research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­(9-mesityl-9,10-di­hydro-10-aza-9-borabenzo[h]quinolinato-κ2N1,N10)zinc(II)

crossmark logo

aUniversity of Bremen, Institute for Organic and Analytical Chemistry, 28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany, and cUniversity of Bremen, Institute for Inorganic Chemistry and Crystallography, 28359 Bremen, Germany
*Correspondence e-mail: staubitz@uni-bremen.de

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 27 July 2023; accepted 19 October 2023; online 24 October 2023)

The title compound, [Zn(C20H18BN2)2] (ZnL2), is an overall uncharged chelate that consists of two units of an NH-deprotonated 10-aza-9-borabenzo[h]quinoline ligand (L) per ZnII center. It was synthesized in two steps by treating the protonated ligand HL with lithium bis­(tri­methyl­sil­yl)amide and further conversion with di­ethyl­zinc. Its asymmetric unit comprises one ZnL fragment; the mol­ecule is completed by application of inversion symmetry at Zn. Due to the fourfold coordination with nitro­gen atoms, the zinc(II) ion is located in a distorted tetra­hedral environment. Besides the relatively short N—Zn bonds, ZnL2 is characterized by the significant protrusion of the central ion from the plane of the ligand backbone. The crystal structure is consolidated by intra- and inter­molecular ππ stacking inter­actions, while the polarized B—N bond is barely involved in any close atom contacts.

1. Chemical context

1,2-Aza­borinine is an aromatic six-membered ring that consists of a polar boron-nitro­gen unit and a butadienyl moiety, making it an isoelectronic congener of benzene. Its strikingly similar geometry in conjunction with a significantly altered electron distribution has promoted research on mono- and polycyclic aromatic hydro­carbons (PAHs) with a BN substitution pattern. Several studies highlighted the BN-induced tailored adjustment of chemical, physical and optical properties, enabling the application of such heteroaromatics for instance as white-emitting layers in organic light-emitting diodes (Hoffmann et al., 2021[Hoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021). J. Mater. Chem. C. 9, 14720-14729.]), as reversible hydrogen storage materials (Campbell et al., 2010[Campbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289-3291.]) or as building blocks in pharmaceuticals with increased bioavailability (Zhao et al., 2017[Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. (2017). ChemMedChem, 12, 358-361.]). Relatively few reports made use of the selectively deprotonable NH group (pKa ≃ 24) to introduce electrophilic functional groups or metal atoms (Pan et al., 2004[Pan, J., Kampf, J. W. & Ashe, A. J. (2004). Organometallics, 23, 5626-5629.]; Lamm et al., 2011[Lamm, A. N., Garner, E. B. III, Dixon, D. A. & Liu, S.-Y. (2011). Angew. Chem. Int. Ed. 50, 8157-8160.]; Baggett & Liu, 2017[Baggett, A. W. & Liu, S.-Y. (2017). J. Am. Chem. Soc. 139, 15259-15264.]; Lindl et al., 2023[Lindl, F., Lamprecht, A., Arrowsmith, M., Khitro, E., Rempel, A., Dietz, M., Wellnitz, T., Bélanger-Chabot, G., Stoy, A., Paprocki, V., Prieschl, D., Lenczyk, C., Ramler, J., Lichtenberg, C. & Braunschweig, H. (2023). Chem. A Eur. J. 29, e202203345.]).

[Scheme 1]

In a previous study (Appiarius et al., 2021[Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10-17.]), a BN-substituted benzo[h]quinoline (HL), containing one 1,2-aza­borininyl- and one pyridyl subunit with both nitro­gen atoms beneficially preorganized for chelation was presented. In the context of this communication, we report on the synthesis and crystal structure of the 2:1 coordination complex of ligand L with zinc(II).

2. Structural commentary

The mol­ecular structure of the title compound (C40H36B2N4Zn, ZnL2) is illustrated in Fig. 1[link]. The coordination complex crystallizes in the monoclinic C2/c centrosymmetric space group with one zinc(II) cation and one ligand mol­ecule in the asymmetric unit, being completed by the application of inversion symmetry at ZnII. The latter is fourfold coordinated by two types of N donors, namely the aza­borinine and pyridine subunits comprised in the BN-benzo[h]quinoline. This results in a significantly distorted tetra­hedral configuration [bond angle N1—Zn1—N2 84.72 (4)°; all other N—Zn—N bond angles > 118°, see Table 1[link]]. The bond lengths within the 1,2-aza­borinine motif of the ligand [B1—N1: 1.4245 (17) Å, B1—C11: 1.5315 (19) Å, N1—C1: 1.3580 (14) Å] are in characteristic ranges (Paetzold et al., 2004[Paetzold, P., Stanescu, C., Stubenrauch, J. R., Bienmüller, M. & Englert, U. (2004). Z. Anorg. Allge Chem. 630, 2632-2640.]; Pan et al., 2009[Pan, J., Kampf, J. W. & Ashe, A. J. (2009). Organometallics, 28, 506-511.]), confirming electron delocalization and an elevated aromatic character. The N—Zn bond lengths [N1—Zn1: 1.9606 (10) Å, N2—Zn1: 2.0527 (10) Å] are in excellent agreement with bis­(2-(2′-pyrid­yl)pyrrol­yl)zinc [Npyrrole–Zn 1.9513 (18) Å, Npyridine–Zn 2.0444 (18) Å; Wang et al., 2009[Wang, H., Zeng, Y., Ma, J. S., Fu, H., Yao, J., Mikhaleva, A. I. & Trofimov, B. A. (2009). Chem. Commun. pp. 5457-5459.]], supporting the electronic similarities of 1,2-aza­borinine and pyrrole (Davies et al., 2017[Davies, G. H. M., Jouffroy, M., Sherafat, F., Saeednia, B., Howshall, C. & Molander, G. A. (2017). J. Org. Chem. 82, 8072-8084.]). This contrasts with zinc complexes involving the geometrically similar but uncharged 1,10-phenanthroline ligand (Npyridine–Zn 2.13–2.20 Å) with higher coordination numbers of the central ion. All aromatic rings within the BN-PAH ligand are close to planar, with an average torsion angle of 2.2° and a maximum deviation of an atom from the mean aromatic plane of 0.0217 (8) Å. In contrast, the ZnII ion is located 0.365 (2) Å out of the mean N1–C1–C2–N2 plane and points in the direction of the mesityl ring of the second ligand unit. The 1,2-aza­borinine motif and the attached planar mesityl group [maximum deviation from the mean aromatic plane: 0.0125 (9) Å] are oriented almost perpendicularly to each other, with an angle between their mean planes of 79.41 (4)°.

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 1.9606 (10) N2—C2 1.3660 (16)
Zn1—N2 2.0527 (10) N2—C3 1.3316 (17)
N1—C1 1.3580 (14) C12—B1 1.5896 (18)
N1—B1 1.4245 (17) C11—B1 1.5315 (19)
       
N1i—Zn1—N1 118.68 (6) N1—Zn1—N2 84.72 (4)
N1i—Zn1—N2 122.48 (4) N2—Zn1—N2i 128.26 (6)
       
Zn1—N1—C1—C9 166.76 (9) Zn1—N1—B1—C12 20.10 (16)
Zn1—N1—C1—C2 −14.38 (13) Zn1—N1—B1—C11 −163.25 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of ZnL2 with atom labeling. The image was generated with ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Non-hydrogen atoms as displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. [Symmetry code: (i) −x + 1, y, –z + [{3\over 2}]].

3. Supra­molecular features and Hirshfeld surface analysis

A Hirshfeld surface (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.], Fig. 2[link]) and the respective two-dimensional fingerprint plots (Fig. 3[link]) were generated using CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to analyze the inter­molecular inter­actions. No close atom contacts involving the boron and zinc heteroatoms and a negligible participation of the nitro­gen atom (N⋯H: 1.5%, C⋯N: 0.4%) were found. Therefore, the inter­molecular inter­actions were almost exclusively caused by van der Waals forces involving carbon and hydrogen. In particular, close H⋯H contacts and aromatic inter­actions dominate the overall inter­molecular inter­actions in a crystal. The `wings' at the top left (di ≃ 1.05 Å and de ≃ 1.60 Å) and their pseudo-symmet­rical counterparts at the bottom right of the two-dimensional fingerprint plot correspond to C—H⋯π inter­actions. These are also mapped by several red spots on the Hirshfeld surface (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Moreover, considerable ππ stacking inter­actions are apparent by the light coloring of the Hirshfeld surface around the PAH backbone and intense C⋯C contacts (5.8%). The crystal packing shows that each aromatic ligand has one ligand unit of another mol­ecule in close proximity, so that pairs of almost parallel but slightly displaced sheets in two dimensions result (Fig. 4[link]). In particular, the phenyl and pyridyl subunits of neighboring mol­ecules show a significant overlap, with an offset of only 1.181 (2) Å and a minimum inter­planar distance of 3.3826 (13) Å. On the other hand, the PAH scaffolds and the mesityl π-planes of the inverse ligand units are aligned almost coplanar [mesit­yl–pyridine inter­planar angle: 1.46 (5)°] with a similarly small minimum inter­planar distance [3.3996 (10) Å]. Therefore, intra­molecular ππ stacking contributes significantly to the overall stabilizing forces. We assume that the discussed, unusual off-plane position of the zinc ion and the increased angle between the mean mesityl plane and the B1—C12 bond [7.93 (8)°] also derives from this favorable stacking geometry.

[Figure 2]
Figure 2
Hirshfeld surface of ZnL2, mapped over dnorm in the range between −0.1418 (red) and +1.6402 (blue).
[Figure 3]
Figure 3
Two-dimensional fingerprint plots, showing the contributions of the individual elements in close atom contacts.
[Figure 4]
Figure 4
Section of the crystal packing, showing the ππ stacking inter­actions propagating in two dimensions. BN rings are shown in orange, mesityl rings in yellow, phenyl and pyridyl rings in blue.

4. Database survey

A survey of the Cambridge Structural Database (WebCSD version 1.9.32, accessed in July 2023[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Groom et al., 2016) revealed that 654 crystal structures of six-membered carbocycles with 1-aza-2-bora substitution patterns have been reported. Among these, 101 structures comprising B-mesityl substituents have been deposited, which involves aromatic 1,2-aza­borinine subunits for the most part. The crystal structures of 13 compounds with 1,2-aza­borinine substructures and nitro­gen–metal bonds have been published, of which different lithium solvates as well as potassium, beryllium, aluminum, gallium and tin complexes are included in one publication (Lindl et al., 2023[Lindl, F., Lamprecht, A., Arrowsmith, M., Khitro, E., Rempel, A., Dietz, M., Wellnitz, T., Bélanger-Chabot, G., Stoy, A., Paprocki, V., Prieschl, D., Lenczyk, C., Ramler, J., Lichtenberg, C. & Braunschweig, H. (2023). Chem. A Eur. J. 29, e202203345.]). Moreover, one study describes several complexes of a bidentate ligand with aluminum (Appiarius et al., 2023[Appiarius, Y., Puylaert, P., Werthschütz, J., Neudecker, T. & Staubitz, A. (2023). Inorganics 11, 295.]). However, there are only three reports of 1,2-aza­borinines with N–transition-metal bonds, including zirconium (refcode JIZQEP; Pan et al., 2008[Pan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345-1347.]), ruthenium (refcode DOXBEY; Pan et al., 2008[Pan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345-1347.]) and iridium (refcode NEZXAV; Baschieri et al., 2023[Baschieri, A., Aleotti, F., Matteucci, E., Sambri, L., Mancinelli, M., Mazzanti, A., Leoni, E., Armaroli, N. & Monti, F. (2023). Inorg. Chem. 62, 2456-2469.]). Also, the structure of a 6-pyridyl-1,2-aza­borinine has been reported, which is structurally similar to HL and was used for the preparation of a dimesitylboron complex (refcode WUGMIW; Baggett et al., 2015[Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S.-Y. (2015). J. Am. Chem. Soc. 137, 5536-5541.]). The search query for coordination complexes of zinc with 1,2-aza­borinine ligands did not yield any results.

5. Synthesis and crystallization

The synthesis of ZnL2 is shown in Fig. 5[link]. Under argon at 298 K, 9,10-di­hydro-9-mesityl-10-aza-9-borabenzo[h]quinoline (HL, 29.8 mg, 100 µmol, 1.00 equiv., prepared according to Appiarius et al., 2021[Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10-17.]) was dissolved in THF (1.5 mL). A solution of lithium bis­(tri­methyl­sil­yl)amide (1.0 M in THF, 120 µL, 1.20 equiv.) was added, before a solution of di­ethyl­zinc (15% w/w in hexa­nes, 230 µL, 2.00 equiv.) was added via a syringe. The mixture was heated to 428 K for 17 h while stirring. In a glove box, the volatiles were removed under reduced pressure. The residue was extracted with n-hexane (3 × 2 mL) and the solvent was removed. The crude product was dissolved in THF (500 µL) and n-hexane was allowed to diffuse into this solution over the course of 3 d. The light-yellow product (6.4 mg, 19%) was obtained as air-sensitive crystals suitable for X-ray diffraction analysis by repeating this process twice. 1H NMR (600 MHz, THF-d8): δ = 8.37–8.32 (m, 4H, C3-H + C5-H), 8.07 (d, 3J = 11.0 Hz, 2H, C10-H), 7.79 (d, 3J = 8.7 z, 2H, C8-H), 7.38–7.35 (m, 2H, C4-H), 7.33 (d, 3J = 8.7 Hz, 2H, C7-H), 6.90 (d, 3J = 11.0 Hz, 2H, C11-H), 6.04 (s, 2H, C14-H), 5.61 (s, 2H, C16-H), 1.83 (s, 6H, C19-H), 1.79 (s, 6H, C18-H), 1.40 (s, 6H, C20-H) ppm. 13C{1H} NMR (151 MHz, THF-d8): δ = 147.3 (C3), 145.8 (C1), 143.3 (C2), 143.0 (C10), 139.2 (C17), 139.2 (C5), 139.1 (C13), 134.8 (C15), 134.5 (C11), 131.2 (C8), 129.0 (C6), 127.1 (C14), 126.4 (C16), 126.1 (C9), 122.3 (C4), 116.1 (C7), 24.0 (C18), 23.8 (C20), 21.3 (C19) ppm. 11B{1H} NMR (193 MHz, THF-d8): δ = 38.6 ppm. MS (EI): m/z 658.3 (3%) [ZnL2]+, 298.2 (100%) [HL]+. HR-MS (EI): m/z calculated for C40H36B2N4Zn+ 658.24259, found 658.24253 (Dev.: 0.06 mu, 0.09 ppm). UV/Vis: λabs = 296, 343, 358 nm. Fluorescence: λfl = 488 nm (λexc = 350 nm). Further experimental details can be found in the Supporting Information.

[Figure 5]
Figure 5
Reaction scheme for the synthesis of ZnL2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically and refined using a riding model with C—H bond lengths of 0.95 Å (C—H) or 0.98 Å (C—H3). Isotropic displacement parameters (Uiso) of these H atoms were fixed to 1.2 (C—H) or 1.5 (C—H3) of the values of the parent carbon atoms. Idealized methyl groups (C18—H3, C19—H3, C20—H3) were allowed to rotate.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C20H18BN2)2]
Mr 659.72
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 20.0425 (14), 9.8589 (6), 17.1167 (9)
β (°) 105.172 (4)
V3) 3264.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.24 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.677, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 95271, 6577, 5466
Rint 0.084
(sin θ/λ)max−1) 0.784
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.06
No. of reflections 6577
No. of parameters 216
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(9-mesityl-9,10-dihydro-10-aza-9-borabenzo[h]quinolinato-κ2N1,N10)zinc(II) top
Crystal data top
[Zn(C20H18BN2)2]F(000) = 1376
Mr = 659.72Dx = 1.342 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.0425 (14) ÅCell parameters from 9897 reflections
b = 9.8589 (6) Åθ = 2.8–33.4°
c = 17.1167 (9) ŵ = 0.79 mm1
β = 105.172 (4)°T = 100 K
V = 3264.3 (4) Å3Irregular, light yellow
Z = 40.24 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
5466 reflections with I > 2σ(I)
φ and ω scansRint = 0.084
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.9°, θmin = 2.8°
Tmin = 0.677, Tmax = 0.747h = 3131
95271 measured reflectionsk = 1515
6577 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0416P)2 + 3.4887P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6577 reflectionsΔρmax = 0.52 e Å3
216 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.38978 (2)0.7500000.01617 (6)
N10.45636 (5)0.28837 (11)0.65132 (6)0.01565 (17)
N20.55610 (6)0.48063 (11)0.67988 (6)0.01854 (19)
C160.33235 (7)0.14365 (15)0.83074 (8)0.0230 (2)
H160.3411240.0878360.8775720.028*
C90.48444 (6)0.22124 (13)0.52702 (7)0.0178 (2)
C10.49408 (6)0.30237 (12)0.59647 (7)0.01542 (19)
C20.54576 (6)0.40771 (12)0.60987 (7)0.0164 (2)
C80.52494 (7)0.24688 (14)0.47125 (8)0.0227 (2)
H80.5191160.1901730.4250810.027*
C100.43285 (7)0.11731 (14)0.51402 (8)0.0217 (2)
H100.4272190.0590470.4685500.026*
C70.57165 (7)0.35008 (15)0.48219 (8)0.0232 (2)
H70.5966840.3661280.4430130.028*
C60.58310 (7)0.43410 (14)0.55225 (8)0.0199 (2)
C120.35616 (6)0.19967 (13)0.70258 (7)0.0181 (2)
C150.28518 (7)0.24956 (15)0.82289 (8)0.0237 (2)
C170.36714 (6)0.11728 (14)0.77154 (8)0.0198 (2)
C110.39151 (7)0.09962 (14)0.56519 (8)0.0219 (2)
H110.3569570.0311570.5549330.026*
C200.41803 (7)0.00090 (15)0.78396 (9)0.0250 (3)
H20A0.4632420.0317780.8165360.038*
H20B0.4222930.0311720.7312880.038*
H20C0.4015080.0733170.8120990.038*
C140.27287 (7)0.32946 (15)0.75349 (8)0.0237 (2)
H140.2403930.4015320.7466580.028*
C190.24812 (8)0.27744 (19)0.88737 (10)0.0329 (3)
H19A0.2049880.2253800.8757530.049*
H19B0.2376460.3744710.8879570.049*
H19C0.2776520.2505910.9402940.049*
C130.30729 (6)0.30568 (14)0.69395 (8)0.0212 (2)
C40.64006 (8)0.61577 (16)0.63859 (9)0.0272 (3)
H40.6720600.6888210.6498150.033*
C30.60226 (7)0.58083 (14)0.69353 (8)0.0240 (2)
H30.6097760.6305400.7426180.029*
C180.29227 (8)0.39485 (18)0.61986 (10)0.0322 (3)
H18A0.3337020.4471430.6191990.048*
H18B0.2544320.4571200.6210390.048*
H18C0.2789120.3382720.5711810.048*
C50.63028 (7)0.54297 (15)0.56807 (9)0.0251 (3)
H50.6553640.5660430.5299280.030*
B10.40171 (7)0.19187 (14)0.63937 (8)0.0171 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01813 (9)0.01939 (10)0.01154 (8)0.0000.00488 (6)0.000
N10.0160 (4)0.0186 (4)0.0133 (4)0.0000 (3)0.0055 (3)0.0000 (3)
N20.0198 (5)0.0209 (5)0.0147 (4)0.0022 (4)0.0042 (4)0.0009 (3)
C160.0220 (6)0.0303 (7)0.0188 (5)0.0055 (5)0.0089 (4)0.0010 (5)
C90.0203 (5)0.0193 (5)0.0149 (5)0.0015 (4)0.0066 (4)0.0002 (4)
C10.0162 (5)0.0178 (5)0.0129 (4)0.0023 (4)0.0050 (4)0.0016 (4)
C20.0167 (5)0.0190 (5)0.0139 (4)0.0009 (4)0.0048 (4)0.0022 (4)
C80.0288 (6)0.0247 (6)0.0177 (5)0.0025 (5)0.0115 (5)0.0008 (4)
C100.0274 (6)0.0212 (6)0.0171 (5)0.0016 (5)0.0070 (4)0.0034 (4)
C70.0266 (6)0.0275 (6)0.0194 (5)0.0018 (5)0.0127 (5)0.0021 (5)
C60.0202 (5)0.0227 (5)0.0187 (5)0.0006 (4)0.0084 (4)0.0046 (4)
C120.0152 (5)0.0226 (6)0.0169 (5)0.0034 (4)0.0049 (4)0.0004 (4)
C150.0207 (5)0.0314 (7)0.0217 (6)0.0064 (5)0.0105 (5)0.0050 (5)
C170.0174 (5)0.0237 (6)0.0192 (5)0.0038 (4)0.0064 (4)0.0015 (4)
C110.0233 (6)0.0226 (6)0.0203 (5)0.0049 (4)0.0063 (4)0.0026 (4)
C200.0254 (6)0.0256 (6)0.0258 (6)0.0007 (5)0.0098 (5)0.0059 (5)
C140.0183 (5)0.0282 (7)0.0265 (6)0.0010 (5)0.0094 (5)0.0030 (5)
C190.0312 (7)0.0431 (9)0.0307 (7)0.0054 (6)0.0191 (6)0.0066 (6)
C130.0179 (5)0.0260 (6)0.0209 (5)0.0004 (4)0.0073 (4)0.0016 (4)
C40.0264 (6)0.0291 (7)0.0260 (6)0.0084 (5)0.0068 (5)0.0041 (5)
C30.0266 (6)0.0245 (6)0.0195 (5)0.0064 (5)0.0037 (5)0.0006 (4)
C180.0294 (7)0.0395 (8)0.0309 (7)0.0123 (6)0.0137 (6)0.0122 (6)
C50.0238 (6)0.0293 (7)0.0244 (6)0.0036 (5)0.0100 (5)0.0059 (5)
B10.0167 (5)0.0197 (6)0.0152 (5)0.0004 (4)0.0045 (4)0.0004 (4)
Geometric parameters (Å, º) top
Zn1—N1i1.9606 (10)C12—C131.4134 (18)
Zn1—N11.9606 (10)C12—B11.5896 (18)
Zn1—N22.0527 (10)C15—C141.393 (2)
Zn1—N2i2.0527 (10)C15—C191.5080 (19)
N1—C11.3580 (14)C17—C201.5127 (19)
N1—B11.4245 (17)C11—H110.9500
N2—C21.3660 (16)C11—B11.5315 (19)
N2—C31.3316 (17)C20—H20A0.9800
C16—H160.9500C20—H20B0.9800
C16—C151.391 (2)C20—H20C0.9800
C16—C171.3966 (18)C14—H140.9500
C9—C11.4035 (16)C14—C131.3920 (18)
C9—C81.4281 (17)C19—H19A0.9800
C9—C101.4310 (18)C19—H19B0.9800
C1—C21.4421 (17)C19—H19C0.9800
C2—C61.4095 (16)C13—C181.507 (2)
C8—H80.9500C4—H40.9500
C8—C71.362 (2)C4—C31.3964 (19)
C10—H100.9500C4—C51.374 (2)
C10—C111.3652 (18)C3—H30.9500
C7—H70.9500C18—H18A0.9800
C7—C61.4257 (19)C18—H18B0.9800
C6—C51.4092 (19)C18—H18C0.9800
C12—C171.4020 (17)C5—H50.9500
N1i—Zn1—N1118.68 (6)C16—C17—C12120.32 (12)
N1i—Zn1—N2i84.72 (4)C16—C17—C20119.04 (12)
N1i—Zn1—N2122.48 (4)C12—C17—C20120.62 (11)
N1—Zn1—N2i122.48 (4)C10—C11—H11120.5
N1—Zn1—N284.72 (4)C10—C11—B1118.97 (12)
N2—Zn1—N2i128.26 (6)B1—C11—H11120.5
C1—N1—Zn1109.89 (8)C17—C20—H20A109.5
C1—N1—B1120.99 (10)C17—C20—H20B109.5
B1—N1—Zn1128.11 (8)C17—C20—H20C109.5
C2—N2—Zn1107.62 (8)H20A—C20—H20B109.5
C3—N2—Zn1133.06 (9)H20A—C20—H20C109.5
C3—N2—C2118.90 (11)H20B—C20—H20C109.5
C15—C16—H16119.2C15—C14—H14119.4
C15—C16—C17121.69 (12)C13—C14—C15121.22 (13)
C17—C16—H16119.2C13—C14—H14119.4
C1—C9—C8119.26 (11)C15—C19—H19A109.5
C1—C9—C10118.26 (11)C15—C19—H19B109.5
C8—C9—C10122.46 (11)C15—C19—H19C109.5
N1—C1—C9123.33 (11)H19A—C19—H19B109.5
N1—C1—C2118.03 (10)H19A—C19—H19C109.5
C9—C1—C2118.63 (10)H19B—C19—H19C109.5
N2—C2—C1117.15 (10)C12—C13—C18119.97 (11)
N2—C2—C6122.03 (11)C14—C13—C12120.70 (12)
C6—C2—C1120.82 (11)C14—C13—C18119.32 (12)
C9—C8—H8119.0C3—C4—H4120.5
C7—C8—C9122.07 (12)C5—C4—H4120.5
C7—C8—H8119.0C5—C4—C3119.03 (13)
C9—C10—H10119.1N2—C3—C4122.63 (13)
C11—C10—C9121.79 (12)N2—C3—H3118.7
C11—C10—H10119.1C4—C3—H3118.7
C8—C7—H7119.9C13—C18—H18A109.5
C8—C7—C6120.21 (11)C13—C18—H18B109.5
C6—C7—H7119.9C13—C18—H18C109.5
C2—C6—C7118.90 (12)H18A—C18—H18B109.5
C5—C6—C2117.29 (12)H18A—C18—H18C109.5
C5—C6—C7123.81 (12)H18B—C18—H18C109.5
C17—C12—C13117.92 (11)C6—C5—H5120.0
C17—C12—B1123.59 (11)C4—C5—C6120.08 (12)
C13—C12—B1118.06 (11)C4—C5—H5120.0
C16—C15—C14118.10 (12)N1—B1—C12115.27 (11)
C16—C15—C19121.23 (13)N1—B1—C11116.51 (11)
C14—C15—C19120.67 (14)C11—B1—C12128.12 (11)
Zn1—N1—C1—C9166.76 (9)C10—C9—C1—C2179.75 (11)
Zn1—N1—C1—C214.38 (13)C10—C9—C8—C7176.87 (13)
Zn1—N1—B1—C1220.10 (16)C10—C11—B1—N12.14 (19)
Zn1—N1—B1—C11163.25 (9)C10—C11—B1—C12174.00 (13)
Zn1—N2—C2—C17.93 (13)C7—C6—C5—C4177.57 (14)
Zn1—N2—C2—C6172.71 (10)C15—C16—C17—C121.2 (2)
Zn1—N2—C3—C4172.48 (11)C15—C16—C17—C20179.74 (13)
N1—C1—C2—N24.08 (16)C15—C14—C13—C120.3 (2)
N1—C1—C2—C6175.29 (11)C15—C14—C13—C18180.00 (14)
N2—C2—C6—C7177.35 (12)C17—C16—C15—C140.4 (2)
N2—C2—C6—C52.32 (19)C17—C16—C15—C19179.75 (13)
C16—C15—C14—C130.8 (2)C17—C12—C13—C141.89 (19)
C9—C1—C2—N2177.01 (11)C17—C12—C13—C18178.44 (13)
C9—C1—C2—C63.63 (17)C17—C12—B1—N196.44 (15)
C9—C8—C7—C62.0 (2)C17—C12—B1—C1187.37 (17)
C9—C10—C11—B11.2 (2)C19—C15—C14—C13179.30 (13)
C1—N1—B1—C12172.61 (11)C13—C12—C17—C162.33 (18)
C1—N1—B1—C114.04 (17)C13—C12—C17—C20179.19 (12)
C1—C9—C8—C71.7 (2)C13—C12—B1—N175.93 (15)
C1—C9—C10—C112.81 (19)C13—C12—B1—C11100.25 (16)
C1—C2—C6—C73.32 (18)C3—N2—C2—C1178.47 (11)
C1—C2—C6—C5177.02 (12)C3—N2—C2—C60.89 (18)
C2—N2—C3—C40.8 (2)C3—C4—C5—C60.5 (2)
C2—C6—C5—C42.1 (2)C5—C4—C3—N21.0 (2)
C8—C9—C1—N1177.72 (11)B1—N1—C1—C92.63 (18)
C8—C9—C1—C21.14 (17)B1—N1—C1—C2176.23 (11)
C8—C9—C10—C11175.75 (13)B1—C12—C17—C16170.06 (12)
C8—C7—C6—C20.5 (2)B1—C12—C17—C208.42 (19)
C8—C7—C6—C5179.86 (14)B1—C12—C13—C14170.92 (12)
C10—C9—C1—N10.89 (18)B1—C12—C13—C188.75 (19)
Symmetry code: (i) x+1, y, z+3/2.
 

Funding information

Funding for this research was provided by: Central Research Development Fund of the University of Bremen (postdoctoral fellowship to Pim Puylaert).

References

First citationAppiarius, Y., Puylaert, P., Werthschütz, J., Neudecker, T. & Staubitz, A. (2023). Inorganics 11, 295.  CSD CrossRef Google Scholar
First citationAppiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaggett, A. W. & Liu, S.-Y. (2017). J. Am. Chem. Soc. 139, 15259–15264.  CrossRef CAS Google Scholar
First citationBaggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S.-Y. (2015). J. Am. Chem. Soc. 137, 5536–5541.  CSD CrossRef CAS Google Scholar
First citationBaschieri, A., Aleotti, F., Matteucci, E., Sambri, L., Mancinelli, M., Mazzanti, A., Leoni, E., Armaroli, N. & Monti, F. (2023). Inorg. Chem. 62, 2456–2469.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCampbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289–3291.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDavies, G. H. M., Jouffroy, M., Sherafat, F., Saeednia, B., Howshall, C. & Molander, G. A. (2017). J. Org. Chem. 82, 8072–8084.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021). J. Mater. Chem. C. 9, 14720–14729.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLamm, A. N., Garner, E. B. III, Dixon, D. A. & Liu, S.-Y. (2011). Angew. Chem. Int. Ed. 50, 8157–8160.  CrossRef CAS Google Scholar
First citationLindl, F., Lamprecht, A., Arrowsmith, M., Khitro, E., Rempel, A., Dietz, M., Wellnitz, T., Bélanger–Chabot, G., Stoy, A., Paprocki, V., Prieschl, D., Lenczyk, C., Ramler, J., Lichtenberg, C. & Braunschweig, H. (2023). Chem. A Eur. J. 29, e202203345.  CSD CrossRef Google Scholar
First citationPaetzold, P., Stanescu, C., Stubenrauch, J. R., Bienmüller, M. & Englert, U. (2004). Z. Anorg. Allge Chem. 630, 2632–2640.  CSD CrossRef CAS Google Scholar
First citationPan, J., Kampf, J. W. & Ashe, A. J. (2004). Organometallics, 23, 5626–5629.  CSD CrossRef CAS Google Scholar
First citationPan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345–1347.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, J., Kampf, J. W. & Ashe, A. J. (2009). Organometallics, 28, 506–511.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zeng, Y., Ma, J. S., Fu, H., Yao, J., Mikhaleva, A. I. & Trofimov, B. A. (2009). Chem. Commun. pp. 5457–5459.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. (2017). ChemMedChem, 12, 358–361.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds