-cyano­pyridones have been discovered and structurally optimized by hit-to-lead processes to become a novel inhibitor of M. tuberculosis thymidylate kinase (Mtb TMK) showing cellular activity against M. tuberculosis (Naik et al., 2015[Naik, M., Raichurkar, A., Bandodkar, B. S., Varun, B. V., Bhat, S., Kalkhambkar, R., Murugan, K., Menon, R., Bhat, J., Paul, B., Iyer, H., Hussein, S., Tucker, J. A., Vogtherr, M., Embrey, K. J., McMiken, H., Prasad, S., Gill, A., Ugarkar, B. G., Venkatraman, J., Read, J. & Panda, M. (2015). J. Med. Chem. 58, 753-766.]).

Recently, based on the cyclization reaction between 2-nitro-1,3-di­carbonylic compounds and cyano­acetamide, 2-pyridone rings have been synthesized. These compounds are able to inhibit the aggregation of α-synuclein in human cultured cells and prevent the degeneration of dopamine­rgic neurons in the search for novel mol­ecules for the treatment of Parkinson's disease (Mahía et al., 2021[Mahía, A., Peña-Díaz, S., Navarro, S., José Galano-Frutos, J., Pallarés, I., Pujols, J., Díaz-de-Villegas, M. D., Gálvez, J. A., Ventura, S. & Sancho, J. (2021). Bioorg. Chem. 117, 105472.]). The syntheses of 3-cyano­pyrid-2-ones are well documented and highlighted in the review of Litvinov (2006[Litvinov, V. P. (2006). Russ. Chem. Rev. 75, 7, 577-599.]). These compounds can be synthesized by modification of a substituent in a preformed pyridine substrate or by formation of a C—N bond by a cyclization reaction. During our study on the use of elemental sulfur (Nguyen, 2017a[Nguyen, T. B. (2017a). Asia. J. Org. Chem. 6, 477-491.],b[Nguyen, T. B. (2017b). Adv. Synth. Catal. 359, 1066-1130.], 2020[Nguyen, T. B. (2020). Adv. Synth. Catal. 362, 3448-3484.]) as a versatile sulfurating and oxidizing agent for the syntheses of heterocyclic compounds such as thio­phene, furan, benzo­thia­zine, we noticed that the product of the Michael addition of cyano­acetamide on chalcone can undergo the formation of a C—N bond and aromatization to form the desired 3-cyano­pyrid-2-ones in good yield.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The mol­ecular structure is shown in Fig. 1[link]. The δ-lactam moiety is almost planar with a maximum deviation from planarity for the N atom of the cyanide group (N31) of 0.047 (2) Å. The phenyl group and the lactam moiety form a dihedral angle of 50.4 (4)° while the naphthyl group is rotated by 35.6 (5)° with respect to the central lactam ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Generated with OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Supra­molecular features

In the crystal, mol­ecules form inversion-related dimers via N—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). Neighboring dimers inter­act through ππ stacking, namely between the lactam N1–C6 ring and the phenyl­ene C42–C49 ring [centroid-to-centroid distance Cg1iiCg2 of 3.991 (1) Å and a slippage of 1.968 (3) Å] and between parallel phenyl C60–C65 rings [centroid-to-centroid distance Cg3⋯Cg3iii of 3.679 (5) Å and a slippage of 1.487 (3) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.90 (2) 1.91 (2) 2.8096 (18) 172.8 (19)
Symmetry code: (i) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
Packing diagram for the title compound, showing N—H⋯O hydrogen bonds and ππ stacking inter­actions. Cg1, Cg2 and Cg3 are the centroids of the lactam N1–C6 ring, the phenyl­ene C42–C49 ring and the phenyl C60–C65 ring, respectively. Generated in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, -y+1, −z + 1.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4,6-disubstituted 2-oxo-1,2-di­hydro­pyridine-3-carbo­nitrile subunit reveals eleven hits involving four diaryl derivatives: JINTAC (Rong et al., 2006[Rong, L., Li, X., Wang, H., Shi, D. & Tu, S. (2006). Chem. Lett. 35, 1314-1315.], 2007[Rong, L., Wang, H., Shi, J., Yang, F., Yao, H., Tu, S. & Shi, D. (2007). J. Heterocycl. Chem. 44, 1505-1508.]), PELZIQ, PELZOW and PEQGOL (Chopra et al., 2006[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2006). Acta Cryst. C62, o540-o543.]). The rest consists of three compounds containing 4-phenyl-6-alkyl substituents [DOJBUB, DOJCEM (Rai et al., 2014[Rai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2014). RSC Adv. 4, 44141-44145.]) and VEXYOP (Rai et al., 2018[Rai, S. K., Sierański, T., Khanam, S., Kumar, K. R., Sridhar, B. & Tewari, A. K. (2018). ChemistrySelect, 3, 5864-5873.])], two compounds possessing 4-alkyl-6-phenyl substituents (DUBXIH; Mishnev et al., 1986[Mishnev, A. F., Belyakov, S. V., Bleidelis, Y. Y., Apinitis, S. K. & Gudrinietse, E. Y. (1986). Kristallografiya, 31, 297.] and RUGVUM; Rai et al., 2015[Rai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2015). Cryst. Growth Des. 15, 1430-1439.], 2018[Rai, S. K., Sierański, T., Khanam, S., Kumar, K. R., Sridhar, B. & Tewari, A. K. (2018). ChemistrySelect, 3, 5864-5873.]; Chen et al., 2011[Chen, L., Liu, X., Xu, B., Sun, C. & Tao, P. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1926-1930.]) and two dialkyl derivatives (ERISIH; Rybakov et al., 2004[Rybakov, V. B., Bush, A. A., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o160-o161.]; Elassar, 2011[Elassar, A. A. (2011). J. Heterocycl. Chem. 48, 272-278.]; Chen et al., 2011[Chen, L., Liu, X., Xu, B., Sun, C. & Tao, P. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1926-1930.]) and GIZBIB (Basheer & Rappoport, 2008[Basheer, A. & Rappoport, Z. (2008). J. Org. Chem. 73, 1386-1396.]). Across the series of metrics for all structures mentioned, all values regarding the pyridone moiety are in accordance with those reported herein.

5. Synthesis and crystallization

A mixture of chalcone (0.2583 g, 1.0 equiv), 2-cyano­acetamide (0.0883 g, 1.05 equiv) and DABCO (0.0224 g, 0.2 equiv) was dissolved in DMSO (0.2 mL). The reaction mixture was heated in a sealed tube at 353 K for 2 h. Then elemental sulfur (0.0064 g, 0.2 equiv) was added to the mixture and the temperature was raised to 393 K for 24 h. After cooling to room temperature, methanol was added to the reaction mixture to precipitate the crude product, which was then filtered and thoroughly washed with methanol and di­chloro­methane. Single crystals suitable for X-ray analysis were obtained by recrystallization of the compound in DMSO/DMF mixture.

1H NMR (500 MHz, DMSO-d6) δ 12.78 (s, 1H), 8.35 (s, 1H), 8.15–8.00 (m, 3H), 7.94 (d, J = 7.1 Hz, 2H), 7.84 (dd, J = 8.6, 2.0 Hz, 1H), 7.71–7.47 (m, 5H), 6.97 (s, 1H).

13C NMR (126 MHz, DMSO-d6) δ 164.2, 162.6, 160.3, 152.0, 133.9, 132.9, 131.7, 130.1, 129.4, 129.2, 129.1, 128.8, 128.8, 128.3, 128.2, 128.1, 127.5, 127.4, 127.1, 125.8, 125.0, 117.1, 107.1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positional parameters for the H atom attached to the N atom were refined. All H atoms bonded to C atoms were placed at calculated positions, with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) for Csp2—H.

Table 2
Experimental details

Crystal data
Chemical formula C22H14N2O
Mr 322.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 7.0845 (4), 10.4369 (6), 21.6298 (11)
β (°) 91.878 (2)
V3) 1598.45 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.26 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.655, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18613, 3250, 2531
Rint 0.056
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.06
No. of reflections 3250
No. of parameters 230
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT V8.40A (Bruker, 2019); data reduction: SAINT V8.40A (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

4-(Naphthalen-2-yl)-2-oxo-6-phenyl-1,2-dihydropyridine-3-carbonitrile top
Crystal data top
C22H14N2OF(000) = 672
Mr = 322.35Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0845 (4) ÅCell parameters from 7569 reflections
b = 10.4369 (6) Åθ = 2.7–26.3°
c = 21.6298 (11) ŵ = 0.08 mm1
β = 91.878 (2)°T = 298 K
V = 1598.45 (15) Å3Block, yellow
Z = 40.34 × 0.26 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2531 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.056
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.655, Tmax = 0.745k = 1313
18613 measured reflectionsl = 2626
3250 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.7178P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3250 reflectionsΔρmax = 0.18 e Å3
230 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.82728 (17)0.39070 (12)0.51570 (6)0.0445 (3)
N10.8282 (2)0.59995 (14)0.54490 (6)0.0335 (3)
C60.7537 (2)0.70213 (16)0.57481 (8)0.0329 (4)
C20.7497 (2)0.47978 (16)0.54354 (8)0.0331 (4)
C480.0535 (2)0.45419 (16)0.68796 (8)0.0334 (4)
C600.8580 (2)0.82447 (16)0.57434 (8)0.0341 (4)
C40.5045 (2)0.56580 (17)0.61101 (8)0.0327 (4)
C30.5797 (2)0.46509 (16)0.57786 (8)0.0322 (4)
C410.1982 (2)0.46820 (17)0.64419 (8)0.0342 (4)
H410.1916230.4207000.6078040.041*
C400.3471 (2)0.55046 (16)0.65470 (8)0.0340 (4)
C50.5920 (2)0.68616 (17)0.60673 (8)0.0366 (4)
H50.5388430.7564460.6260380.044*
C610.7640 (3)0.93869 (17)0.56255 (8)0.0409 (4)
H610.6354290.9379480.5523190.049*
C490.0619 (2)0.52910 (18)0.74242 (8)0.0381 (4)
N310.4577 (3)0.23249 (18)0.58144 (10)0.0640 (5)
C420.0972 (2)0.36732 (18)0.67854 (9)0.0411 (4)
H420.1016080.3154990.6435460.049*
C651.0507 (3)0.82723 (19)0.58974 (9)0.0443 (5)
H651.1161420.7511800.5970290.053*
C470.3542 (3)0.62309 (19)0.71018 (9)0.0437 (5)
H470.4551120.6784370.7179900.052*
C450.0852 (3)0.51704 (19)0.78517 (9)0.0459 (5)
H450.0812730.5654350.8212870.055*
C620.8604 (3)1.05386 (18)0.56591 (10)0.0499 (5)
H620.7973541.1301750.5570740.060*
C300.5102 (2)0.33702 (19)0.58021 (9)0.0422 (5)
C430.2373 (3)0.3587 (2)0.72060 (9)0.0478 (5)
H430.3366780.3016910.7138120.057*
C460.2157 (3)0.61315 (19)0.75229 (9)0.0467 (5)
H460.2229020.6626010.7880550.056*
C440.2314 (3)0.4353 (2)0.77365 (9)0.0490 (5)
H440.3287520.4302770.8013780.059*
C631.0496 (3)1.0555 (2)0.58234 (10)0.0541 (6)
H631.1136581.1330870.5854650.065*
C641.1440 (3)0.9430 (2)0.59413 (11)0.0545 (5)
H641.2719450.9448290.6051680.065*
H10.937 (3)0.610 (2)0.5249 (10)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0441 (7)0.0351 (7)0.0557 (8)0.0034 (6)0.0221 (6)0.0099 (6)
N10.0315 (7)0.0344 (8)0.0352 (8)0.0007 (6)0.0113 (6)0.0002 (6)
C60.0349 (9)0.0320 (9)0.0320 (9)0.0030 (7)0.0059 (7)0.0001 (7)
C20.0339 (8)0.0335 (9)0.0321 (9)0.0007 (7)0.0062 (7)0.0006 (7)
C480.0313 (8)0.0351 (9)0.0341 (9)0.0028 (7)0.0032 (7)0.0049 (7)
C600.0378 (9)0.0335 (9)0.0316 (9)0.0009 (7)0.0124 (7)0.0017 (7)
C40.0289 (8)0.0372 (9)0.0322 (9)0.0016 (7)0.0049 (7)0.0018 (7)
C30.0306 (8)0.0337 (9)0.0326 (9)0.0018 (7)0.0045 (7)0.0019 (7)
C410.0349 (9)0.0365 (9)0.0315 (9)0.0020 (7)0.0064 (7)0.0016 (7)
C400.0317 (8)0.0353 (9)0.0355 (9)0.0019 (7)0.0076 (7)0.0014 (7)
C50.0366 (9)0.0322 (9)0.0417 (10)0.0027 (7)0.0130 (7)0.0022 (8)
C610.0408 (10)0.0387 (10)0.0441 (10)0.0038 (8)0.0126 (8)0.0003 (8)
C490.0398 (9)0.0406 (10)0.0345 (9)0.0030 (8)0.0085 (7)0.0028 (8)
N310.0523 (11)0.0456 (11)0.0951 (15)0.0076 (9)0.0158 (10)0.0058 (10)
C420.0389 (9)0.0437 (11)0.0406 (10)0.0026 (8)0.0018 (8)0.0007 (8)
C650.0406 (10)0.0400 (11)0.0526 (12)0.0025 (8)0.0060 (8)0.0039 (9)
C470.0408 (10)0.0473 (11)0.0436 (11)0.0099 (9)0.0091 (8)0.0063 (9)
C450.0489 (11)0.0520 (12)0.0377 (10)0.0004 (9)0.0142 (8)0.0008 (9)
C620.0655 (13)0.0310 (10)0.0546 (12)0.0045 (9)0.0220 (10)0.0019 (9)
C300.0347 (9)0.0432 (11)0.0494 (11)0.0003 (8)0.0102 (8)0.0032 (9)
C430.0388 (10)0.0557 (12)0.0494 (11)0.0077 (9)0.0057 (8)0.0098 (10)
C460.0526 (11)0.0510 (12)0.0373 (10)0.0099 (9)0.0130 (8)0.0124 (9)
C440.0411 (10)0.0631 (13)0.0438 (11)0.0025 (10)0.0166 (8)0.0126 (10)
C630.0601 (13)0.0418 (12)0.0618 (13)0.0143 (10)0.0225 (10)0.0150 (10)
C640.0412 (11)0.0548 (13)0.0680 (14)0.0081 (10)0.0082 (10)0.0142 (11)
Geometric parameters (Å, º) top
O2—C21.245 (2)C61—C621.383 (3)
N1—C61.363 (2)C49—C451.421 (2)
N1—C21.372 (2)C49—C461.410 (3)
N1—H10.90 (2)N31—C301.153 (3)
C6—C601.475 (2)C42—H420.9300
C6—C51.367 (2)C42—C431.371 (3)
C2—C31.444 (2)C65—H650.9300
C48—C411.425 (2)C65—C641.379 (3)
C48—C491.413 (3)C47—H470.9300
C48—C421.411 (2)C47—C461.364 (2)
C60—C611.385 (2)C45—H450.9300
C60—C651.395 (3)C45—C441.359 (3)
C4—C31.388 (2)C62—H620.9300
C4—C401.494 (2)C62—C631.375 (3)
C4—C51.405 (2)C43—H430.9300
C3—C301.426 (3)C43—C441.398 (3)
C41—H410.9300C46—H460.9300
C41—C401.373 (2)C44—H440.9300
C40—C471.419 (3)C63—H630.9300
C5—H50.9300C63—C641.370 (3)
C61—H610.9300C64—H640.9300
C6—N1—C2124.23 (14)C46—C49—C48118.80 (15)
C6—N1—H1119.1 (13)C46—C49—C45122.42 (17)
C2—N1—H1116.7 (13)C48—C42—H42119.8
N1—C6—C60118.17 (14)C43—C42—C48120.48 (18)
N1—C6—C5119.25 (16)C43—C42—H42119.8
C5—C6—C60122.49 (15)C60—C65—H65120.1
O2—C2—N1120.53 (15)C64—C65—C60119.83 (18)
O2—C2—C3123.93 (16)C64—C65—H65120.1
N1—C2—C3115.50 (15)C40—C47—H47119.4
C49—C48—C41119.03 (16)C46—C47—C40121.16 (17)
C42—C48—C41121.83 (16)C46—C47—H47119.4
C42—C48—C49119.14 (15)C49—C45—H45119.8
C61—C60—C6120.54 (16)C44—C45—C49120.49 (18)
C61—C60—C65119.16 (17)C44—C45—H45119.8
C65—C60—C6120.18 (16)C61—C62—H62120.0
C3—C4—C40123.54 (15)C63—C62—C61119.97 (19)
C3—C4—C5117.71 (14)C63—C62—H62120.0
C5—C4—C40118.54 (15)N31—C30—C3178.4 (2)
C4—C3—C2121.73 (15)C42—C43—H43119.8
C4—C3—C30123.54 (15)C42—C43—C44120.30 (18)
C30—C3—C2114.38 (15)C44—C43—H43119.8
C48—C41—H41119.4C49—C46—H46119.5
C40—C41—C48121.29 (16)C47—C46—C49121.03 (17)
C40—C41—H41119.4C47—C46—H46119.5
C41—C40—C4123.20 (15)C45—C44—C43120.75 (17)
C41—C40—C47118.67 (15)C45—C44—H44119.6
C47—C40—C4118.11 (15)C43—C44—H44119.6
C6—C5—C4121.42 (16)C62—C63—H63119.9
C6—C5—H5119.3C64—C63—C62120.21 (19)
C4—C5—H5119.3C64—C63—H63119.9
C60—C61—H61119.9C65—C64—H64119.7
C62—C61—C60120.29 (18)C63—C64—C65120.52 (19)
C62—C61—H61119.9C63—C64—H64119.7
C48—C49—C45118.78 (17)
O2—C2—C3—C4176.33 (17)C41—C48—C49—C461.4 (3)
O2—C2—C3—C303.0 (3)C41—C48—C42—C43178.05 (17)
N1—C6—C60—C61135.08 (17)C41—C40—C47—C460.7 (3)
N1—C6—C60—C6549.1 (2)C40—C4—C3—C2170.35 (16)
N1—C6—C5—C42.1 (3)C40—C4—C3—C302.4 (3)
N1—C2—C3—C41.4 (2)C40—C4—C5—C6170.28 (16)
N1—C2—C3—C30174.79 (15)C40—C47—C46—C490.8 (3)
C6—N1—C2—O2179.26 (16)C5—C6—C60—C6148.6 (2)
C6—N1—C2—C31.4 (2)C5—C6—C60—C65127.28 (19)
C6—C60—C61—C62176.01 (17)C5—C4—C3—C24.3 (2)
C6—C60—C65—C64174.71 (18)C5—C4—C3—C30177.09 (17)
C2—N1—C6—C60177.59 (15)C5—C4—C40—C41148.18 (17)
C2—N1—C6—C51.1 (3)C5—C4—C40—C4732.9 (2)
C48—C41—C40—C4178.35 (16)C61—C60—C65—C641.2 (3)
C48—C41—C40—C470.5 (3)C61—C62—C63—C641.4 (3)
C48—C49—C45—C440.3 (3)C49—C48—C41—C401.6 (3)
C48—C49—C46—C470.3 (3)C49—C48—C42—C432.2 (3)
C48—C42—C43—C440.6 (3)C49—C45—C44—C432.0 (3)
C60—C6—C5—C4174.25 (16)C42—C48—C41—C40178.13 (16)
C60—C61—C62—C631.4 (3)C42—C48—C49—C451.8 (3)
C60—C65—C64—C631.2 (3)C42—C48—C49—C46178.30 (17)
C4—C40—C47—C46179.62 (18)C42—C43—C44—C451.6 (3)
C3—C4—C40—C4137.2 (3)C65—C60—C61—C620.1 (3)
C3—C4—C40—C47141.73 (18)C45—C49—C46—C47179.63 (19)
C3—C4—C5—C64.7 (3)C62—C63—C64—C650.1 (3)
C41—C48—C49—C45178.47 (16)C46—C49—C45—C44179.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.90 (2)1.91 (2)2.8096 (18)172.8 (19)
Symmetry code: (i) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: The Asia Research Center at Vietnam National University, Hanoi (grant No. CA.21.04A to Dinh Hung Mac).

References

First citationBasheer, A. & Rappoport, Z. (2008). J. Org. Chem. 73, 1386–1396.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Liu, X., Xu, B., Sun, C. & Tao, P. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1926–1930.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679–1683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2006). Acta Cryst. C62, o540–o543.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDe, S., Kumar S K, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385–15406.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElassar, A. A. (2011). J. Heterocycl. Chem. 48, 272–278.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLitvinov, V. P. (2006). Russ. Chem. Rev. 75, 7, 577–599.  Google Scholar
First citationMahía, A., Peña-Díaz, S., Navarro, S., José Galano-Frutos, J., Pallarés, I., Pujols, J., Díaz-de-Villegas, M. D., Gálvez, J. A., Ventura, S. & Sancho, J. (2021). Bioorg. Chem. 117, 105472.  PubMed Google Scholar
First citationMishnev, A. F., Belyakov, S. V., Bleidelis, Y. Y., Apinitis, S. K. & Gudrinietse, E. Y. (1986). Kristallografiya, 31, 297.  Google Scholar
First citationNaik, M., Raichurkar, A., Bandodkar, B. S., Varun, B. V., Bhat, S., Kalkhambkar, R., Murugan, K., Menon, R., Bhat, J., Paul, B., Iyer, H., Hussein, S., Tucker, J. A., Vogtherr, M., Embrey, K. J., McMiken, H., Prasad, S., Gill, A., Ugarkar, B. G., Venkatraman, J., Read, J. & Panda, M. (2015). J. Med. Chem. 58, 753–766.  CrossRef CAS PubMed Google Scholar
First citationNguyen, T. B. (2017a). Asia. J. Org. Chem. 6, 477–491.  CrossRef CAS Google Scholar
First citationNguyen, T. B. (2017b). Adv. Synth. Catal. 359, 1066–1130.  CrossRef CAS Google Scholar
First citationNguyen, T. B. (2020). Adv. Synth. Catal. 362, 3448–3484.  CrossRef CAS Google Scholar
First citationRai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2014). RSC Adv. 4, 44141–44145.  CSD CrossRef CAS Google Scholar
First citationRai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2015). Cryst. Growth Des. 15, 1430–1439.  CSD CrossRef CAS Google Scholar
First citationRai, S. K., Sierański, T., Khanam, S., Kumar, K. R., Sridhar, B. & Tewari, A. K. (2018). ChemistrySelect, 3, 5864–5873.  CSD CrossRef CAS Google Scholar
First citationRong, L., Li, X., Wang, H., Shi, D. & Tu, S. (2006). Chem. Lett. 35, 1314–1315.  CSD CrossRef CAS Google Scholar
First citationRong, L., Wang, H., Shi, J., Yang, F., Yao, H., Tu, S. & Shi, D. (2007). J. Heterocycl. Chem. 44, 1505–1508.  CSD CrossRef CAS Google Scholar
First citationRybakov, V. B., Bush, A. A., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o160–o161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaleh, N. M., Abdel-Rahman, A. A.-H., Omar, A. M., Khalifa, M. M. & El-Adl, K. (2021). Arch. Pharm. 354, 8, e2100085.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds