research communications
Synthesis and h]quinolinato-κ2N1,N10)zinc(II)
of bis(9-mesityl-9,10-dihydro-10-aza-9-borabenzo[aUniversity of Bremen, Institute for Organic and Analytical Chemistry, 28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany, and cUniversity of Bremen, Institute for Inorganic Chemistry and Crystallography, 28359 Bremen, Germany
*Correspondence e-mail: staubitz@uni-bremen.de
The title compound, [Zn(C20H18BN2)2] (ZnL2), is an overall uncharged chelate that consists of two units of an NH-deprotonated 10-aza-9-borabenzo[h]quinoline ligand (L) per ZnII center. It was synthesized in two steps by treating the protonated ligand HL with lithium bis(trimethylsilyl)amide and further conversion with diethylzinc. Its comprises one ZnL fragment; the molecule is completed by application of inversion symmetry at Zn. Due to the fourfold coordination with nitrogen atoms, the zinc(II) ion is located in a distorted tetrahedral environment. Besides the relatively short N—Zn bonds, ZnL2 is characterized by the significant protrusion of the central ion from the plane of the ligand backbone. The is consolidated by intra- and intermolecular π–π stacking interactions, while the polarized B—N bond is barely involved in any close atom contacts.
Keywords: crystal structure; 1,2-azaborinine; boron-nitrogen; zinc; bidentate ligand; Hirshfeld analysis.
CCDC reference: 2302109
1. Chemical context
1,2-Azaborinine is an aromatic six-membered ring that consists of a polar boron-nitrogen unit and a butadienyl moiety, making it an isoelectronic congener of benzene. Its strikingly similar geometry in conjunction with a significantly altered electron distribution has promoted research on mono- and polycyclic aromatic hydrocarbons (PAHs) with a BN substitution pattern. Several studies highlighted the BN-induced tailored adjustment of chemical, physical and optical properties, enabling the application of such heteroaromatics for instance as white-emitting layers in organic light-emitting diodes (Hoffmann et al., 2021), as reversible hydrogen storage materials (Campbell et al., 2010) or as building blocks in pharmaceuticals with increased bioavailability (Zhao et al., 2017). Relatively few reports made use of the selectively deprotonable NH group (pKa ≃ 24) to introduce electrophilic functional groups or metal atoms (Pan et al., 2004; Lamm et al., 2011; Baggett & Liu, 2017; Lindl et al., 2023).
In a previous study (Appiarius et al., 2021), a BN-substituted benzo[h]quinoline (HL), containing one 1,2-azaborininyl- and one pyridyl subunit with both nitrogen atoms beneficially preorganized for was presented. In the context of this communication, we report on the synthesis and of the 2:1 coordination complex of ligand L with zinc(II).
2. Structural commentary
The molecular structure of the title compound (C40H36B2N4Zn, ZnL2) is illustrated in Fig. 1. The coordination complex crystallizes in the monoclinic C2/c centrosymmetric with one zinc(II) cation and one ligand molecule in the being completed by the application of inversion symmetry at ZnII. The latter is fourfold coordinated by two types of N donors, namely the azaborinine and pyridine subunits comprised in the BN-benzo[h]quinoline. This results in a significantly distorted tetrahedral configuration [bond angle N1—Zn1—N2 84.72 (4)°; all other N—Zn—N bond angles > 118°, see Table 1]. The bond lengths within the 1,2-azaborinine motif of the ligand [B1—N1: 1.4245 (17) Å, B1—C11: 1.5315 (19) Å, N1—C1: 1.3580 (14) Å] are in characteristic ranges (Paetzold et al., 2004; Pan et al., 2009), confirming electron delocalization and an elevated aromatic character. The N—Zn bond lengths [N1—Zn1: 1.9606 (10) Å, N2—Zn1: 2.0527 (10) Å] are in excellent agreement with bis(2-(2′-pyridyl)pyrrolyl)zinc [Npyrrole–Zn 1.9513 (18) Å, Npyridine–Zn 2.0444 (18) Å; Wang et al., 2009], supporting the electronic similarities of 1,2-azaborinine and pyrrole (Davies et al., 2017). This contrasts with zinc complexes involving the geometrically similar but uncharged 1,10-phenanthroline ligand (Npyridine–Zn 2.13–2.20 Å) with higher coordination numbers of the central ion. All aromatic rings within the BN-PAH ligand are close to planar, with an average torsion angle of 2.2° and a maximum deviation of an atom from the mean aromatic plane of 0.0217 (8) Å. In contrast, the ZnII ion is located 0.365 (2) Å out of the mean N1–C1–C2–N2 plane and points in the direction of the mesityl ring of the second ligand unit. The 1,2-azaborinine motif and the attached planar mesityl group [maximum deviation from the mean aromatic plane: 0.0125 (9) Å] are oriented almost perpendicularly to each other, with an angle between their mean planes of 79.41 (4)°.
3. Supramolecular features and Hirshfeld surface analysis
A Hirshfeld surface (Hirshfeld, 1977, Fig. 2) and the respective two-dimensional fingerprint plots (Fig. 3) were generated using CrystalExplorer21.5 (Spackman et al., 2021) to analyze the intermolecular interactions. No close atom contacts involving the boron and zinc heteroatoms and a negligible participation of the nitrogen atom (N⋯H: 1.5%, C⋯N: 0.4%) were found. Therefore, the intermolecular interactions were almost exclusively caused by involving carbon and hydrogen. In particular, close H⋯H contacts and aromatic interactions dominate the overall intermolecular interactions in a crystal. The `wings' at the top left (di ≃ 1.05 Å and de ≃ 1.60 Å) and their pseudo-symmetrical counterparts at the bottom right of the two-dimensional fingerprint plot correspond to C—H⋯π interactions. These are also mapped by several red spots on the Hirshfeld surface (Spackman & McKinnon, 2002). Moreover, considerable π–π stacking interactions are apparent by the light coloring of the Hirshfeld surface around the PAH backbone and intense C⋯C contacts (5.8%). The crystal packing shows that each aromatic ligand has one ligand unit of another molecule in close proximity, so that pairs of almost parallel but slightly displaced sheets in two dimensions result (Fig. 4). In particular, the phenyl and pyridyl subunits of neighboring molecules show a significant overlap, with an offset of only 1.181 (2) Å and a minimum interplanar distance of 3.3826 (13) Å. On the other hand, the PAH scaffolds and the mesityl π-planes of the inverse ligand units are aligned almost coplanar [mesityl–pyridine interplanar angle: 1.46 (5)°] with a similarly small minimum interplanar distance [3.3996 (10) Å]. Therefore, intramolecular π–π stacking contributes significantly to the overall stabilizing forces. We assume that the discussed, unusual off-plane position of the zinc ion and the increased angle between the mean mesityl plane and the B1—C12 bond [7.93 (8)°] also derives from this favorable stacking geometry.
4. Database survey
A survey of the Cambridge Structural Database (WebCSD version 1.9.32, accessed in July 2023; Groom et al., 2016) revealed that 654 crystal structures of six-membered carbocycles with 1-aza-2-bora substitution patterns have been reported. Among these, 101 structures comprising B-mesityl substituents have been deposited, which involves aromatic 1,2-azaborinine subunits for the most part. The crystal structures of 13 compounds with 1,2-azaborinine substructures and nitrogen–metal bonds have been published, of which different lithium solvates as well as potassium, beryllium, aluminum, gallium and tin complexes are included in one publication (Lindl et al., 2023). Moreover, one study describes several complexes of a bidentate ligand with aluminum (Appiarius et al., 2023). However, there are only three reports of 1,2-azaborinines with N–transition-metal bonds, including zirconium (refcode JIZQEP; Pan et al., 2008), ruthenium (refcode DOXBEY; Pan et al., 2008) and iridium (refcode NEZXAV; Baschieri et al., 2023). Also, the structure of a 6-pyridyl-1,2-azaborinine has been reported, which is structurally similar to HL and was used for the preparation of a dimesitylboron complex (refcode WUGMIW; Baggett et al., 2015). The search query for coordination complexes of zinc with 1,2-azaborinine ligands did not yield any results.
5. Synthesis and crystallization
The synthesis of ZnL2 is shown in Fig. 5. Under argon at 298 K, 9,10-dihydro-9-mesityl-10-aza-9-borabenzo[h]quinoline (HL, 29.8 mg, 100 µmol, 1.00 equiv., prepared according to Appiarius et al., 2021) was dissolved in THF (1.5 mL). A solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, 120 µL, 1.20 equiv.) was added, before a solution of diethylzinc (15% w/w in hexanes, 230 µL, 2.00 equiv.) was added via a syringe. The mixture was heated to 428 K for 17 h while stirring. In a the volatiles were removed under reduced pressure. The residue was extracted with n-hexane (3 × 2 mL) and the solvent was removed. The crude product was dissolved in THF (500 µL) and n-hexane was allowed to diffuse into this solution over the course of 3 d. The light-yellow product (6.4 mg, 19%) was obtained as air-sensitive crystals suitable for X-ray by repeating this process twice. 1H NMR (600 MHz, THF-d8): δ = 8.37–8.32 (m, 4H, C3-H + C5-H), 8.07 (d, 3J = 11.0 Hz, 2H, C10-H), 7.79 (d, 3J = 8.7 z, 2H, C8-H), 7.38–7.35 (m, 2H, C4-H), 7.33 (d, 3J = 8.7 Hz, 2H, C7-H), 6.90 (d, 3J = 11.0 Hz, 2H, C11-H), 6.04 (s, 2H, C14-H), 5.61 (s, 2H, C16-H), 1.83 (s, 6H, C19-H), 1.79 (s, 6H, C18-H), 1.40 (s, 6H, C20-H) ppm. 13C{1H} NMR (151 MHz, THF-d8): δ = 147.3 (C3), 145.8 (C1), 143.3 (C2), 143.0 (C10), 139.2 (C17), 139.2 (C5), 139.1 (C13), 134.8 (C15), 134.5 (C11), 131.2 (C8), 129.0 (C6), 127.1 (C14), 126.4 (C16), 126.1 (C9), 122.3 (C4), 116.1 (C7), 24.0 (C18), 23.8 (C20), 21.3 (C19) ppm. 11B{1H} NMR (193 MHz, THF-d8): δ = 38.6 ppm. MS (EI): m/z 658.3 (3%) [ZnL2]+, 298.2 (100%) [HL]+. HR-MS (EI): m/z calculated for C40H36B2N4Zn+ 658.24259, found 658.24253 (Dev.: 0.06 mu, 0.09 ppm). UV/Vis: λabs = 296, 343, 358 nm. Fluorescence: λfl = 488 nm (λexc = 350 nm). Further experimental details can be found in the Supporting Information.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically and refined using a riding model with C—H bond lengths of 0.95 Å (C—H) or 0.98 Å (C—H3). Isotropic displacement parameters (Uiso) of these H atoms were fixed to 1.2 (C—H) or 1.5 (C—H3) of the values of the parent carbon atoms. Idealized methyl groups (C18—H3, C19—H3, C20—H3) were allowed to rotate.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2302109
https://doi.org/10.1107/S2056989023009192/dj2071sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009192/dj2071Isup2.hkl
Experimental details, https://doi.org/10.1107/S2056989023009192/dj2071sup4.pdf
packing views, NMR spectra, UV vis and fluorescence spectra. DOI:Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C20H18BN2)2] | F(000) = 1376 |
Mr = 659.72 | Dx = 1.342 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.0425 (14) Å | Cell parameters from 9897 reflections |
b = 9.8589 (6) Å | θ = 2.8–33.4° |
c = 17.1167 (9) Å | µ = 0.79 mm−1 |
β = 105.172 (4)° | T = 100 K |
V = 3264.3 (4) Å3 | Irregular, light yellow |
Z = 4 | 0.24 × 0.12 × 0.09 mm |
Bruker APEXII CCD diffractometer | 5466 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.084 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 33.9°, θmin = 2.8° |
Tmin = 0.677, Tmax = 0.747 | h = −31→31 |
95271 measured reflections | k = −15→15 |
6577 independent reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0416P)2 + 3.4887P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
6577 reflections | Δρmax = 0.52 e Å−3 |
216 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.500000 | 0.38978 (2) | 0.750000 | 0.01617 (6) | |
N1 | 0.45636 (5) | 0.28837 (11) | 0.65132 (6) | 0.01565 (17) | |
N2 | 0.55610 (6) | 0.48063 (11) | 0.67988 (6) | 0.01854 (19) | |
C16 | 0.33235 (7) | 0.14365 (15) | 0.83074 (8) | 0.0230 (2) | |
H16 | 0.341124 | 0.087836 | 0.877572 | 0.028* | |
C9 | 0.48444 (6) | 0.22124 (13) | 0.52702 (7) | 0.0178 (2) | |
C1 | 0.49408 (6) | 0.30237 (12) | 0.59647 (7) | 0.01542 (19) | |
C2 | 0.54576 (6) | 0.40771 (12) | 0.60987 (7) | 0.0164 (2) | |
C8 | 0.52494 (7) | 0.24688 (14) | 0.47125 (8) | 0.0227 (2) | |
H8 | 0.519116 | 0.190173 | 0.425081 | 0.027* | |
C10 | 0.43285 (7) | 0.11731 (14) | 0.51402 (8) | 0.0217 (2) | |
H10 | 0.427219 | 0.059047 | 0.468550 | 0.026* | |
C7 | 0.57165 (7) | 0.35008 (15) | 0.48219 (8) | 0.0232 (2) | |
H7 | 0.596684 | 0.366128 | 0.443013 | 0.028* | |
C6 | 0.58310 (7) | 0.43410 (14) | 0.55225 (8) | 0.0199 (2) | |
C12 | 0.35616 (6) | 0.19967 (13) | 0.70258 (7) | 0.0181 (2) | |
C15 | 0.28518 (7) | 0.24956 (15) | 0.82289 (8) | 0.0237 (2) | |
C17 | 0.36714 (6) | 0.11728 (14) | 0.77154 (8) | 0.0198 (2) | |
C11 | 0.39151 (7) | 0.09962 (14) | 0.56519 (8) | 0.0219 (2) | |
H11 | 0.356957 | 0.031157 | 0.554933 | 0.026* | |
C20 | 0.41803 (7) | 0.00090 (15) | 0.78396 (9) | 0.0250 (3) | |
H20A | 0.463242 | 0.031778 | 0.816536 | 0.038* | |
H20B | 0.422293 | −0.031172 | 0.731288 | 0.038* | |
H20C | 0.401508 | −0.073317 | 0.812099 | 0.038* | |
C14 | 0.27287 (7) | 0.32946 (15) | 0.75349 (8) | 0.0237 (2) | |
H14 | 0.240393 | 0.401532 | 0.746658 | 0.028* | |
C19 | 0.24812 (8) | 0.27744 (19) | 0.88737 (10) | 0.0329 (3) | |
H19A | 0.204988 | 0.225380 | 0.875753 | 0.049* | |
H19B | 0.237646 | 0.374471 | 0.887957 | 0.049* | |
H19C | 0.277652 | 0.250591 | 0.940294 | 0.049* | |
C13 | 0.30729 (6) | 0.30568 (14) | 0.69395 (8) | 0.0212 (2) | |
C4 | 0.64006 (8) | 0.61577 (16) | 0.63859 (9) | 0.0272 (3) | |
H4 | 0.672060 | 0.688821 | 0.649815 | 0.033* | |
C3 | 0.60226 (7) | 0.58083 (14) | 0.69353 (8) | 0.0240 (2) | |
H3 | 0.609776 | 0.630540 | 0.742618 | 0.029* | |
C18 | 0.29227 (8) | 0.39485 (18) | 0.61986 (10) | 0.0322 (3) | |
H18A | 0.333702 | 0.447143 | 0.619199 | 0.048* | |
H18B | 0.254432 | 0.457120 | 0.621039 | 0.048* | |
H18C | 0.278912 | 0.338272 | 0.571181 | 0.048* | |
C5 | 0.63028 (7) | 0.54297 (15) | 0.56807 (9) | 0.0251 (3) | |
H5 | 0.655364 | 0.566043 | 0.529928 | 0.030* | |
B1 | 0.40171 (7) | 0.19187 (14) | 0.63937 (8) | 0.0171 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01813 (9) | 0.01939 (10) | 0.01154 (8) | 0.000 | 0.00488 (6) | 0.000 |
N1 | 0.0160 (4) | 0.0186 (4) | 0.0133 (4) | 0.0000 (3) | 0.0055 (3) | 0.0000 (3) |
N2 | 0.0198 (5) | 0.0209 (5) | 0.0147 (4) | −0.0022 (4) | 0.0042 (4) | 0.0009 (3) |
C16 | 0.0220 (6) | 0.0303 (7) | 0.0188 (5) | −0.0055 (5) | 0.0089 (4) | 0.0010 (5) |
C9 | 0.0203 (5) | 0.0193 (5) | 0.0149 (5) | 0.0015 (4) | 0.0066 (4) | −0.0002 (4) |
C1 | 0.0162 (5) | 0.0178 (5) | 0.0129 (4) | 0.0023 (4) | 0.0050 (4) | 0.0016 (4) |
C2 | 0.0167 (5) | 0.0190 (5) | 0.0139 (4) | 0.0009 (4) | 0.0048 (4) | 0.0022 (4) |
C8 | 0.0288 (6) | 0.0247 (6) | 0.0177 (5) | 0.0025 (5) | 0.0115 (5) | −0.0008 (4) |
C10 | 0.0274 (6) | 0.0212 (6) | 0.0171 (5) | −0.0016 (5) | 0.0070 (4) | −0.0034 (4) |
C7 | 0.0266 (6) | 0.0275 (6) | 0.0194 (5) | 0.0018 (5) | 0.0127 (5) | 0.0021 (5) |
C6 | 0.0202 (5) | 0.0227 (5) | 0.0187 (5) | 0.0006 (4) | 0.0084 (4) | 0.0046 (4) |
C12 | 0.0152 (5) | 0.0226 (6) | 0.0169 (5) | −0.0034 (4) | 0.0049 (4) | −0.0004 (4) |
C15 | 0.0207 (5) | 0.0314 (7) | 0.0217 (6) | −0.0064 (5) | 0.0105 (5) | −0.0050 (5) |
C17 | 0.0174 (5) | 0.0237 (6) | 0.0192 (5) | −0.0038 (4) | 0.0064 (4) | 0.0015 (4) |
C11 | 0.0233 (6) | 0.0226 (6) | 0.0203 (5) | −0.0049 (4) | 0.0063 (4) | −0.0026 (4) |
C20 | 0.0254 (6) | 0.0256 (6) | 0.0258 (6) | 0.0007 (5) | 0.0098 (5) | 0.0059 (5) |
C14 | 0.0183 (5) | 0.0282 (7) | 0.0265 (6) | −0.0010 (5) | 0.0094 (5) | −0.0030 (5) |
C19 | 0.0312 (7) | 0.0431 (9) | 0.0307 (7) | −0.0054 (6) | 0.0191 (6) | −0.0066 (6) |
C13 | 0.0179 (5) | 0.0260 (6) | 0.0209 (5) | −0.0004 (4) | 0.0073 (4) | 0.0016 (4) |
C4 | 0.0264 (6) | 0.0291 (7) | 0.0260 (6) | −0.0084 (5) | 0.0068 (5) | 0.0041 (5) |
C3 | 0.0266 (6) | 0.0245 (6) | 0.0195 (5) | −0.0064 (5) | 0.0037 (5) | 0.0006 (4) |
C18 | 0.0294 (7) | 0.0395 (8) | 0.0309 (7) | 0.0123 (6) | 0.0137 (6) | 0.0122 (6) |
C5 | 0.0238 (6) | 0.0293 (7) | 0.0244 (6) | −0.0036 (5) | 0.0100 (5) | 0.0059 (5) |
B1 | 0.0167 (5) | 0.0197 (6) | 0.0152 (5) | −0.0004 (4) | 0.0045 (4) | 0.0004 (4) |
Zn1—N1i | 1.9606 (10) | C12—C13 | 1.4134 (18) |
Zn1—N1 | 1.9606 (10) | C12—B1 | 1.5896 (18) |
Zn1—N2 | 2.0527 (10) | C15—C14 | 1.393 (2) |
Zn1—N2i | 2.0527 (10) | C15—C19 | 1.5080 (19) |
N1—C1 | 1.3580 (14) | C17—C20 | 1.5127 (19) |
N1—B1 | 1.4245 (17) | C11—H11 | 0.9500 |
N2—C2 | 1.3660 (16) | C11—B1 | 1.5315 (19) |
N2—C3 | 1.3316 (17) | C20—H20A | 0.9800 |
C16—H16 | 0.9500 | C20—H20B | 0.9800 |
C16—C15 | 1.391 (2) | C20—H20C | 0.9800 |
C16—C17 | 1.3966 (18) | C14—H14 | 0.9500 |
C9—C1 | 1.4035 (16) | C14—C13 | 1.3920 (18) |
C9—C8 | 1.4281 (17) | C19—H19A | 0.9800 |
C9—C10 | 1.4310 (18) | C19—H19B | 0.9800 |
C1—C2 | 1.4421 (17) | C19—H19C | 0.9800 |
C2—C6 | 1.4095 (16) | C13—C18 | 1.507 (2) |
C8—H8 | 0.9500 | C4—H4 | 0.9500 |
C8—C7 | 1.362 (2) | C4—C3 | 1.3964 (19) |
C10—H10 | 0.9500 | C4—C5 | 1.374 (2) |
C10—C11 | 1.3652 (18) | C3—H3 | 0.9500 |
C7—H7 | 0.9500 | C18—H18A | 0.9800 |
C7—C6 | 1.4257 (19) | C18—H18B | 0.9800 |
C6—C5 | 1.4092 (19) | C18—H18C | 0.9800 |
C12—C17 | 1.4020 (17) | C5—H5 | 0.9500 |
N1i—Zn1—N1 | 118.68 (6) | C16—C17—C12 | 120.32 (12) |
N1i—Zn1—N2i | 84.72 (4) | C16—C17—C20 | 119.04 (12) |
N1i—Zn1—N2 | 122.48 (4) | C12—C17—C20 | 120.62 (11) |
N1—Zn1—N2i | 122.48 (4) | C10—C11—H11 | 120.5 |
N1—Zn1—N2 | 84.72 (4) | C10—C11—B1 | 118.97 (12) |
N2—Zn1—N2i | 128.26 (6) | B1—C11—H11 | 120.5 |
C1—N1—Zn1 | 109.89 (8) | C17—C20—H20A | 109.5 |
C1—N1—B1 | 120.99 (10) | C17—C20—H20B | 109.5 |
B1—N1—Zn1 | 128.11 (8) | C17—C20—H20C | 109.5 |
C2—N2—Zn1 | 107.62 (8) | H20A—C20—H20B | 109.5 |
C3—N2—Zn1 | 133.06 (9) | H20A—C20—H20C | 109.5 |
C3—N2—C2 | 118.90 (11) | H20B—C20—H20C | 109.5 |
C15—C16—H16 | 119.2 | C15—C14—H14 | 119.4 |
C15—C16—C17 | 121.69 (12) | C13—C14—C15 | 121.22 (13) |
C17—C16—H16 | 119.2 | C13—C14—H14 | 119.4 |
C1—C9—C8 | 119.26 (11) | C15—C19—H19A | 109.5 |
C1—C9—C10 | 118.26 (11) | C15—C19—H19B | 109.5 |
C8—C9—C10 | 122.46 (11) | C15—C19—H19C | 109.5 |
N1—C1—C9 | 123.33 (11) | H19A—C19—H19B | 109.5 |
N1—C1—C2 | 118.03 (10) | H19A—C19—H19C | 109.5 |
C9—C1—C2 | 118.63 (10) | H19B—C19—H19C | 109.5 |
N2—C2—C1 | 117.15 (10) | C12—C13—C18 | 119.97 (11) |
N2—C2—C6 | 122.03 (11) | C14—C13—C12 | 120.70 (12) |
C6—C2—C1 | 120.82 (11) | C14—C13—C18 | 119.32 (12) |
C9—C8—H8 | 119.0 | C3—C4—H4 | 120.5 |
C7—C8—C9 | 122.07 (12) | C5—C4—H4 | 120.5 |
C7—C8—H8 | 119.0 | C5—C4—C3 | 119.03 (13) |
C9—C10—H10 | 119.1 | N2—C3—C4 | 122.63 (13) |
C11—C10—C9 | 121.79 (12) | N2—C3—H3 | 118.7 |
C11—C10—H10 | 119.1 | C4—C3—H3 | 118.7 |
C8—C7—H7 | 119.9 | C13—C18—H18A | 109.5 |
C8—C7—C6 | 120.21 (11) | C13—C18—H18B | 109.5 |
C6—C7—H7 | 119.9 | C13—C18—H18C | 109.5 |
C2—C6—C7 | 118.90 (12) | H18A—C18—H18B | 109.5 |
C5—C6—C2 | 117.29 (12) | H18A—C18—H18C | 109.5 |
C5—C6—C7 | 123.81 (12) | H18B—C18—H18C | 109.5 |
C17—C12—C13 | 117.92 (11) | C6—C5—H5 | 120.0 |
C17—C12—B1 | 123.59 (11) | C4—C5—C6 | 120.08 (12) |
C13—C12—B1 | 118.06 (11) | C4—C5—H5 | 120.0 |
C16—C15—C14 | 118.10 (12) | N1—B1—C12 | 115.27 (11) |
C16—C15—C19 | 121.23 (13) | N1—B1—C11 | 116.51 (11) |
C14—C15—C19 | 120.67 (14) | C11—B1—C12 | 128.12 (11) |
Zn1—N1—C1—C9 | 166.76 (9) | C10—C9—C1—C2 | −179.75 (11) |
Zn1—N1—C1—C2 | −14.38 (13) | C10—C9—C8—C7 | 176.87 (13) |
Zn1—N1—B1—C12 | 20.10 (16) | C10—C11—B1—N1 | −2.14 (19) |
Zn1—N1—B1—C11 | −163.25 (9) | C10—C11—B1—C12 | 174.00 (13) |
Zn1—N2—C2—C1 | 7.93 (13) | C7—C6—C5—C4 | −177.57 (14) |
Zn1—N2—C2—C6 | −172.71 (10) | C15—C16—C17—C12 | 1.2 (2) |
Zn1—N2—C3—C4 | 172.48 (11) | C15—C16—C17—C20 | 179.74 (13) |
N1—C1—C2—N2 | 4.08 (16) | C15—C14—C13—C12 | −0.3 (2) |
N1—C1—C2—C6 | −175.29 (11) | C15—C14—C13—C18 | 180.00 (14) |
N2—C2—C6—C7 | 177.35 (12) | C17—C16—C15—C14 | 0.4 (2) |
N2—C2—C6—C5 | −2.32 (19) | C17—C16—C15—C19 | −179.75 (13) |
C16—C15—C14—C13 | −0.8 (2) | C17—C12—C13—C14 | 1.89 (19) |
C9—C1—C2—N2 | −177.01 (11) | C17—C12—C13—C18 | −178.44 (13) |
C9—C1—C2—C6 | 3.63 (17) | C17—C12—B1—N1 | −96.44 (15) |
C9—C8—C7—C6 | 2.0 (2) | C17—C12—B1—C11 | 87.37 (17) |
C9—C10—C11—B1 | −1.2 (2) | C19—C15—C14—C13 | 179.30 (13) |
C1—N1—B1—C12 | −172.61 (11) | C13—C12—C17—C16 | −2.33 (18) |
C1—N1—B1—C11 | 4.04 (17) | C13—C12—C17—C20 | 179.19 (12) |
C1—C9—C8—C7 | −1.7 (2) | C13—C12—B1—N1 | 75.93 (15) |
C1—C9—C10—C11 | 2.81 (19) | C13—C12—B1—C11 | −100.25 (16) |
C1—C2—C6—C7 | −3.32 (18) | C3—N2—C2—C1 | −178.47 (11) |
C1—C2—C6—C5 | 177.02 (12) | C3—N2—C2—C6 | 0.89 (18) |
C2—N2—C3—C4 | 0.8 (2) | C3—C4—C5—C6 | −0.5 (2) |
C2—C6—C5—C4 | 2.1 (2) | C5—C4—C3—N2 | −1.0 (2) |
C8—C9—C1—N1 | 177.72 (11) | B1—N1—C1—C9 | −2.63 (18) |
C8—C9—C1—C2 | −1.14 (17) | B1—N1—C1—C2 | 176.23 (11) |
C8—C9—C10—C11 | −175.75 (13) | B1—C12—C17—C16 | 170.06 (12) |
C8—C7—C6—C2 | 0.5 (2) | B1—C12—C17—C20 | −8.42 (19) |
C8—C7—C6—C5 | −179.86 (14) | B1—C12—C13—C14 | −170.92 (12) |
C10—C9—C1—N1 | −0.89 (18) | B1—C12—C13—C18 | 8.75 (19) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Funding information
Funding for this research was provided by: Central Research Development Fund of the University of Bremen (postdoctoral fellowship to Pim Puylaert).
References
Appiarius, Y., Puylaert, P., Werthschütz, J., Neudecker, T. & Staubitz, A. (2023). Inorganics 11, 295. CSD CrossRef Google Scholar
Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10–17. Web of Science CSD CrossRef CAS Google Scholar
Baggett, A. W. & Liu, S.-Y. (2017). J. Am. Chem. Soc. 139, 15259–15264. CrossRef CAS Google Scholar
Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S.-Y. (2015). J. Am. Chem. Soc. 137, 5536–5541. CSD CrossRef CAS Google Scholar
Baschieri, A., Aleotti, F., Matteucci, E., Sambri, L., Mancinelli, M., Mazzanti, A., Leoni, E., Armaroli, N. & Monti, F. (2023). Inorg. Chem. 62, 2456–2469. CSD CrossRef CAS Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Campbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289–3291. Web of Science CSD CrossRef CAS PubMed Google Scholar
Davies, G. H. M., Jouffroy, M., Sherafat, F., Saeednia, B., Howshall, C. & Molander, G. A. (2017). J. Org. Chem. 82, 8072–8084. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021). J. Mater. Chem. C. 9, 14720–14729. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lamm, A. N., Garner, E. B. III, Dixon, D. A. & Liu, S.-Y. (2011). Angew. Chem. Int. Ed. 50, 8157–8160. CrossRef CAS Google Scholar
Lindl, F., Lamprecht, A., Arrowsmith, M., Khitro, E., Rempel, A., Dietz, M., Wellnitz, T., Bélanger–Chabot, G., Stoy, A., Paprocki, V., Prieschl, D., Lenczyk, C., Ramler, J., Lichtenberg, C. & Braunschweig, H. (2023). Chem. A Eur. J. 29, e202203345. CSD CrossRef Google Scholar
Paetzold, P., Stanescu, C., Stubenrauch, J. R., Bienmüller, M. & Englert, U. (2004). Z. Anorg. Allge Chem. 630, 2632–2640. CSD CrossRef CAS Google Scholar
Pan, J., Kampf, J. W. & Ashe, A. J. (2004). Organometallics, 23, 5626–5629. CSD CrossRef CAS Google Scholar
Pan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345–1347. Web of Science CSD CrossRef CAS Google Scholar
Pan, J., Kampf, J. W. & Ashe, A. J. (2009). Organometallics, 28, 506–511. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H., Zeng, Y., Ma, J. S., Fu, H., Yao, J., Mikhaleva, A. I. & Trofimov, B. A. (2009). Chem. Commun. pp. 5457–5459. CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. (2017). ChemMedChem, 12, 358–361. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.