research communications
of 4-(naphthalen-2-yl)-2-oxo-6-phenyl-1,2-dihydropyridine-3-carbonitrile
aFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
*Correspondence e-mail: phamchienthang@hus.edu.vn
The synthesis and 22H14N2O, are described. The title compound was synthesized by a three-component one-pot reaction in DMSO involving chalcone, cyanoacetamide and elemental sulfur as catalyst. The compound was characterized by spectroscopic methods and single-crystal X-ray diffraction. The structure consists of inversion-related dimers produced by N—H⋯O hydrogen bonding, which further interact through π–π contacts.
of the title compound, CCCDC reference: 2302104
1. Chemical context
Pyridine skeletons play a pivotal role in drug discovery with more than 7000 existing drugs containing this moiety (De et al., 2022). Recent investigations of 3-cyanopyrid-2-one derivatives have shown that the unsaturated and cyanide moieties significantly increase their biological activities compared to the original pyridine skeleton. The practical value of these compounds and the broad spectrum of biological activities (ranging from antitumor, anti-tuberculosis, anti-inflammatory, antimicrobial activities to anti-SARS-CoV-2) have made the 3-cyanopyrid-2-ones become the subject of intensive research in pyridine chemistry (Saleh et al., 2021). Beside their promising biological activity, the 3-cyanopyrid-2-ones are also used in materials chemistry involving production of OLED devices, dyes, pigments, and other important applications.
Based on a substituted pyridone scaffold, Cheney et al. (2007) identified a novel series of Pim-1 kinase inhibitors that could compete and interfere with Pim-1 ATP utilization (Cheney et al., 2007).
By performing a high throughput screening and an NMR-based fragment screen, 3-cyanopyridones have been discovered and structurally optimized by hit-to-lead processes to become a novel inhibitor of M. tuberculosis thymidylate kinase (Mtb TMK) showing cellular activity against M. tuberculosis (Naik et al., 2015).
Recently, based on the α-synuclein in human cultured cells and prevent the degeneration of dopaminergic neurons in the search for novel molecules for the treatment of Parkinson's disease (Mahía et al., 2021). The syntheses of 3-cyanopyrid-2-ones are well documented and highlighted in the review of Litvinov (2006). These compounds can be synthesized by modification of a substituent in a preformed pyridine substrate or by formation of a C—N bond by a reaction. During our study on the use of elemental sulfur (Nguyen, 2017a,b, 2020) as a versatile sulfurating and oxidizing agent for the syntheses of such as thiophene, furan, benzothiazine, we noticed that the product of the Michael addition of cyanoacetamide on chalcone can undergo the formation of a C—N bond and aromatization to form the desired 3-cyanopyrid-2-ones in good yield.
reaction between 2-nitro-1,3-dicarbonylic compounds and cyanoacetamide, 2-pyridone rings have been synthesized. These compounds are able to inhibit the aggregation of2. Structural commentary
The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic P21/n with one molecule in the The molecular structure is shown in Fig. 1. The δ-lactam moiety is almost planar with a maximum deviation from planarity for the N atom of the cyanide group (N31) of 0.047 (2) Å. The phenyl group and the lactam moiety form a dihedral angle of 50.4 (4)° while the naphthyl group is rotated by 35.6 (5)° with respect to the central lactam ring.
3. Supramolecular features
In the crystal, molecules form inversion-related dimers via N—H⋯O hydrogen bonds (Table 1 and Fig. 2). Neighboring dimers interact through π–π stacking, namely between the lactam N1–C6 ring and the phenylene C42–C49 ring [centroid-to-centroid distance Cg1ii⋯Cg2 of 3.991 (1) Å and a slippage of 1.968 (3) Å] and between parallel phenyl C60–C65 rings [centroid-to-centroid distance Cg3⋯Cg3iii of 3.679 (5) Å and a slippage of 1.487 (3) Å].
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016) for the 4,6-disubstituted 2-oxo-1,2-dihydropyridine-3-carbonitrile subunit reveals eleven hits involving four diaryl derivatives: JINTAC (Rong et al., 2006, 2007), PELZIQ, PELZOW and PEQGOL (Chopra et al., 2006). The rest consists of three compounds containing 4-phenyl-6-alkyl substituents [DOJBUB, DOJCEM (Rai et al., 2014) and VEXYOP (Rai et al., 2018)], two compounds possessing 4-alkyl-6-phenyl substituents (DUBXIH; Mishnev et al., 1986 and RUGVUM; Rai et al., 2015, 2018; Chen et al., 2011) and two dialkyl derivatives (ERISIH; Rybakov et al., 2004; Elassar, 2011; Chen et al., 2011) and GIZBIB (Basheer & Rappoport, 2008). Across the series of metrics for all structures mentioned, all values regarding the pyridone moiety are in accordance with those reported herein.
5. Synthesis and crystallization
A mixture of chalcone (0.2583 g, 1.0 equiv), 2-cyanoacetamide (0.0883 g, 1.05 equiv) and DABCO (0.0224 g, 0.2 equiv) was dissolved in DMSO (0.2 mL). The reaction mixture was heated in a sealed tube at 353 K for 2 h. Then elemental sulfur (0.0064 g, 0.2 equiv) was added to the mixture and the temperature was raised to 393 K for 24 h. After cooling to room temperature, methanol was added to the reaction mixture to precipitate the crude product, which was then filtered and thoroughly washed with methanol and dichloromethane. Single crystals suitable for X-ray analysis were obtained by recrystallization of the compound in DMSO/DMF mixture.
1H NMR (500 MHz, DMSO-d6) δ 12.78 (s, 1H), 8.35 (s, 1H), 8.15–8.00 (m, 3H), 7.94 (d, J = 7.1 Hz, 2H), 7.84 (dd, J = 8.6, 2.0 Hz, 1H), 7.71–7.47 (m, 5H), 6.97 (s, 1H).
13C NMR (126 MHz, DMSO-d6) δ 164.2, 162.6, 160.3, 152.0, 133.9, 132.9, 131.7, 130.1, 129.4, 129.2, 129.1, 128.8, 128.8, 128.3, 128.2, 128.1, 127.5, 127.4, 127.1, 125.8, 125.0, 117.1, 107.1.
6. Refinement
Crystal data, data collection and structure . Positional parameters for the H atom attached to the N atom were refined. All H atoms bonded to C atoms were placed at calculated positions, with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) for Csp2—H.
details are summarized in Table 2Supporting information
CCDC reference: 2302104
https://doi.org/10.1107/S2056989023009180/dj2070sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009180/dj2070Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023009180/dj2070Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989023009180/dj2070Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989023009180/dj2070Isup5.cml
Data collection: APEX3 (Bruker, 2019); cell
SAINT V8.40A (Bruker, 2019); data reduction: SAINT V8.40A (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).C22H14N2O | F(000) = 672 |
Mr = 322.35 | Dx = 1.339 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0845 (4) Å | Cell parameters from 7569 reflections |
b = 10.4369 (6) Å | θ = 2.7–26.3° |
c = 21.6298 (11) Å | µ = 0.08 mm−1 |
β = 91.878 (2)° | T = 298 K |
V = 1598.45 (15) Å3 | Block, yellow |
Z = 4 | 0.34 × 0.26 × 0.15 mm |
Bruker APEXII CCD diffractometer | 2531 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.056 |
φ and ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.655, Tmax = 0.745 | k = −13→13 |
18613 measured reflections | l = −26→26 |
3250 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0459P)2 + 0.7178P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3250 reflections | Δρmax = 0.18 e Å−3 |
230 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.82728 (17) | 0.39070 (12) | 0.51570 (6) | 0.0445 (3) | |
N1 | 0.8282 (2) | 0.59995 (14) | 0.54490 (6) | 0.0335 (3) | |
C6 | 0.7537 (2) | 0.70213 (16) | 0.57481 (8) | 0.0329 (4) | |
C2 | 0.7497 (2) | 0.47978 (16) | 0.54354 (8) | 0.0331 (4) | |
C48 | 0.0535 (2) | 0.45419 (16) | 0.68796 (8) | 0.0334 (4) | |
C60 | 0.8580 (2) | 0.82447 (16) | 0.57434 (8) | 0.0341 (4) | |
C4 | 0.5045 (2) | 0.56580 (17) | 0.61101 (8) | 0.0327 (4) | |
C3 | 0.5797 (2) | 0.46509 (16) | 0.57786 (8) | 0.0322 (4) | |
C41 | 0.1982 (2) | 0.46820 (17) | 0.64419 (8) | 0.0342 (4) | |
H41 | 0.191623 | 0.420700 | 0.607804 | 0.041* | |
C40 | 0.3471 (2) | 0.55046 (16) | 0.65470 (8) | 0.0340 (4) | |
C5 | 0.5920 (2) | 0.68616 (17) | 0.60673 (8) | 0.0366 (4) | |
H5 | 0.538843 | 0.756446 | 0.626038 | 0.044* | |
C61 | 0.7640 (3) | 0.93869 (17) | 0.56255 (8) | 0.0409 (4) | |
H61 | 0.635429 | 0.937948 | 0.552319 | 0.049* | |
C49 | 0.0619 (2) | 0.52910 (18) | 0.74242 (8) | 0.0381 (4) | |
N31 | 0.4577 (3) | 0.23249 (18) | 0.58144 (10) | 0.0640 (5) | |
C42 | −0.0972 (2) | 0.36732 (18) | 0.67854 (9) | 0.0411 (4) | |
H42 | −0.101608 | 0.315499 | 0.643546 | 0.049* | |
C65 | 1.0507 (3) | 0.82723 (19) | 0.58974 (9) | 0.0443 (5) | |
H65 | 1.116142 | 0.751180 | 0.597029 | 0.053* | |
C47 | 0.3542 (3) | 0.62309 (19) | 0.71018 (9) | 0.0437 (5) | |
H47 | 0.455112 | 0.678437 | 0.717990 | 0.052* | |
C45 | −0.0852 (3) | 0.51704 (19) | 0.78517 (9) | 0.0459 (5) | |
H45 | −0.081273 | 0.565435 | 0.821287 | 0.055* | |
C62 | 0.8604 (3) | 1.05386 (18) | 0.56591 (10) | 0.0499 (5) | |
H62 | 0.797354 | 1.130175 | 0.557074 | 0.060* | |
C30 | 0.5102 (2) | 0.33702 (19) | 0.58021 (9) | 0.0422 (5) | |
C43 | −0.2373 (3) | 0.3587 (2) | 0.72060 (9) | 0.0478 (5) | |
H43 | −0.336678 | 0.301691 | 0.713812 | 0.057* | |
C46 | 0.2157 (3) | 0.61315 (19) | 0.75229 (9) | 0.0467 (5) | |
H46 | 0.222902 | 0.662601 | 0.788055 | 0.056* | |
C44 | −0.2314 (3) | 0.4353 (2) | 0.77365 (9) | 0.0490 (5) | |
H44 | −0.328752 | 0.430277 | 0.801378 | 0.059* | |
C63 | 1.0496 (3) | 1.0555 (2) | 0.58234 (10) | 0.0541 (6) | |
H63 | 1.113658 | 1.133087 | 0.585465 | 0.065* | |
C64 | 1.1440 (3) | 0.9430 (2) | 0.59413 (11) | 0.0545 (5) | |
H64 | 1.271945 | 0.944829 | 0.605168 | 0.065* | |
H1 | 0.937 (3) | 0.610 (2) | 0.5249 (10) | 0.053 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0441 (7) | 0.0351 (7) | 0.0557 (8) | −0.0034 (6) | 0.0221 (6) | −0.0099 (6) |
N1 | 0.0315 (7) | 0.0344 (8) | 0.0352 (8) | −0.0007 (6) | 0.0113 (6) | −0.0002 (6) |
C6 | 0.0349 (9) | 0.0320 (9) | 0.0320 (9) | 0.0030 (7) | 0.0059 (7) | 0.0001 (7) |
C2 | 0.0339 (8) | 0.0335 (9) | 0.0321 (9) | 0.0007 (7) | 0.0062 (7) | −0.0006 (7) |
C48 | 0.0313 (8) | 0.0351 (9) | 0.0341 (9) | 0.0028 (7) | 0.0032 (7) | 0.0049 (7) |
C60 | 0.0378 (9) | 0.0335 (9) | 0.0316 (9) | −0.0009 (7) | 0.0124 (7) | −0.0017 (7) |
C4 | 0.0289 (8) | 0.0372 (9) | 0.0322 (9) | 0.0016 (7) | 0.0049 (7) | 0.0018 (7) |
C3 | 0.0306 (8) | 0.0337 (9) | 0.0326 (9) | −0.0018 (7) | 0.0045 (7) | 0.0019 (7) |
C41 | 0.0349 (9) | 0.0365 (9) | 0.0315 (9) | 0.0020 (7) | 0.0064 (7) | −0.0016 (7) |
C40 | 0.0317 (8) | 0.0353 (9) | 0.0355 (9) | 0.0019 (7) | 0.0076 (7) | 0.0014 (7) |
C5 | 0.0366 (9) | 0.0322 (9) | 0.0417 (10) | 0.0027 (7) | 0.0130 (7) | −0.0022 (8) |
C61 | 0.0408 (10) | 0.0387 (10) | 0.0441 (10) | 0.0038 (8) | 0.0126 (8) | 0.0003 (8) |
C49 | 0.0398 (9) | 0.0406 (10) | 0.0345 (9) | 0.0030 (8) | 0.0085 (7) | 0.0028 (8) |
N31 | 0.0523 (11) | 0.0456 (11) | 0.0951 (15) | −0.0076 (9) | 0.0158 (10) | −0.0058 (10) |
C42 | 0.0389 (9) | 0.0437 (11) | 0.0406 (10) | −0.0026 (8) | 0.0018 (8) | 0.0007 (8) |
C65 | 0.0406 (10) | 0.0400 (11) | 0.0526 (12) | 0.0025 (8) | 0.0060 (8) | −0.0039 (9) |
C47 | 0.0408 (10) | 0.0473 (11) | 0.0436 (11) | −0.0099 (9) | 0.0091 (8) | −0.0063 (9) |
C45 | 0.0489 (11) | 0.0520 (12) | 0.0377 (10) | 0.0004 (9) | 0.0142 (8) | 0.0008 (9) |
C62 | 0.0655 (13) | 0.0310 (10) | 0.0546 (12) | 0.0045 (9) | 0.0220 (10) | −0.0019 (9) |
C30 | 0.0347 (9) | 0.0432 (11) | 0.0494 (11) | −0.0003 (8) | 0.0102 (8) | −0.0032 (9) |
C43 | 0.0388 (10) | 0.0557 (12) | 0.0494 (11) | −0.0077 (9) | 0.0057 (8) | 0.0098 (10) |
C46 | 0.0526 (11) | 0.0510 (12) | 0.0373 (10) | −0.0099 (9) | 0.0130 (8) | −0.0124 (9) |
C44 | 0.0411 (10) | 0.0631 (13) | 0.0438 (11) | 0.0025 (10) | 0.0166 (8) | 0.0126 (10) |
C63 | 0.0601 (13) | 0.0418 (12) | 0.0618 (13) | −0.0143 (10) | 0.0225 (10) | −0.0150 (10) |
C64 | 0.0412 (11) | 0.0548 (13) | 0.0680 (14) | −0.0081 (10) | 0.0082 (10) | −0.0142 (11) |
O2—C2 | 1.245 (2) | C61—C62 | 1.383 (3) |
N1—C6 | 1.363 (2) | C49—C45 | 1.421 (2) |
N1—C2 | 1.372 (2) | C49—C46 | 1.410 (3) |
N1—H1 | 0.90 (2) | N31—C30 | 1.153 (3) |
C6—C60 | 1.475 (2) | C42—H42 | 0.9300 |
C6—C5 | 1.367 (2) | C42—C43 | 1.371 (3) |
C2—C3 | 1.444 (2) | C65—H65 | 0.9300 |
C48—C41 | 1.425 (2) | C65—C64 | 1.379 (3) |
C48—C49 | 1.413 (3) | C47—H47 | 0.9300 |
C48—C42 | 1.411 (2) | C47—C46 | 1.364 (2) |
C60—C61 | 1.385 (2) | C45—H45 | 0.9300 |
C60—C65 | 1.395 (3) | C45—C44 | 1.359 (3) |
C4—C3 | 1.388 (2) | C62—H62 | 0.9300 |
C4—C40 | 1.494 (2) | C62—C63 | 1.375 (3) |
C4—C5 | 1.405 (2) | C43—H43 | 0.9300 |
C3—C30 | 1.426 (3) | C43—C44 | 1.398 (3) |
C41—H41 | 0.9300 | C46—H46 | 0.9300 |
C41—C40 | 1.373 (2) | C44—H44 | 0.9300 |
C40—C47 | 1.419 (3) | C63—H63 | 0.9300 |
C5—H5 | 0.9300 | C63—C64 | 1.370 (3) |
C61—H61 | 0.9300 | C64—H64 | 0.9300 |
C6—N1—C2 | 124.23 (14) | C46—C49—C48 | 118.80 (15) |
C6—N1—H1 | 119.1 (13) | C46—C49—C45 | 122.42 (17) |
C2—N1—H1 | 116.7 (13) | C48—C42—H42 | 119.8 |
N1—C6—C60 | 118.17 (14) | C43—C42—C48 | 120.48 (18) |
N1—C6—C5 | 119.25 (16) | C43—C42—H42 | 119.8 |
C5—C6—C60 | 122.49 (15) | C60—C65—H65 | 120.1 |
O2—C2—N1 | 120.53 (15) | C64—C65—C60 | 119.83 (18) |
O2—C2—C3 | 123.93 (16) | C64—C65—H65 | 120.1 |
N1—C2—C3 | 115.50 (15) | C40—C47—H47 | 119.4 |
C49—C48—C41 | 119.03 (16) | C46—C47—C40 | 121.16 (17) |
C42—C48—C41 | 121.83 (16) | C46—C47—H47 | 119.4 |
C42—C48—C49 | 119.14 (15) | C49—C45—H45 | 119.8 |
C61—C60—C6 | 120.54 (16) | C44—C45—C49 | 120.49 (18) |
C61—C60—C65 | 119.16 (17) | C44—C45—H45 | 119.8 |
C65—C60—C6 | 120.18 (16) | C61—C62—H62 | 120.0 |
C3—C4—C40 | 123.54 (15) | C63—C62—C61 | 119.97 (19) |
C3—C4—C5 | 117.71 (14) | C63—C62—H62 | 120.0 |
C5—C4—C40 | 118.54 (15) | N31—C30—C3 | 178.4 (2) |
C4—C3—C2 | 121.73 (15) | C42—C43—H43 | 119.8 |
C4—C3—C30 | 123.54 (15) | C42—C43—C44 | 120.30 (18) |
C30—C3—C2 | 114.38 (15) | C44—C43—H43 | 119.8 |
C48—C41—H41 | 119.4 | C49—C46—H46 | 119.5 |
C40—C41—C48 | 121.29 (16) | C47—C46—C49 | 121.03 (17) |
C40—C41—H41 | 119.4 | C47—C46—H46 | 119.5 |
C41—C40—C4 | 123.20 (15) | C45—C44—C43 | 120.75 (17) |
C41—C40—C47 | 118.67 (15) | C45—C44—H44 | 119.6 |
C47—C40—C4 | 118.11 (15) | C43—C44—H44 | 119.6 |
C6—C5—C4 | 121.42 (16) | C62—C63—H63 | 119.9 |
C6—C5—H5 | 119.3 | C64—C63—C62 | 120.21 (19) |
C4—C5—H5 | 119.3 | C64—C63—H63 | 119.9 |
C60—C61—H61 | 119.9 | C65—C64—H64 | 119.7 |
C62—C61—C60 | 120.29 (18) | C63—C64—C65 | 120.52 (19) |
C62—C61—H61 | 119.9 | C63—C64—H64 | 119.7 |
C48—C49—C45 | 118.78 (17) | ||
O2—C2—C3—C4 | 176.33 (17) | C41—C48—C49—C46 | −1.4 (3) |
O2—C2—C3—C30 | 3.0 (3) | C41—C48—C42—C43 | −178.05 (17) |
N1—C6—C60—C61 | 135.08 (17) | C41—C40—C47—C46 | −0.7 (3) |
N1—C6—C60—C65 | −49.1 (2) | C40—C4—C3—C2 | −170.35 (16) |
N1—C6—C5—C4 | 2.1 (3) | C40—C4—C3—C30 | 2.4 (3) |
N1—C2—C3—C4 | −1.4 (2) | C40—C4—C5—C6 | 170.28 (16) |
N1—C2—C3—C30 | −174.79 (15) | C40—C47—C46—C49 | 0.8 (3) |
C6—N1—C2—O2 | −179.26 (16) | C5—C6—C60—C61 | −48.6 (2) |
C6—N1—C2—C3 | −1.4 (2) | C5—C6—C60—C65 | 127.28 (19) |
C6—C60—C61—C62 | 176.01 (17) | C5—C4—C3—C2 | 4.3 (2) |
C6—C60—C65—C64 | −174.71 (18) | C5—C4—C3—C30 | 177.09 (17) |
C2—N1—C6—C60 | 177.59 (15) | C5—C4—C40—C41 | 148.18 (17) |
C2—N1—C6—C5 | 1.1 (3) | C5—C4—C40—C47 | −32.9 (2) |
C48—C41—C40—C4 | 178.35 (16) | C61—C60—C65—C64 | 1.2 (3) |
C48—C41—C40—C47 | −0.5 (3) | C61—C62—C63—C64 | 1.4 (3) |
C48—C49—C45—C44 | −0.3 (3) | C49—C48—C41—C40 | 1.6 (3) |
C48—C49—C46—C47 | 0.3 (3) | C49—C48—C42—C43 | 2.2 (3) |
C48—C42—C43—C44 | −0.6 (3) | C49—C45—C44—C43 | 2.0 (3) |
C60—C6—C5—C4 | −174.25 (16) | C42—C48—C41—C40 | −178.13 (16) |
C60—C61—C62—C63 | −1.4 (3) | C42—C48—C49—C45 | −1.8 (3) |
C60—C65—C64—C63 | −1.2 (3) | C42—C48—C49—C46 | 178.30 (17) |
C4—C40—C47—C46 | −179.62 (18) | C42—C43—C44—C45 | −1.6 (3) |
C3—C4—C40—C41 | −37.2 (3) | C65—C60—C61—C62 | 0.1 (3) |
C3—C4—C40—C47 | 141.73 (18) | C45—C49—C46—C47 | −179.63 (19) |
C3—C4—C5—C6 | −4.7 (3) | C62—C63—C64—C65 | −0.1 (3) |
C41—C48—C49—C45 | 178.47 (16) | C46—C49—C45—C44 | 179.63 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.90 (2) | 1.91 (2) | 2.8096 (18) | 172.8 (19) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Funding information
Funding for this research was provided by: The Asia Research Center at Vietnam National University, Hanoi (grant No. CA.21.04A to Dinh Hung Mac).
References
Basheer, A. & Rappoport, Z. (2008). J. Org. Chem. 73, 1386–1396. CSD CrossRef PubMed CAS Google Scholar
Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, L., Liu, X., Xu, B., Sun, C. & Tao, P. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1926–1930. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679–1683. Web of Science CrossRef PubMed CAS Google Scholar
Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2006). Acta Cryst. C62, o540–o543. CSD CrossRef CAS IUCr Journals Google Scholar
De, S., Kumar S K, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385–15406. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elassar, A. A. (2011). J. Heterocycl. Chem. 48, 272–278. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Litvinov, V. P. (2006). Russ. Chem. Rev. 75, 7, 577–599. Google Scholar
Mahía, A., Peña-Díaz, S., Navarro, S., José Galano-Frutos, J., Pallarés, I., Pujols, J., Díaz-de-Villegas, M. D., Gálvez, J. A., Ventura, S. & Sancho, J. (2021). Bioorg. Chem. 117, 105472. PubMed Google Scholar
Mishnev, A. F., Belyakov, S. V., Bleidelis, Y. Y., Apinitis, S. K. & Gudrinietse, E. Y. (1986). Kristallografiya, 31, 297. Google Scholar
Naik, M., Raichurkar, A., Bandodkar, B. S., Varun, B. V., Bhat, S., Kalkhambkar, R., Murugan, K., Menon, R., Bhat, J., Paul, B., Iyer, H., Hussein, S., Tucker, J. A., Vogtherr, M., Embrey, K. J., McMiken, H., Prasad, S., Gill, A., Ugarkar, B. G., Venkatraman, J., Read, J. & Panda, M. (2015). J. Med. Chem. 58, 753–766. CrossRef CAS PubMed Google Scholar
Nguyen, T. B. (2017a). Asia. J. Org. Chem. 6, 477–491. CrossRef CAS Google Scholar
Nguyen, T. B. (2017b). Adv. Synth. Catal. 359, 1066–1130. CrossRef CAS Google Scholar
Nguyen, T. B. (2020). Adv. Synth. Catal. 362, 3448–3484. CrossRef CAS Google Scholar
Rai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2014). RSC Adv. 4, 44141–44145. CSD CrossRef CAS Google Scholar
Rai, S. K., Khanam, S., Khanna, R. S. & Tewari, A. K. (2015). Cryst. Growth Des. 15, 1430–1439. CSD CrossRef CAS Google Scholar
Rai, S. K., Sierański, T., Khanam, S., Kumar, K. R., Sridhar, B. & Tewari, A. K. (2018). ChemistrySelect, 3, 5864–5873. CSD CrossRef CAS Google Scholar
Rong, L., Li, X., Wang, H., Shi, D. & Tu, S. (2006). Chem. Lett. 35, 1314–1315. CSD CrossRef CAS Google Scholar
Rong, L., Wang, H., Shi, J., Yang, F., Yao, H., Tu, S. & Shi, D. (2007). J. Heterocycl. Chem. 44, 1505–1508. CSD CrossRef CAS Google Scholar
Rybakov, V. B., Bush, A. A., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o160–o161. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saleh, N. M., Abdel-Rahman, A. A.-H., Omar, A. M., Khalifa, M. M. & El-Adl, K. (2021). Arch. Pharm. 354, 8, e2100085. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.