research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of two solvates of 1-{[2,6-bis­­(hy­dr­oxy­meth­yl)-4-methyl­phen­­oxy]meth­yl}-3,5-bis­­{[(4,6-di­methyl­pyridin-2-yl)amino]meth­yl}-2,4,6-tri­ethyl­benzene

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 1 August 2023; accepted 18 October 2023; online 24 October 2023)

In the crystal structures of the formamide monosolvate (1a) and the n-propanol/H2O solvate/hydrate (1b) of the title compound, C38H50N4O3 (1), the tripodal host mol­ecule adopts a conformation in which the substituents attached to the central benzene ring are arranged in an alternating order above and below the ring plane. As a result of the different nature of the involved guest species, the crystal components in 1a create a three-dimensional supra­molecular architecture, while the crystal structure of 1b consists of two-dimensional supra­molecular aggregates extending parallel to the crystallographic ab plane.

1. Chemical context

1,3,5-Trisubstituted 2,4,6-tri­ethyl­benzene derivatives with functionalized side-arms can serve as artificial receptors for mol­ecular recognition of carbohydrates. In addition to the development of acyclic receptor mol­ecules, the tri­ethyl­benzene scaffold was found to be valuable for the construction of macrocyclic systems. The possibilities for functionalization of acyclic and macrocyclic mol­ecules of this type are manifold, allowing the synthesis of a whole range of compounds for systematic binding studies. Some examples of suitable functional groups, which can act as recognition units and have been considered in our studies, are heteroaromatic units such as pyridine-, pyrimidine- (Lippe et al., 2015[Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622-11632.]), pyrazole- (Koch et al., 2016[Koch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757-2767.]), purine- (Kaiser et al., 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]) or phenanthroline-based recognition groups (Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.]), (cyclo)­alkyl­amino groups (Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900-4915.]; Leibiger et al., 2022[Leibiger, B., Stapf, M. & Mazik, M. (2022). Molecules, 27, 7630.]) as well as subunits containing hy­droxy groups. Among the mol­ecules with the latter groups, studies of the binding properties of acyclic (Mazik & Kuschel, 2008a[Mazik, M. & Kuschel, M. (2008a). Eur. J. Org. Chem. pp. 1517-1526.]) and macrocyclic (Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.]) compounds bearing a hy­droxy­methyl group at the tri­ethyl­benzene core should be mentioned. These binding studies included NMR spectroscopic titrations and microcalorimetric investigations (ITC experiments). Similarly, chip calorimetry experiments were performed with one of our receptor compounds possessing [1-(hy­droxy­meth­yl)cyclo­pent-1-yl]amino moieties (Lerchner et al., 2022[Lerchner, J., Sartori, M. R., Volpe, P. O., Förster, S., Mazik, M., Vercesi, A. E. & Mertens, F. (2022). J. Therm. Anal. Calorim. 147, 2253-2263.]). Further compounds bearing hy­droxy groups, whose crystal structures we have recently discussed (Stapf et al., 2020b[Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679-1683.], 2022[Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). Acta Cryst. E78, 825-828.]), are currently being investigated for their ability to act as receptors for carbohydrates. In this article, we describe the crystal structures of the formamide monosolvate and the n-propanol/H2O solvate/hydrate of compound 1 containing the 2,6-bis­(hy­droxy­meth­yl)-4-methyl­phen­oxy moiety, which represents a new structural unit for the design of carbohydrate receptors.

[Scheme 1]

2. Structural commentary

The formamide solvate (1a) and the n-propanol/H2O solvate/hydrate (1b) of the title compound, C38H50N4O3, crystallize in the triclinic system (P[\overline{1}], Z = 2). The model for the least-squares refinement includes positional disorder for one of the (4,6-di­methyl­pyridin-2-yl)amino moieties of the structure of 1b with occupancies of 0.78/0.22. The perspective views of the host–guest complexes shown in Fig. 1[link] and Fig. 2[link] reveal similar geometries of the tripodal host mol­ecule with the three functionalized side-arms located on one side of the central benzene ring, while the ethyl substituents are oriented in the opposite direction. The inclination angles of the aromatic rings of the substituents with reference to the central benzene ring are 50.9 (1), 85.5 (1), 87.2 (1)° for 1a and 61.3 (1), 81.3 (1), 80.7 (1)/88.4 (3)° for 1b. Despite the large number of strong donor/acceptor sites in the host mol­ecule, only three intra­molecular C—H⋯O hydrogen bonds [d(H⋯O) = 2.42–2.49 Å; Table 1[link]] are observed in the crystal of 1a. Consequently, the irregular but compact geometry of the mol­ecule is likely to be caused by inter­molecular inter­actions and packing effects. The conformation of the receptor mol­ecule in the crystal of 1b is stabilized by four relatively short intra­molecular C—H⋯O and C—H⋯N hydrogen bonds [d(H⋯O) = 2.41–2.49 Å, d(H⋯N) = 2.55 Å; Table 2[link]].

Table 1
Hydrogen-bond geometry (Å, °) for 1a[link]

Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C20–C24/N2 and C30–C34/N4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 2.46 (2) 3.183 (2) 140 (2)
N1A—H2B⋯N4ii 0.89 (1) 2.12 (1) 3.000 (3) 170 (3)
N1A—H1B⋯O1Aiii 0.90 (1) 2.01 (1) 2.893 (3) 167 (3)
O2—H2⋯O3iv 0.84 2.26 2.968 (3) 142
O3—H3A⋯N2v 0.85 (1) 2.00 (1) 2.822 (2) 162 (2)
C10—H10⋯O2vi 0.95 2.53 3.418 (4) 156
C12—H12⋯O3 0.95 2.42 2.788 (3) 103
C14—H14A⋯O1 0.99 2.47 2.894 (3) 105
C15—H15C⋯O1iv 0.98 2.52 3.412 (3) 151
C22—H22⋯O1Avii 0.95 2.63 3.523 (3) 157
C29—H29B⋯N1Aii 0.99 2.59 3.374 (3) 137
C37—H37A⋯O1 0.99 2.49 3.238 (3) 132
C26—H26ACg1viii 0.98 2.71 3.658 (3) 164
C18—H18BCg2v 0.98 2.76 3.679 (3) 156
C38—H38BCg3v 0.98 2.81 3.545 (3) 132
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, -y+2, -z+1]; (iii) [-x, -y+2, -z+2]; (iv) [-x+1, -y+1, -z+1]; (v) x+1, y, z; (vi) [-x, -y+1, -z+1]; (vii) [x-1, y-1, z-1]; (viii) [-x, -y+1, -z].

Table 2
Hydrogen-bond geometry (Å, °) for 1b[link]

Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C8–C13 and C20–C24/N2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.88 (1) 2.21 (1) 3.0704 (18) 165 (2)
O2—H2⋯O1A 0.85 (1) 1.86 (2) 2.702 (2) 171 (2)
O2—H2⋯O1W 0.85 (1) 1.97 (2) 2.773 (6) 158 (2)
O3—H3⋯O2ii 0.85 (1) 1.92 (2) 2.7646 (15) 171 (2)
O1A—H1A⋯N2iii 0.85 (1) 1.97 (2) 2.813 (2) 177 (2)
C10—H10⋯O2 0.95 2.44 2.7925 (17) 102
C12—H12⋯O3 0.95 2.49 2.8362 (17) 101
C24—H24⋯O3i 0.95 2.65 3.4259 (19) 139
C27—H27A⋯N3 0.99 2.55 3.257 (3) 128
C34B—H34B⋯O1W 0.95 2.16 2.969 (9) 143
C37—H37A⋯O1 0.99 2.41 3.1687 (17) 133
C14—H14BCg1 0.99 2.88 3.8427 (18) 166
C25—H25BCg2iv 0.98 2.72 3.4520 (18) 132
C18—H18BCg3ii 0.98 2.69 3.6317 (16) 161
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) x, y+1, z; (iv) [x-1, y-1, z].
[Figure 1]
Figure 1
Perspective view of the host–guest complex 1a including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Inter­molecular hydrogen bonds between the host mol­ecule and the formamide are shown as dashed lines.
[Figure 2]
Figure 2
Perspective view of the host–guest complex 1b including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Inter­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the complex structure of 1a (Fig. 3[link]), the formamide mol­ecule is connected to the host mol­ecule by an N—H⋯N hydrogen bond [d(H⋯N) = 2.12 (1) Å] and a weak C—H⋯N bond (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) [d(H⋯N) = 2.59 Å]. With the exception of the amino hydrogen H3, which for sterical reasons seems to be excluded from non-covalent bonding, all other strong donors participate in mol­ecular association comprising O—H⋯O [d(H⋯O) = 2.26 Å], O—H⋯N [d(H⋯N) = 2.00 (1) Å] and N—H⋯O type [d(H⋯O) = 2.46 (2) Å] hydrogen bonds. The pattern of inter­molecular bonding is completed by C—H⋯O inter­actions [d(H⋯O) = 2.52–2.63 Å], C—H⋯π contacts (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.], 2012[Nishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink E. R. T. and J. Zukerman-Schpector, pp. 1-39. Chichester: Wiley.]) [d(H⋯Cg) = 2.71–2.81 Å] and ππ stacking (Dance, 2004[Dance, I. (2004). In Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp 1076-1092. Boca Raton: CRC Press.]; Salonen et al., 2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]) [CgCg distance = 3.475 (1) Å], the latter formed by the hy­droxy­methyl-substituted aromatic rings of inversion-related mol­ecules. Within this three-dimensional supra­molecular network, the solvent mol­ecules form N—H⋯O bonded dimers [d(H⋯O) = 2.01 (1) Å] of the graph-set motif R22(8) (Etter, 1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Figure 3]
Figure 3
Packing diagram of the formamide monosolvate of the title compound 1a. Dashed lines represent hydrogen-bond inter­actions.

The colourless rod-like crystals obtained from n-propanol proved to be an inclusion compound of 1 with n-PrOH and H2O possessing a host/guest stoichiometric ratio of 1:0.78:0.22. The model for least-squares refinement assumes partial occupancies for the alcohol and water mol­ecules, i.e. the solvent species are distributed in a statistical manner in the voids of the host lattice. Despite the presence of strong donors/acceptors, the disordered moiety of the host hardly participates in mol­ecular association. Only the minor disorder component of this residue is involved in any inter­molecular inter­actions, by forming a weak C—H⋯O bond to the water oxygen [d(H⋯O) = 2.16 Å] (see Fig. 4[link]b). As shown in Fig. 4[link]a, the oxygen atom of the alcohol mol­ecule is linked to one of the hy­droxy hydrogens of the host [O2—H2⋯O1A, d(H⋯O) = 1.86 (2) Å]. In an analogous way, this hydrogen acts as a donor site for hydrogen bonding to the water mol­ecule [O2—H2⋯O1W, d(H⋯O) = 1.97 (2) Å]. Unfortunately, the positions of the water hydrogen atoms could not be obtained from the difference electron-density map, so that the complete pattern of hydrogen bonding in the crystal of 1b could not be elucidated. Nevertheless, a striking motif of hydrogen bonds is present, involving a total of three hy­droxy groups of the host and the propanol mol­ecules [oxygen atoms O1A, O2 and O3; d(H⋯O/N) = 1.86 (2)–2.21 (1) Å]. They form chain-like synthons in the direction of the b axis, bounded by an amine H and a ring N atom, and can be described by the graph set C44(10) (Fig. 5[link]). Taking into account these inter­actions, the crystal structure (Fig. 5[link]) can be regarded as being composed of layered supra­molecular aggregates extending parallel to the crystallographic ab plane. As the surfaces of the two-dimensional aggregates are defined by the non-polar mol­ecular parts, inter­layer inter­actions are restricted to van der Waals forces.

[Figure 4]
Figure 4
Perspective views of the structures of the n-propanol solvate (a) and the monohydrate (b) of the title compound.
[Figure 5]
Figure 5
Packing diagram of the host–guest complex 1b looking in the crystallographic c-axis direction. For clarity, the water mol­ecules are not shown. Dashed lines represent hydrogen-bond inter­actions.

4. Database survey

The search in the Cambridge Structural Database (CSD, Version 5.44, update April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,4,6-tri­ethyl­benzene-based tripodal mol­ecules containing two (4,6-di­methyl­pyridin-2-yl)amino­methyl moieties resulted in several hits, which are described below. Particularly noteworthy is 1,3,5-tris­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benzene, which has proven to be an effective receptor mol­ecule for complex formation with methyl β-D-gluco­pyran­oside in the solid state (LAJZOP; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.]). In the ethanol solvate of this host compound (RAJZAE; Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]), its (4,6-di­methyl­pyridin-2-yl)amino units are arranged in a `two up/one down' pattern with respect to the benzene plane. The heterocyclic units of the 1-[N-(1,10-phenanthrolin-2-ylcarbon­yl)amino­meth­yl]-3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benz­ene diethyl ether solvate trihydrate (ROKJEH, ROKJEH01; Mazik & Hartmann, 2008[Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.]; Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]) form a binding pocket in which the three water mol­ecules are located. This aggregate is stabilized by a total of eight hydrogen bonds. The crystal structures of the monohydrate and the methanol solvate of {1-[(3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benz­yl)amino]­cyclo­pent­yl}methanol (CAD­TAG, CADTEK; Stapf et al., 2020b[Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679-1683.]) are composed of structurally similar dimers of 1:1 host–guest complexes. In the crystal structure of the diethyl ether solvate of 1-(bromo­meth­yl)-3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benzene (BIYTOT; Mazik & Kuschel, 2008b[Mazik, M. & Kuschel, M. (2008b). Chem. Eur. J. 14, 2405-2419.]), the host mol­ecule adopts a conformation with a complete updown alternation of the side chains on the benzene ring (for discussions on conformations of 1,3,5-tri­substituted 2,4,6-tri­alkyl­benzene-based compounds, see: Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]; Schulze et al., 2017[Schulze, M. M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003-4016.]).

5. Synthesis and crystallization

A suspension of 2,6-bis­(hy­droxy­meth­yl)-4-methyl­phenol (102 mg, 0.61 mmol) and potassium carbonate (142 mg, 1.03 mmol) in 30 mL of THF/CH3CN (1:1, v/v) was stirred for 30 minutes. Subsequently, a solution of 1-(bromo­meth­yl)-3,5-bis­[(4,6-di­methyl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­ben­z­ene (265 mg, 0.51 mmol) in 30 mL of THF/CH3CN (1:1, v/v) was added dropwise and the resulting mixture was stirred at room temperature and under the exclusion of light (the progress of the reaction was monitored by TLC). After filtration, the solvents were evaporated at reduced pressure and the yellow oil was treated with THF/water. The oil was separated from the aqueous phase and dissolved again in THF, dried over MgSO4 and the solvent was removed. By treating the oily residue with diethyl ether/n-hexane, the product was obtained as a white solid in 88% yield (271 mg, 0.44 mmol). Crystals of the title compound suitable for single crystal X-ray diffraction were grown by slow evaporation of an ethyl acetate/formamide (1:1, v/v) solution (1a) or a n-propanol solution (1b) at ambient temperature.

Analysis data: m.p. = 472 K; 1H NMR (600 MHz, CDCl3, ppm): δ = 1.12 (t, 6H, 3J = 7.5 Hz, CH2CH3), 1.23 (t, 3H, 3J = 7.5 Hz, CH2CH3), 2.23 (s, 6H, ArCH3), 2.29 (s, 3H, ArCH3), 2.34 (s, 6H, ArCH3), 2.69 (q, 4H, 3J = 7.5 Hz, CH2CH3), 2.74 (q, 2H, 3J = 7.5 Hz, CH2CH3), 4.33 (br, 4H, CH2NH), 4.46 (s, 4H, CH2OH), 5.20 (s, 2H, CH2OAr), 6.10 (s, 2H, ArH), 6.34 (s, 2H, ArH), 7.11 (s, 2H, ArH); 13C NMR (151 MHz, CDCl3, ppm): δ = 16.6 (CH2CH3), 16.8 (CH2CH3), 20.8 (ArCH3), 21.1 (ArCH3), 22.6 (CH2CH3), 23.0 (CH2CH3), 24.0 (ArCH3), 40.6 (CH2NH), 60.8 (CH2OH), 70.3 (CH2OAr), 103.6 (ArC), 113.9 (ArC), 129.5 (ArC), 132.0 (ArC), 133.1 (ArC), 133.7 (ArC), 134.0 (ArC), 144.5 (ArC), 144.7 (ArC), 149.0 (ArC), 152.6 (ArC), 156.5 (ArC), 158.2 (ArC); IR (ATR, cm−1): 3326, 2961, 2903, 1610, 1567, 1488, 1452, 1202, 1080, 1041, 972, 818; MS (ESI): m/z calculated for C38H51N4O3: 611.3956 [M+H]+, found 611.3961; Rf = 0.46 [Al2O3, CHCl3/Et2O 1:6 (v/v)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The non-hydrogen atoms were refined anisotropically. The positions of the N—H and O—H hydrogen atoms were extracted from difference-Fourier maps. All other hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.95–0.99 Å (alk­yl), 0.95 Å (ar­yl); Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

  1a 1b
Crystal data
Chemical formula C38H50N4O3·CH3NO C38H50N4O3·0.777C3H8O·0.223H2O
Mr 655.86 661.08
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.4178 (4), 13.1915 (7), 16.4645 (9) 8.6241 (2), 11.1755 (2), 20.1270 (4)
α, β, γ (°) 91.823 (3), 93.269 (2), 104.534 (2) 102.2675 (12), 98.8911 (10), 92.9034 (10)
V3) 1764.88 (16) 1865.73 (7)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.47 × 0.15 × 0.04 0.35 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area detector Bruker Kappa APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 28897, 7558, 5322 32606, 8447, 6498
Rint 0.033 0.029
(sin θ/λ)max−1) 0.639 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.176, 1.03 0.045, 0.119, 1.03
No. of reflections 7558 8447
No. of parameters 462 526
No. of restraints 7 25
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.56 0.33, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-{[2,6-Bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-\ dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene formamide monosolvate (1a) top
Crystal data top
C38H50N4O3·CH3NOZ = 2
Mr = 655.86F(000) = 708
Triclinic, P1Dx = 1.234 Mg m3
a = 8.4178 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1915 (7) ÅCell parameters from 7296 reflections
c = 16.4645 (9) Åθ = 2.5–27.5°
α = 91.823 (3)°µ = 0.08 mm1
β = 93.269 (2)°T = 100 K
γ = 104.534 (2)°Plate, colourless
V = 1764.88 (16) Å30.47 × 0.15 × 0.04 mm
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
Rint = 0.033
φ and ω scansθmax = 27.0°, θmin = 2.0°
28897 measured reflectionsh = 108
7558 independent reflectionsk = 1616
5322 reflections with I > 2σ(I)l = 2120
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0863P)2 + 1.3634P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7558 reflectionsΔρmax = 0.54 e Å3
462 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54313 (18)0.67784 (12)0.35427 (9)0.0237 (4)
O20.1283 (3)0.6456 (2)0.48161 (13)0.0555 (6)
H20.19150.64720.52330.083*
O30.7900 (2)0.43445 (14)0.35900 (10)0.0310 (4)
H3A0.734 (3)0.393 (2)0.3212 (14)0.051 (10)*
N10.1265 (2)0.45208 (15)0.17303 (11)0.0218 (4)
H10.095 (3)0.462 (2)0.2253 (7)0.038 (8)*
N20.3468 (2)0.32570 (14)0.21082 (11)0.0193 (4)
N30.0035 (3)0.87558 (16)0.28947 (12)0.0281 (5)
H30.016 (3)0.8197 (13)0.3185 (14)0.028 (7)*
N40.0200 (2)1.04735 (15)0.27966 (12)0.0270 (4)
C10.3612 (2)0.68707 (17)0.23234 (12)0.0174 (4)
C20.2581 (2)0.59759 (16)0.19184 (12)0.0162 (4)
C30.1025 (2)0.60250 (16)0.15845 (12)0.0167 (4)
C40.0498 (2)0.69473 (16)0.16714 (12)0.0167 (4)
C50.1535 (2)0.78308 (16)0.20897 (12)0.0175 (4)
C60.3090 (2)0.77953 (16)0.24189 (12)0.0178 (4)
C70.5314 (3)0.68647 (18)0.26685 (12)0.0215 (5)
H7A0.56440.62700.24070.026*
H7B0.61000.75190.25280.026*
C80.4645 (3)0.57993 (18)0.37933 (13)0.0230 (5)
C90.3042 (3)0.5618 (2)0.40534 (13)0.0262 (5)
C100.2286 (3)0.4623 (2)0.42953 (14)0.0294 (5)
H100.11820.44820.44460.035*
C110.3097 (3)0.38335 (19)0.43232 (13)0.0279 (5)
C120.4719 (3)0.40544 (19)0.40964 (13)0.0263 (5)
H120.53020.35260.41320.032*
C130.5498 (3)0.50207 (19)0.38218 (13)0.0239 (5)
C140.2172 (3)0.6489 (2)0.41207 (15)0.0347 (6)
H14A0.29980.71730.41280.042*
H14B0.14100.64440.36320.042*
C150.2325 (3)0.2777 (2)0.46305 (15)0.0354 (6)
H15A0.22520.22370.41980.053*
H15B0.12180.27630.47950.053*
H15C0.29980.26420.51000.053*
C160.7268 (3)0.52486 (19)0.35924 (14)0.0273 (5)
H16A0.73400.55370.30440.033*
H16B0.79600.57890.39830.033*
C170.3120 (3)0.49654 (17)0.18149 (13)0.0209 (5)
H17A0.21430.43620.18070.025*
H17B0.38680.49080.22880.025*
C180.3997 (3)0.49125 (19)0.10337 (14)0.0247 (5)
H18A0.32550.49570.05630.037*
H18B0.43160.42490.09930.037*
H18C0.49810.54980.10440.037*
C190.0131 (2)0.50690 (16)0.11589 (13)0.0183 (4)
H19A0.07560.52830.06960.022*
H19B0.05060.45960.09420.022*
C200.2538 (2)0.36779 (16)0.15051 (13)0.0167 (4)
C210.4753 (3)0.24234 (17)0.19192 (13)0.0208 (5)
C220.5143 (3)0.19955 (17)0.11355 (13)0.0219 (5)
H220.60650.14130.10220.026*
C230.4173 (3)0.24257 (17)0.05101 (13)0.0202 (4)
C240.2857 (2)0.32763 (16)0.07005 (13)0.0182 (4)
H240.21740.35870.02890.022*
C250.5729 (3)0.19805 (19)0.26176 (15)0.0304 (5)
H25A0.50210.17290.30140.046*
H25B0.66510.13960.24160.046*
H25C0.61530.25270.28800.046*
C260.4546 (3)0.19674 (19)0.03442 (14)0.0275 (5)
H26A0.37480.23700.06990.041*
H26B0.56580.19950.05350.041*
H26C0.44760.12370.03580.041*
C270.1171 (3)0.69977 (18)0.12940 (13)0.0213 (5)
H27A0.16030.74940.16260.026*
H27B0.19480.62970.13010.026*
C280.1077 (3)0.73484 (19)0.04167 (14)0.0263 (5)
H28A0.03510.80560.04100.039*
H28B0.21790.73500.01920.039*
H28C0.06390.68630.00860.039*
C290.0948 (3)0.88172 (17)0.21910 (13)0.0204 (4)
H29A0.19070.94340.22650.024*
H29B0.02810.89040.16950.024*
C300.0528 (3)0.9600 (2)0.32049 (14)0.0264 (5)
C310.0658 (3)1.1312 (2)0.31098 (17)0.0372 (6)
C320.1463 (3)1.1274 (3)0.38095 (19)0.0444 (8)
H320.17881.18730.40030.053*
C330.1807 (3)1.0367 (3)0.42372 (17)0.0425 (7)
C340.1337 (3)0.9510 (2)0.39325 (15)0.0359 (6)
H340.15550.88730.42080.043*
C350.0207 (4)1.2289 (2)0.2649 (2)0.0538 (9)
H35A0.09031.22020.21410.081*
H35B0.09501.24270.25230.081*
H35C0.03711.28800.29800.081*
C360.2652 (4)1.0315 (4)0.5024 (2)0.0715 (12)
H36A0.19151.07680.54440.107*
H36B0.29280.95910.51960.107*
H36C0.36601.05530.49410.107*
C370.4222 (3)0.87555 (17)0.28621 (13)0.0224 (5)
H37A0.49370.85290.32800.027*
H37B0.35520.91580.31440.027*
C380.5300 (3)0.94671 (18)0.22818 (15)0.0278 (5)
H38A0.60060.90830.20210.042*
H38B0.59861.00860.25890.042*
H38C0.45980.96870.18640.042*
O1A0.2093 (2)0.97499 (15)1.01977 (12)0.0404 (5)
N1A0.0472 (3)0.95521 (19)0.90290 (15)0.0394 (6)
H1B0.028 (3)0.972 (3)0.9342 (17)0.060 (10)*
H2B0.042 (4)0.947 (3)0.8488 (7)0.057 (10)*
C1A0.1848 (3)0.9560 (2)0.94526 (17)0.0359 (6)
H1A0.27160.94080.91670.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (8)0.0289 (9)0.0183 (8)0.0069 (7)0.0021 (6)0.0020 (6)
O20.0670 (15)0.0753 (16)0.0407 (12)0.0431 (13)0.0230 (10)0.0166 (11)
O30.0297 (9)0.0378 (10)0.0294 (9)0.0174 (8)0.0024 (7)0.0031 (8)
N10.0213 (9)0.0211 (10)0.0189 (9)0.0018 (7)0.0015 (7)0.0011 (8)
N20.0181 (9)0.0165 (9)0.0227 (9)0.0030 (7)0.0032 (7)0.0010 (7)
N30.0365 (11)0.0266 (11)0.0261 (10)0.0146 (9)0.0125 (8)0.0037 (9)
N40.0255 (10)0.0247 (11)0.0323 (11)0.0118 (8)0.0054 (8)0.0074 (8)
C10.0168 (10)0.0214 (11)0.0134 (9)0.0036 (8)0.0021 (7)0.0018 (8)
C20.0174 (10)0.0178 (11)0.0144 (10)0.0051 (8)0.0052 (7)0.0030 (8)
C30.0164 (10)0.0170 (11)0.0159 (10)0.0023 (8)0.0030 (7)0.0010 (8)
C40.0143 (9)0.0197 (11)0.0169 (10)0.0049 (8)0.0037 (7)0.0025 (8)
C50.0201 (10)0.0161 (11)0.0176 (10)0.0062 (8)0.0043 (8)0.0014 (8)
C60.0200 (10)0.0186 (11)0.0143 (10)0.0035 (8)0.0030 (8)0.0010 (8)
C70.0198 (10)0.0281 (12)0.0178 (10)0.0084 (9)0.0008 (8)0.0009 (9)
C80.0210 (11)0.0299 (13)0.0175 (11)0.0062 (9)0.0011 (8)0.0029 (9)
C90.0228 (11)0.0371 (14)0.0183 (11)0.0079 (10)0.0010 (8)0.0003 (10)
C100.0212 (11)0.0423 (15)0.0225 (12)0.0049 (10)0.0005 (9)0.0015 (10)
C110.0318 (13)0.0307 (13)0.0171 (11)0.0022 (10)0.0039 (9)0.0060 (9)
C120.0322 (12)0.0294 (13)0.0176 (11)0.0104 (10)0.0043 (9)0.0057 (9)
C130.0238 (11)0.0320 (13)0.0157 (10)0.0075 (10)0.0018 (8)0.0015 (9)
C140.0307 (13)0.0476 (17)0.0311 (13)0.0180 (12)0.0085 (10)0.0034 (12)
C150.0367 (14)0.0358 (15)0.0282 (13)0.0004 (11)0.0017 (10)0.0022 (11)
C160.0269 (12)0.0319 (14)0.0254 (12)0.0122 (10)0.0010 (9)0.0014 (10)
C170.0221 (11)0.0182 (11)0.0234 (11)0.0074 (9)0.0003 (8)0.0004 (9)
C180.0228 (11)0.0261 (12)0.0280 (12)0.0119 (9)0.0007 (9)0.0044 (10)
C190.0157 (10)0.0168 (11)0.0215 (11)0.0021 (8)0.0024 (8)0.0012 (8)
C200.0143 (9)0.0138 (10)0.0228 (11)0.0052 (8)0.0009 (8)0.0022 (8)
C210.0188 (10)0.0177 (11)0.0259 (11)0.0041 (8)0.0045 (8)0.0005 (9)
C220.0183 (10)0.0183 (11)0.0280 (12)0.0030 (8)0.0025 (8)0.0012 (9)
C230.0218 (11)0.0183 (11)0.0224 (11)0.0092 (9)0.0001 (8)0.0005 (9)
C240.0163 (10)0.0182 (11)0.0209 (11)0.0049 (8)0.0024 (8)0.0034 (8)
C250.0300 (13)0.0257 (13)0.0309 (13)0.0029 (10)0.0112 (10)0.0025 (10)
C260.0295 (12)0.0291 (13)0.0231 (12)0.0066 (10)0.0002 (9)0.0028 (10)
C270.0159 (10)0.0227 (12)0.0264 (11)0.0069 (9)0.0018 (8)0.0003 (9)
C280.0250 (12)0.0269 (13)0.0278 (12)0.0100 (10)0.0049 (9)0.0001 (10)
C290.0224 (11)0.0199 (11)0.0204 (11)0.0080 (9)0.0040 (8)0.0014 (9)
C300.0205 (11)0.0354 (14)0.0241 (12)0.0105 (10)0.0024 (9)0.0099 (10)
C310.0256 (13)0.0350 (15)0.0510 (16)0.0146 (11)0.0156 (11)0.0192 (12)
C320.0279 (14)0.0510 (19)0.0564 (18)0.0209 (13)0.0111 (12)0.0310 (15)
C330.0236 (13)0.071 (2)0.0338 (14)0.0192 (13)0.0053 (10)0.0261 (14)
C340.0287 (13)0.0533 (17)0.0278 (13)0.0149 (12)0.0029 (10)0.0057 (12)
C350.0496 (18)0.0297 (16)0.085 (2)0.0216 (14)0.0150 (16)0.0088 (15)
C360.0461 (19)0.128 (4)0.0462 (19)0.037 (2)0.0071 (15)0.033 (2)
C370.0225 (11)0.0223 (12)0.0210 (11)0.0041 (9)0.0010 (8)0.0052 (9)
C380.0266 (12)0.0217 (12)0.0313 (13)0.0000 (9)0.0004 (9)0.0044 (10)
O1A0.0359 (10)0.0399 (11)0.0449 (12)0.0089 (8)0.0008 (8)0.0031 (9)
N1A0.0491 (14)0.0412 (14)0.0344 (13)0.0221 (11)0.0066 (11)0.0081 (11)
C1A0.0381 (15)0.0267 (14)0.0449 (16)0.0093 (11)0.0109 (12)0.0082 (12)
Geometric parameters (Å, º) top
O1—C81.383 (3)C18—H18B0.9800
O1—C71.447 (2)C18—H18C0.9800
O2—C141.399 (3)C19—H19A0.9900
O2—H20.8400C19—H19B0.9900
O3—C161.423 (3)C20—C241.397 (3)
O3—H3A0.847 (10)C21—C221.380 (3)
N1—C201.361 (3)C21—C251.499 (3)
N1—C191.455 (3)C22—C231.397 (3)
N1—H10.883 (10)C22—H220.9500
N2—C201.346 (3)C23—C241.378 (3)
N2—C211.349 (3)C23—C261.498 (3)
N3—C301.376 (3)C24—H240.9500
N3—C291.455 (3)C25—H25A0.9800
N3—H30.879 (10)C25—H25B0.9800
N4—C301.329 (3)C25—H25C0.9800
N4—C311.355 (3)C26—H26A0.9800
C1—C21.401 (3)C26—H26B0.9800
C1—C61.404 (3)C26—H26C0.9800
C1—C71.513 (3)C27—C281.531 (3)
C2—C31.409 (3)C27—H27A0.9900
C2—C171.520 (3)C27—H27B0.9900
C3—C41.401 (3)C28—H28A0.9800
C3—C191.510 (3)C28—H28B0.9800
C4—C51.401 (3)C28—H28C0.9800
C4—C271.521 (3)C29—H29A0.9900
C5—C61.401 (3)C29—H29B0.9900
C5—C291.511 (3)C30—C341.405 (3)
C6—C371.517 (3)C31—C321.365 (4)
C7—H7A0.9900C31—C351.494 (4)
C7—H7B0.9900C32—C331.384 (5)
C8—C131.394 (3)C32—H320.9500
C8—C91.404 (3)C33—C341.377 (4)
C9—C101.388 (4)C33—C361.508 (4)
C9—C141.515 (3)C34—H340.9500
C10—C111.382 (4)C35—H35A0.9800
C10—H100.9500C35—H35B0.9800
C11—C121.398 (3)C35—H35C0.9800
C11—C151.499 (4)C36—H36A0.9800
C12—C131.382 (3)C36—H36B0.9800
C12—H120.9500C36—H36C0.9800
C13—C161.517 (3)C37—C381.532 (3)
C14—H14A0.9900C37—H37A0.9900
C14—H14B0.9900C37—H37B0.9900
C15—H15A0.9800C38—H38A0.9800
C15—H15B0.9800C38—H38B0.9800
C15—H15C0.9800C38—H38C0.9800
C16—H16A0.9900O1A—C1A1.239 (3)
C16—H16B0.9900N1A—C1A1.315 (4)
C17—C181.527 (3)N1A—H1B0.901 (10)
C17—H17A0.9900N1A—H2B0.890 (10)
C17—H17B0.9900C1A—H1A0.9500
C18—H18A0.9800
C8—O1—C7113.60 (16)N2—C20—C24122.24 (19)
C14—O2—H2109.5N1—C20—C24122.13 (19)
C16—O3—H3A106 (2)N2—C21—C22122.4 (2)
C20—N1—C19123.01 (18)N2—C21—C25115.76 (19)
C20—N1—H1117.4 (19)C22—C21—C25121.8 (2)
C19—N1—H1117.1 (19)C21—C22—C23119.5 (2)
C20—N2—C21118.20 (18)C21—C22—H22120.3
C30—N3—C29122.7 (2)C23—C22—H22120.3
C30—N3—H3118.3 (17)C24—C23—C22118.3 (2)
C29—N3—H3118.1 (17)C24—C23—C26120.9 (2)
C30—N4—C31117.7 (2)C22—C23—C26120.8 (2)
C2—C1—C6120.73 (18)C23—C24—C20119.36 (19)
C2—C1—C7120.88 (19)C23—C24—H24120.3
C6—C1—C7118.40 (19)C20—C24—H24120.3
C1—C2—C3119.03 (18)C21—C25—H25A109.5
C1—C2—C17121.45 (18)C21—C25—H25B109.5
C3—C2—C17119.50 (18)H25A—C25—H25B109.5
C4—C3—C2120.61 (19)C21—C25—H25C109.5
C4—C3—C19118.92 (18)H25A—C25—H25C109.5
C2—C3—C19120.41 (18)H25B—C25—H25C109.5
C3—C4—C5119.65 (18)C23—C26—H26A109.5
C3—C4—C27120.14 (19)C23—C26—H26B109.5
C5—C4—C27120.19 (18)H26A—C26—H26B109.5
C6—C5—C4120.32 (19)C23—C26—H26C109.5
C6—C5—C29120.37 (19)H26A—C26—H26C109.5
C4—C5—C29119.31 (18)H26B—C26—H26C109.5
C5—C6—C1119.63 (19)C4—C27—C28112.15 (17)
C5—C6—C37120.37 (19)C4—C27—H27A109.2
C1—C6—C37119.98 (18)C28—C27—H27A109.2
O1—C7—C1113.79 (16)C4—C27—H27B109.2
O1—C7—H7A108.8C28—C27—H27B109.2
C1—C7—H7A108.8H27A—C27—H27B107.9
O1—C7—H7B108.8C27—C28—H28A109.5
C1—C7—H7B108.8C27—C28—H28B109.5
H7A—C7—H7B107.7H28A—C28—H28B109.5
O1—C8—C13118.96 (19)C27—C28—H28C109.5
O1—C8—C9120.0 (2)H28A—C28—H28C109.5
C13—C8—C9121.0 (2)H28B—C28—H28C109.5
C10—C9—C8118.4 (2)N3—C29—C5109.95 (17)
C10—C9—C14119.8 (2)N3—C29—H29A109.7
C8—C9—C14121.7 (2)C5—C29—H29A109.7
C11—C10—C9121.8 (2)N3—C29—H29B109.7
C11—C10—H10119.1C5—C29—H29B109.7
C9—C10—H10119.1H29A—C29—H29B108.2
C10—C11—C12118.3 (2)N4—C30—N3117.7 (2)
C10—C11—C15122.1 (2)N4—C30—C34123.0 (2)
C12—C11—C15119.5 (2)N3—C30—C34119.4 (2)
C13—C12—C11121.9 (2)N4—C31—C32122.3 (3)
C13—C12—H12119.1N4—C31—C35115.9 (3)
C11—C12—H12119.1C32—C31—C35121.8 (3)
C12—C13—C8118.5 (2)C31—C32—C33120.2 (2)
C12—C13—C16120.9 (2)C31—C32—H32119.9
C8—C13—C16120.5 (2)C33—C32—H32119.9
O2—C14—C9113.4 (2)C34—C33—C32118.3 (3)
O2—C14—H14A108.9C34—C33—C36120.5 (3)
C9—C14—H14A108.9C32—C33—C36121.2 (3)
O2—C14—H14B108.9C33—C34—C30118.5 (3)
C9—C14—H14B108.9C33—C34—H34120.7
H14A—C14—H14B107.7C30—C34—H34120.7
C11—C15—H15A109.5C31—C35—H35A109.5
C11—C15—H15B109.5C31—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C11—C15—H15C109.5C31—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
O3—C16—C13112.9 (2)C33—C36—H36A109.5
O3—C16—H16A109.0C33—C36—H36B109.5
C13—C16—H16A109.0H36A—C36—H36B109.5
O3—C16—H16B109.0C33—C36—H36C109.5
C13—C16—H16B109.0H36A—C36—H36C109.5
H16A—C16—H16B107.8H36B—C36—H36C109.5
C2—C17—C18112.48 (17)C6—C37—C38112.11 (18)
C2—C17—H17A109.1C6—C37—H37A109.2
C18—C17—H17A109.1C38—C37—H37A109.2
C2—C17—H17B109.1C6—C37—H37B109.2
C18—C17—H17B109.1C38—C37—H37B109.2
H17A—C17—H17B107.8H37A—C37—H37B107.9
C17—C18—H18A109.5C37—C38—H38A109.5
C17—C18—H18B109.5C37—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C17—C18—H18C109.5C37—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
N1—C19—C3109.64 (17)C1A—N1A—H1B112 (2)
N1—C19—H19A109.7C1A—N1A—H2B120 (2)
C3—C19—H19A109.7H1B—N1A—H2B127 (3)
N1—C19—H19B109.7O1A—C1A—N1A124.7 (3)
C3—C19—H19B109.7O1A—C1A—H1A117.6
H19A—C19—H19B108.2N1A—C1A—H1A117.6
N2—C20—N1115.64 (18)
C6—C1—C2—C31.9 (3)C10—C9—C14—O237.5 (3)
C7—C1—C2—C3178.07 (18)C8—C9—C14—O2138.9 (2)
C6—C1—C2—C17179.53 (18)C12—C13—C16—O37.8 (3)
C7—C1—C2—C170.4 (3)C8—C13—C16—O3175.02 (19)
C1—C2—C3—C41.5 (3)C1—C2—C17—C1889.7 (2)
C17—C2—C3—C4180.00 (18)C3—C2—C17—C1888.8 (2)
C1—C2—C3—C19178.76 (18)C20—N1—C19—C3174.41 (18)
C17—C2—C3—C192.7 (3)C4—C3—C19—N182.5 (2)
C2—C3—C4—C50.4 (3)C2—C3—C19—N194.8 (2)
C19—C3—C4—C5177.79 (18)C21—N2—C20—N1179.63 (18)
C2—C3—C4—C27178.81 (18)C21—N2—C20—C240.4 (3)
C19—C3—C4—C273.8 (3)C19—N1—C20—N2179.68 (18)
C3—C4—C5—C60.1 (3)C19—N1—C20—C240.3 (3)
C27—C4—C5—C6178.27 (18)C20—N2—C21—C220.2 (3)
C3—C4—C5—C29179.15 (18)C20—N2—C21—C25179.25 (19)
C27—C4—C5—C292.5 (3)N2—C21—C22—C230.8 (3)
C4—C5—C6—C10.4 (3)C25—C21—C22—C23178.7 (2)
C29—C5—C6—C1179.62 (18)C21—C22—C23—C240.6 (3)
C4—C5—C6—C37179.18 (18)C21—C22—C23—C26178.9 (2)
C29—C5—C6—C371.6 (3)C22—C23—C24—C200.0 (3)
C2—C1—C6—C51.4 (3)C26—C23—C24—C20179.49 (19)
C7—C1—C6—C5178.59 (18)N2—C20—C24—C230.5 (3)
C2—C1—C6—C37179.78 (18)N1—C20—C24—C23179.53 (19)
C7—C1—C6—C370.2 (3)C3—C4—C27—C2888.6 (2)
C8—O1—C7—C171.1 (2)C5—C4—C27—C2889.7 (2)
C2—C1—C7—O1103.1 (2)C30—N3—C29—C5170.2 (2)
C6—C1—C7—O176.9 (2)C6—C5—C29—N394.9 (2)
C7—O1—C8—C1386.4 (2)C4—C5—C29—N384.3 (2)
C7—O1—C8—C996.8 (2)C31—N4—C30—N3178.8 (2)
O1—C8—C9—C10179.56 (19)C31—N4—C30—C340.8 (3)
C13—C8—C9—C103.7 (3)C29—N3—C30—N45.8 (3)
O1—C8—C9—C144.0 (3)C29—N3—C30—C34173.8 (2)
C13—C8—C9—C14172.7 (2)C30—N4—C31—C321.5 (3)
C8—C9—C10—C113.2 (3)C30—N4—C31—C35177.7 (2)
C14—C9—C10—C11173.3 (2)N4—C31—C32—C331.5 (4)
C9—C10—C11—C120.3 (3)C35—C31—C32—C33177.6 (2)
C9—C10—C11—C15176.3 (2)C31—C32—C33—C340.8 (4)
C10—C11—C12—C132.3 (3)C31—C32—C33—C36178.3 (3)
C15—C11—C12—C13178.9 (2)C32—C33—C34—C300.2 (4)
C11—C12—C13—C81.7 (3)C36—C33—C34—C30178.9 (2)
C11—C12—C13—C16179.0 (2)N4—C30—C34—C330.2 (4)
O1—C8—C13—C12178.08 (18)N3—C30—C34—C33179.4 (2)
C9—C8—C13—C121.3 (3)C5—C6—C37—C3888.2 (2)
O1—C8—C13—C160.8 (3)C1—C6—C37—C3890.6 (2)
C9—C8—C13—C16175.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C20–C24/N2 and C30–C34/N4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)2.46 (2)3.183 (2)140 (2)
N1A—H2B···N4ii0.89 (1)2.12 (1)3.000 (3)170 (3)
N1A—H1B···O1Aiii0.90 (1)2.01 (1)2.893 (3)167 (3)
O2—H2···O3iv0.842.262.968 (3)142
O3—H3A···N2v0.85 (1)2.00 (1)2.822 (2)162 (2)
C10—H10···O2vi0.952.533.418 (4)156
C12—H12···O30.952.422.788 (3)103
C14—H14A···O10.992.472.894 (3)105
C15—H15C···O1iv0.982.523.412 (3)151
C22—H22···O1Avii0.952.633.523 (3)157
C29—H29B···N1Aii0.992.593.374 (3)137
C37—H37A···O10.992.493.238 (3)132
C26—H26A···Cg1viii0.982.713.658 (3)164
C18—H18B···Cg2v0.982.763.679 (3)156
C38—H38B···Cg3v0.982.813.545 (3)132
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x, y+2, z+2; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z+1; (vii) x1, y1, z1; (viii) x, y+1, z.
1-{[2,6-Bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene–n-propanol–water (1/0.777/0.223) (1b) top
Crystal data top
C38H50N4O3·0.777C3H8O·0.223H2OZ = 2
Mr = 661.08F(000) = 716.4
Triclinic, P1Dx = 1.177 Mg m3
a = 8.6241 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1755 (2) ÅCell parameters from 9616 reflections
c = 20.1270 (4) Åθ = 2.3–28.5°
α = 102.2675 (12)°µ = 0.08 mm1
β = 98.8911 (10)°T = 100 K
γ = 92.9034 (10)°Rod, colourless
V = 1865.73 (7) Å30.35 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
Rint = 0.029
φ and ω scansθmax = 27.4°, θmin = 2.5°
32606 measured reflectionsh = 1111
8447 independent reflectionsk = 1413
6498 reflections with I > 2σ(I)l = 2626
Refinement top
Refinement on F225 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.8172P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8447 reflectionsΔρmax = 0.33 e Å3
526 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.09845 (11)0.21196 (9)0.25578 (5)0.0186 (2)
O20.73337 (11)0.35817 (9)0.35632 (5)0.0202 (2)
H20.698 (2)0.4167 (15)0.3391 (10)0.051 (6)*
O31.53531 (11)0.16740 (10)0.37193 (6)0.0228 (2)
H31.595 (2)0.2298 (14)0.3714 (11)0.055 (7)*
N10.56482 (15)0.11050 (12)0.33365 (7)0.0224 (3)
H1B0.574 (2)0.0295 (9)0.3422 (9)0.029 (5)*
N20.45201 (13)0.28824 (11)0.35529 (6)0.0169 (2)
C10.89520 (15)0.03615 (13)0.20963 (7)0.0172 (3)
C20.84608 (15)0.04442 (13)0.24865 (7)0.0168 (3)
C30.68766 (16)0.09218 (13)0.23522 (7)0.0177 (3)
C40.57876 (16)0.05761 (14)0.18474 (7)0.0194 (3)
C50.62879 (16)0.02517 (14)0.14751 (7)0.0194 (3)
C60.78643 (16)0.07368 (13)0.16017 (7)0.0181 (3)
C71.06643 (15)0.08464 (13)0.21945 (7)0.0188 (3)
H7A1.13180.03380.24530.023*
H7B1.09840.07540.17360.023*
C81.11557 (15)0.23328 (12)0.32727 (7)0.0150 (3)
C90.99458 (15)0.28480 (13)0.35935 (7)0.0170 (3)
C101.01731 (15)0.31362 (13)0.43082 (7)0.0181 (3)
H100.93630.34940.45340.022*
C111.15576 (16)0.29156 (13)0.47053 (7)0.0189 (3)
C121.27600 (15)0.24325 (13)0.43672 (7)0.0183 (3)
H121.37170.22930.46320.022*
C131.25877 (15)0.21523 (12)0.36541 (7)0.0164 (3)
C140.84727 (17)0.31143 (16)0.31560 (8)0.0272 (3)
H14A0.87540.37210.28910.033*
H14B0.80090.23500.28220.033*
C151.17600 (18)0.32174 (16)0.54809 (8)0.0273 (3)
H15A1.12700.25370.56350.041*
H15B1.12560.39690.56370.041*
H15C1.28850.33420.56760.041*
C161.39215 (16)0.17201 (15)0.32754 (8)0.0246 (3)
H16A1.35940.08910.29800.029*
H16B1.41080.22800.29700.029*
C170.96211 (16)0.08286 (14)0.30354 (7)0.0206 (3)
H17A0.90640.09850.34070.025*
H17B1.04510.01490.32400.025*
C181.03917 (17)0.19885 (14)0.27405 (8)0.0259 (3)
H18A0.95760.26700.25480.039*
H18B1.11330.22030.31090.039*
H18C1.09580.18340.23770.039*
C190.63062 (16)0.17910 (13)0.27645 (7)0.0190 (3)
H19A0.54940.24120.24640.023*
H19B0.71960.22260.29420.023*
C200.46973 (15)0.16490 (13)0.36898 (7)0.0164 (3)
C210.35623 (16)0.34081 (13)0.39077 (8)0.0201 (3)
C220.27879 (16)0.27285 (14)0.43864 (8)0.0213 (3)
H220.21300.31320.46230.026*
C230.29668 (15)0.14425 (13)0.45257 (7)0.0182 (3)
C240.39397 (16)0.09037 (13)0.41748 (7)0.0179 (3)
H240.41010.00340.42580.021*
C250.3398 (2)0.47858 (15)0.37504 (10)0.0357 (4)
H25A0.31210.51030.32500.054*
H25B0.25690.50700.39770.054*
H25C0.43980.50860.39210.054*
C260.20822 (17)0.06871 (15)0.50283 (8)0.0251 (3)
H26A0.24630.01820.51110.038*
H26B0.22520.09580.54640.038*
H26C0.09550.07930.48370.038*
C270.40803 (16)0.11206 (16)0.16904 (8)0.0275 (3)
H27A0.33920.05050.15480.033*
H27B0.37790.13050.21150.033*
C280.3810 (2)0.22925 (19)0.11221 (10)0.0407 (4)
H28A0.41380.21210.07040.061*
H28B0.26890.25830.10230.061*
H28C0.44300.29260.12740.061*
C290.50860 (18)0.06695 (16)0.09561 (8)0.0248 (3)0.7770 (18)
H29A0.557 (3)0.092 (2)0.0586 (10)0.012 (6)*0.7770 (18)
H29B0.435 (6)0.003 (4)0.067 (3)0.07 (2)*0.7770 (18)
N30.4192 (2)0.15643 (19)0.13029 (10)0.0251 (4)0.7770 (18)
H3A0.436 (2)0.1759 (19)0.1758 (5)0.020 (5)*0.7770 (18)
N40.2978 (4)0.2039 (3)0.02829 (14)0.0257 (6)0.7770 (18)
C300.3194 (2)0.2263 (2)0.09810 (11)0.0180 (4)0.7770 (18)
C310.2037 (3)0.2785 (3)0.00194 (12)0.0248 (5)0.7770 (18)
C320.1361 (3)0.3734 (3)0.03600 (12)0.0298 (6)0.7770 (18)
H320.07450.42570.01330.036*0.7770 (18)
C330.1582 (2)0.3925 (2)0.10761 (13)0.0252 (5)0.7770 (18)
C340.2507 (2)0.31710 (17)0.13893 (10)0.0189 (4)0.7770 (18)
H340.26720.32700.18760.023*0.7770 (18)
C350.1725 (4)0.2488 (3)0.07895 (13)0.0414 (6)0.7770 (18)
H35A0.27270.24400.09620.062*0.7770 (18)
H35B0.11480.31320.09530.062*0.7770 (18)
H35C0.10940.16960.09590.062*0.7770 (18)
C360.0891 (3)0.4958 (2)0.15129 (15)0.0446 (6)0.7770 (18)
H36A0.07790.47520.19540.067*0.7770 (18)
H36B0.01460.50810.12720.067*0.7770 (18)
H36C0.15880.57140.15980.067*0.7770 (18)
C29B0.50860 (18)0.06695 (16)0.09561 (8)0.0248 (3)0.2230 (18)
H29C0.579 (9)0.122 (7)0.079 (5)0.02 (3)*0.2230 (18)
H29D0.430 (10)0.003 (7)0.072 (6)0.00 (3)*0.2230 (18)
N3B0.4781 (9)0.2014 (7)0.1409 (4)0.0251 (4)0.2230 (18)
H3B0.53110.23080.18280.030*0.2230 (18)
C30B0.3666 (9)0.2663 (7)0.1110 (4)0.0180 (4)0.2230 (18)
N4B0.3042 (18)0.2338 (12)0.0422 (5)0.0257 (6)0.2230 (18)
C31B0.1883 (14)0.3023 (12)0.0176 (4)0.0248 (5)0.2230 (18)
C32B0.1411 (13)0.3978 (10)0.0642 (5)0.0298 (6)0.2230 (18)
H32B0.05760.44260.04840.036*0.2230 (18)
C33B0.2104 (9)0.4298 (7)0.1321 (4)0.0252 (5)0.2230 (18)
C34B0.3272 (8)0.3642 (6)0.1572 (3)0.0189 (4)0.2230 (18)
H34B0.37800.38550.20400.023*0.2230 (18)
C35B0.1166 (13)0.2733 (10)0.0584 (4)0.0414 (6)0.2230 (18)
H35D0.15450.33740.08000.062*0.2230 (18)
H35E0.00160.27010.06330.062*0.2230 (18)
H35F0.14760.19360.08100.062*0.2230 (18)
C36B0.1663 (12)0.5312 (9)0.1880 (5)0.0446 (6)0.2230 (18)
H36D0.09090.58050.16680.067*0.2230 (18)
H36E0.26120.58390.21230.067*0.2230 (18)
H36F0.11850.49420.22090.067*0.2230 (18)
C370.83976 (17)0.16528 (14)0.12075 (7)0.0229 (3)
H37A0.93100.21900.14960.028*
H37B0.75350.21780.11160.028*
C380.88619 (19)0.10262 (17)0.05233 (8)0.0303 (4)
H38A0.98000.05880.06140.045*
H38B0.90910.16480.02660.045*
H38C0.79920.04420.02510.045*
O1A0.64599 (19)0.54143 (15)0.29387 (8)0.0208 (3)0.7770 (18)
H1A0.585 (3)0.5911 (19)0.3115 (12)0.040 (7)*0.7770 (18)
C1A0.5739 (2)0.49317 (18)0.22359 (11)0.0214 (4)0.7770 (18)
H1A10.47470.53190.21380.026*0.7770 (18)
H1A20.54750.40360.21630.026*0.7770 (18)
C2A0.6820 (2)0.5168 (2)0.17434 (10)0.0276 (5)0.7770 (18)
H2A10.78230.48010.18530.033*0.7770 (18)
H2A20.70630.60650.18120.033*0.7770 (18)
C3A0.6105 (3)0.4638 (2)0.09917 (10)0.0294 (5)0.7770 (18)
H3A10.58760.37480.09190.044*0.7770 (18)
H3A20.68520.48100.06960.044*0.7770 (18)
H3A30.51280.50160.08760.044*0.7770 (18)
O1W0.5762 (7)0.4957 (6)0.2720 (3)0.0296 (13)0.2230 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (5)0.0201 (5)0.0178 (5)0.0030 (4)0.0064 (4)0.0072 (4)
O20.0156 (5)0.0217 (5)0.0265 (5)0.0072 (4)0.0071 (4)0.0086 (4)
O30.0127 (4)0.0220 (6)0.0356 (6)0.0032 (4)0.0032 (4)0.0107 (5)
N10.0283 (6)0.0178 (7)0.0258 (7)0.0030 (5)0.0147 (5)0.0079 (5)
N20.0161 (5)0.0168 (6)0.0190 (6)0.0021 (4)0.0033 (4)0.0064 (5)
C10.0161 (6)0.0197 (7)0.0173 (7)0.0049 (5)0.0061 (5)0.0044 (6)
C20.0176 (6)0.0197 (7)0.0151 (6)0.0070 (5)0.0054 (5)0.0052 (5)
C30.0188 (6)0.0210 (7)0.0169 (7)0.0066 (5)0.0074 (5)0.0078 (6)
C40.0153 (6)0.0249 (8)0.0211 (7)0.0067 (5)0.0067 (5)0.0081 (6)
C50.0188 (6)0.0251 (8)0.0183 (7)0.0098 (6)0.0064 (5)0.0094 (6)
C60.0205 (6)0.0207 (7)0.0161 (7)0.0062 (5)0.0074 (5)0.0066 (6)
C70.0166 (6)0.0223 (7)0.0188 (7)0.0039 (5)0.0058 (5)0.0048 (6)
C80.0160 (6)0.0127 (6)0.0184 (7)0.0003 (5)0.0051 (5)0.0067 (5)
C90.0142 (6)0.0181 (7)0.0211 (7)0.0019 (5)0.0038 (5)0.0090 (6)
C100.0159 (6)0.0205 (7)0.0203 (7)0.0018 (5)0.0066 (5)0.0072 (6)
C110.0198 (6)0.0165 (7)0.0206 (7)0.0006 (5)0.0027 (5)0.0056 (6)
C120.0155 (6)0.0148 (7)0.0246 (7)0.0011 (5)0.0003 (5)0.0065 (6)
C130.0146 (6)0.0122 (6)0.0234 (7)0.0008 (5)0.0045 (5)0.0054 (5)
C140.0207 (7)0.0426 (10)0.0206 (7)0.0165 (7)0.0054 (6)0.0079 (7)
C150.0269 (8)0.0338 (9)0.0203 (7)0.0056 (6)0.0008 (6)0.0053 (7)
C160.0143 (6)0.0308 (9)0.0273 (8)0.0064 (6)0.0031 (6)0.0029 (7)
C170.0201 (7)0.0251 (8)0.0177 (7)0.0041 (6)0.0006 (5)0.0087 (6)
C180.0203 (7)0.0264 (8)0.0312 (8)0.0075 (6)0.0015 (6)0.0101 (7)
C190.0192 (6)0.0218 (7)0.0200 (7)0.0049 (5)0.0076 (5)0.0095 (6)
C200.0147 (6)0.0198 (7)0.0162 (6)0.0011 (5)0.0018 (5)0.0079 (5)
C210.0184 (6)0.0186 (7)0.0254 (7)0.0012 (5)0.0044 (5)0.0090 (6)
C220.0188 (6)0.0236 (8)0.0254 (8)0.0002 (6)0.0080 (6)0.0117 (6)
C230.0146 (6)0.0221 (7)0.0184 (7)0.0029 (5)0.0025 (5)0.0059 (6)
C240.0193 (6)0.0150 (7)0.0206 (7)0.0023 (5)0.0042 (5)0.0059 (6)
C250.0391 (9)0.0212 (9)0.0521 (11)0.0000 (7)0.0222 (8)0.0097 (8)
C260.0237 (7)0.0267 (8)0.0267 (8)0.0032 (6)0.0109 (6)0.0046 (6)
C270.0146 (6)0.0417 (10)0.0319 (8)0.0051 (6)0.0051 (6)0.0194 (7)
C280.0285 (8)0.0520 (12)0.0387 (10)0.0090 (8)0.0030 (7)0.0130 (9)
C290.0224 (7)0.0351 (9)0.0230 (8)0.0132 (7)0.0067 (6)0.0154 (7)
N30.0277 (11)0.0317 (13)0.0181 (9)0.0151 (8)0.0019 (8)0.0086 (9)
N40.0223 (7)0.0286 (18)0.0277 (14)0.0028 (12)0.0026 (10)0.0109 (10)
C300.0127 (10)0.0196 (12)0.0242 (10)0.0010 (7)0.0029 (8)0.0116 (9)
C310.0271 (10)0.0277 (15)0.0251 (15)0.0065 (9)0.0085 (11)0.0141 (12)
C320.0321 (9)0.0346 (15)0.0293 (14)0.0151 (10)0.0048 (13)0.0194 (14)
C330.0230 (11)0.0232 (12)0.0328 (15)0.0037 (8)0.0098 (9)0.0093 (10)
C340.0200 (9)0.0196 (10)0.0199 (9)0.0025 (7)0.0053 (7)0.0087 (8)
C350.0623 (19)0.0386 (14)0.0274 (14)0.0118 (12)0.0078 (11)0.0149 (11)
C360.0515 (16)0.0380 (14)0.0493 (17)0.0188 (12)0.0218 (12)0.0081 (12)
C29B0.0224 (7)0.0351 (9)0.0230 (8)0.0132 (7)0.0067 (6)0.0154 (7)
N3B0.0277 (11)0.0317 (13)0.0181 (9)0.0151 (8)0.0019 (8)0.0086 (9)
C30B0.0127 (10)0.0196 (12)0.0242 (10)0.0010 (7)0.0029 (8)0.0116 (9)
N4B0.0223 (7)0.0286 (18)0.0277 (14)0.0028 (12)0.0026 (10)0.0109 (10)
C31B0.0271 (10)0.0277 (15)0.0251 (15)0.0065 (9)0.0085 (11)0.0141 (12)
C32B0.0321 (9)0.0346 (15)0.0293 (14)0.0151 (10)0.0048 (13)0.0194 (14)
C33B0.0230 (11)0.0232 (12)0.0328 (15)0.0037 (8)0.0098 (9)0.0093 (10)
C34B0.0200 (9)0.0196 (10)0.0199 (9)0.0025 (7)0.0053 (7)0.0087 (8)
C35B0.0623 (19)0.0386 (14)0.0274 (14)0.0118 (12)0.0078 (11)0.0149 (11)
C36B0.0515 (16)0.0380 (14)0.0493 (17)0.0188 (12)0.0218 (12)0.0081 (12)
C370.0252 (7)0.0257 (8)0.0213 (7)0.0020 (6)0.0051 (6)0.0120 (6)
C380.0317 (8)0.0410 (10)0.0212 (8)0.0033 (7)0.0092 (6)0.0119 (7)
O1A0.0259 (8)0.0184 (8)0.0186 (8)0.0062 (6)0.0029 (6)0.0046 (6)
C1A0.0240 (9)0.0193 (10)0.0187 (11)0.0009 (7)0.0008 (8)0.0023 (8)
C2A0.0301 (10)0.0274 (11)0.0237 (10)0.0051 (8)0.0030 (8)0.0049 (8)
C3A0.0367 (11)0.0273 (11)0.0235 (10)0.0009 (9)0.0053 (8)0.0051 (9)
O1W0.032 (3)0.024 (3)0.028 (4)0.006 (2)0.005 (3)0.000 (3)
Geometric parameters (Å, º) top
O1—C81.3907 (16)C27—C281.526 (3)
O1—C71.4460 (17)C27—H27A0.9900
O2—C141.4241 (17)C27—H27B0.9900
O2—H20.850 (9)C28—H28A0.9800
O3—C161.4179 (17)C28—H28B0.9800
O3—H30.850 (10)C28—H28C0.9800
N1—C201.3642 (18)C29—N31.425 (2)
N1—C191.4513 (18)C29—H29A0.988 (9)
N1—H1B0.881 (9)C29—H29B0.996 (10)
N2—C201.3429 (18)N3—C301.372 (3)
N2—C211.3599 (18)N3—H3A0.883 (9)
C1—C21.404 (2)N4—C301.355 (3)
C1—C61.4055 (19)N4—C311.362 (3)
C1—C71.5154 (18)C30—C341.383 (3)
C2—C31.4054 (19)C31—C321.381 (3)
C2—C171.5198 (18)C31—C351.493 (3)
C3—C41.4043 (19)C32—C331.393 (3)
C3—C191.5147 (19)C32—H320.9500
C4—C51.399 (2)C33—C341.372 (3)
C4—C271.5237 (19)C33—C361.504 (3)
C5—C61.4024 (19)C34—H340.9500
C5—C29B1.5184 (19)C35—H35A0.9800
C5—C291.5184 (19)C35—H35B0.9800
C6—C371.516 (2)C35—H35C0.9800
C7—H7A0.9900C36—H36A0.9800
C7—H7B0.9900C36—H36B0.9800
C8—C91.3958 (18)C36—H36C0.9800
C8—C131.3975 (18)C29B—N3B1.640 (8)
C9—C101.3860 (19)C29B—H29C0.991 (10)
C9—C141.5105 (19)C29B—H29D0.994 (11)
C10—C111.3942 (19)N3B—C30B1.375 (11)
C10—H100.9500N3B—H3B0.8800
C11—C121.3959 (19)C30B—N4B1.370 (9)
C11—C151.506 (2)C30B—C34B1.371 (7)
C12—C131.385 (2)N4B—C31B1.384 (9)
C12—H120.9500C31B—C32B1.385 (8)
C13—C161.5194 (19)C31B—C35B1.518 (8)
C14—H14A0.9900C32B—C33B1.368 (8)
C14—H14B0.9900C32B—H32B0.9500
C15—H15A0.9800C33B—C34B1.371 (7)
C15—H15B0.9800C33B—C36B1.527 (8)
C15—H15C0.9800C34B—H34B0.9500
C16—H16A0.9900C35B—H35D0.9800
C16—H16B0.9900C35B—H35E0.9800
C17—C181.535 (2)C35B—H35F0.9800
C17—H17A0.9900C36B—H36D0.9800
C17—H17B0.9900C36B—H36E0.9800
C18—H18A0.9800C36B—H36F0.9800
C18—H18B0.9800C37—C381.528 (2)
C18—H18C0.9800C37—H37A0.9900
C19—H19A0.9900C37—H37B0.9900
C19—H19B0.9900C38—H38A0.9800
C20—C241.4073 (19)C38—H38B0.9800
C21—C221.375 (2)C38—H38C0.9800
C21—C251.499 (2)O1A—C1A1.431 (2)
C22—C231.400 (2)O1A—H1A0.845 (10)
C22—H220.9500C1A—C2A1.514 (3)
C23—C241.370 (2)C1A—H1A10.9900
C23—C261.5030 (19)C1A—H1A20.9900
C24—H240.9500C2A—C3A1.521 (3)
C25—H25A0.9800C2A—H2A10.9900
C25—H25B0.9800C2A—H2A20.9900
C25—H25C0.9800C3A—H3A10.9800
C26—H26A0.9800C3A—H3A20.9800
C26—H26B0.9800C3A—H3A30.9800
C26—H26C0.9800
C8—O1—C7115.57 (10)C4—C27—H27A109.1
C14—O2—H2104.6 (15)C28—C27—H27A109.1
C16—O3—H3106.9 (15)C4—C27—H27B109.1
C20—N1—C19122.83 (12)C28—C27—H27B109.1
C20—N1—H1B117.4 (12)H27A—C27—H27B107.8
C19—N1—H1B119.1 (12)C27—C28—H28A109.5
C20—N2—C21117.16 (12)C27—C28—H28B109.5
C2—C1—C6120.70 (12)H28A—C28—H28B109.5
C2—C1—C7121.07 (12)C27—C28—H28C109.5
C6—C1—C7118.23 (12)H28A—C28—H28C109.5
C1—C2—C3119.07 (12)H28B—C28—H28C109.5
C1—C2—C17121.05 (12)N3—C29—H29A114.9 (14)
C3—C2—C17119.86 (12)N3—C29—H29B109 (4)
C4—C3—C2120.64 (12)H29A—C29—H29B99 (4)
C4—C3—C19118.89 (12)C30—N3—C29124.39 (17)
C2—C3—C19120.45 (12)C30—N3—H3A116.1 (14)
C5—C4—C3119.56 (13)C29—N3—H3A119.1 (14)
C5—C4—C27119.92 (12)C30—N4—C31116.3 (2)
C3—C4—C27120.50 (13)N4—C30—N3117.7 (2)
C4—C5—C6120.59 (12)N4—C30—C34124.2 (2)
C5—C6—C1119.36 (13)N3—C30—C34118.01 (18)
C5—C6—C37120.51 (12)N4—C31—C32122.3 (2)
C1—C6—C37120.13 (12)N4—C31—C35116.1 (2)
O1—C7—C1113.97 (11)C32—C31—C35121.5 (2)
O1—C7—H7A108.8C31—C32—C33119.9 (2)
C1—C7—H7A108.8C31—C32—H32120.0
O1—C7—H7B108.8C33—C32—H32120.0
C1—C7—H7B108.8C34—C33—C32118.57 (19)
H7A—C7—H7B107.7C34—C33—C36119.4 (2)
O1—C8—C9118.59 (11)C32—C33—C36122.0 (2)
O1—C8—C13119.47 (11)C33—C34—C30118.60 (18)
C9—C8—C13121.57 (12)C33—C34—H34120.7
C10—C9—C8118.17 (12)C30—C34—H34120.7
C10—C9—C14122.45 (12)C31—C35—H35A109.5
C8—C9—C14119.34 (12)C31—C35—H35B109.5
C9—C10—C11121.80 (13)H35A—C35—H35B109.5
C9—C10—H10119.1C31—C35—H35C109.5
C11—C10—H10119.1H35A—C35—H35C109.5
C10—C11—C12118.43 (13)H35B—C35—H35C109.5
C10—C11—C15120.63 (13)C33—C36—H36A109.5
C12—C11—C15120.93 (12)C33—C36—H36B109.5
C13—C12—C11121.44 (12)H36A—C36—H36B109.5
C13—C12—H12119.3C33—C36—H36C109.5
C11—C12—H12119.3H36A—C36—H36C109.5
C12—C13—C8118.48 (12)H36B—C36—H36C109.5
C12—C13—C16122.44 (12)N3B—C29B—H29C79 (6)
C8—C13—C16119.01 (12)N3B—C29B—H29D128 (7)
O2—C14—C9111.93 (12)H29C—C29B—H29D133 (9)
O2—C14—H14A109.2C30B—N3B—C29B117.4 (6)
C9—C14—H14A109.2C30B—N3B—H3B121.3
O2—C14—H14B109.2C29B—N3B—H3B121.3
C9—C14—H14B109.2N4B—C30B—C34B125.1 (8)
H14A—C14—H14B107.9N4B—C30B—N3B122.1 (8)
C11—C15—H15A109.5C34B—C30B—N3B112.8 (6)
C11—C15—H15B109.5C30B—N4B—C31B117.6 (9)
H15A—C15—H15B109.5N4B—C31B—C32B118.1 (9)
C11—C15—H15C109.5N4B—C31B—C35B120.5 (8)
H15A—C15—H15C109.5C32B—C31B—C35B121.4 (9)
H15B—C15—H15C109.5C33B—C32B—C31B122.3 (9)
O3—C16—C13113.73 (12)C33B—C32B—H32B118.9
O3—C16—H16A108.8C31B—C32B—H32B118.9
C13—C16—H16A108.8C32B—C33B—C34B120.4 (7)
O3—C16—H16B108.8C32B—C33B—C36B126.8 (8)
C13—C16—H16B108.8C34B—C33B—C36B112.7 (7)
H16A—C16—H16B107.7C30B—C34B—C33B116.4 (6)
C2—C17—C18112.02 (12)C30B—C34B—H34B121.8
C2—C17—H17A109.2C33B—C34B—H34B121.8
C18—C17—H17A109.2C31B—C35B—H35D109.5
C2—C17—H17B109.2C31B—C35B—H35E109.5
C18—C17—H17B109.2H35D—C35B—H35E109.5
H17A—C17—H17B107.9C31B—C35B—H35F109.5
C17—C18—H18A109.5H35D—C35B—H35F109.5
C17—C18—H18B109.5H35E—C35B—H35F109.5
H18A—C18—H18B109.5C33B—C36B—H36D109.5
C17—C18—H18C109.5C33B—C36B—H36E109.5
H18A—C18—H18C109.5H36D—C36B—H36E109.5
H18B—C18—H18C109.5C33B—C36B—H36F109.5
N1—C19—C3109.77 (12)H36D—C36B—H36F109.5
N1—C19—H19A109.7H36E—C36B—H36F109.5
C3—C19—H19A109.7C6—C37—C38112.42 (13)
N1—C19—H19B109.7C6—C37—H37A109.1
C3—C19—H19B109.7C38—C37—H37A109.1
H19A—C19—H19B108.2C6—C37—H37B109.1
N2—C20—N1117.99 (12)C38—C37—H37B109.1
N2—C20—C24122.90 (12)H37A—C37—H37B107.9
N1—C20—C24119.11 (13)C37—C38—H38A109.5
N2—C21—C22122.59 (13)C37—C38—H38B109.5
N2—C21—C25116.06 (13)H38A—C38—H38B109.5
C22—C21—C25121.34 (13)C37—C38—H38C109.5
C21—C22—C23120.18 (13)H38A—C38—H38C109.5
C21—C22—H22119.9H38B—C38—H38C109.5
C23—C22—H22119.9C1A—O1A—H1A106.5 (18)
C24—C23—C22117.67 (13)O1A—C1A—C2A111.33 (15)
C24—C23—C26121.49 (13)O1A—C1A—H1A1109.4
C22—C23—C26120.81 (13)C2A—C1A—H1A1109.4
C23—C24—C20119.50 (13)O1A—C1A—H1A2109.4
C23—C24—H24120.3C2A—C1A—H1A2109.4
C20—C24—H24120.3H1A1—C1A—H1A2108.0
C21—C25—H25A109.5C1A—C2A—C3A112.71 (17)
C21—C25—H25B109.5C1A—C2A—H2A1109.0
H25A—C25—H25B109.5C3A—C2A—H2A1109.0
C21—C25—H25C109.5C1A—C2A—H2A2109.0
H25A—C25—H25C109.5C3A—C2A—H2A2109.0
H25B—C25—H25C109.5H2A1—C2A—H2A2107.8
C23—C26—H26A109.5C2A—C3A—H3A1109.5
C23—C26—H26B109.5C2A—C3A—H3A2109.5
H26A—C26—H26B109.5H3A1—C3A—H3A2109.5
C23—C26—H26C109.5C2A—C3A—H3A3109.5
H26A—C26—H26C109.5H3A1—C3A—H3A3109.5
H26B—C26—H26C109.5H3A2—C3A—H3A3109.5
C4—C27—C28112.48 (13)
C6—C1—C2—C33.2 (2)C2—C3—C19—N194.74 (15)
C7—C1—C2—C3176.64 (12)C21—N2—C20—N1179.71 (12)
C6—C1—C2—C17178.39 (13)C21—N2—C20—C240.16 (19)
C7—C1—C2—C171.8 (2)C19—N1—C20—N28.0 (2)
C1—C2—C3—C41.6 (2)C19—N1—C20—C24171.53 (13)
C17—C2—C3—C4179.94 (13)C20—N2—C21—C220.3 (2)
C1—C2—C3—C19179.86 (12)C20—N2—C21—C25179.39 (13)
C17—C2—C3—C191.7 (2)N2—C21—C22—C230.0 (2)
C2—C3—C4—C50.0 (2)C25—C21—C22—C23179.73 (14)
C19—C3—C4—C5178.30 (13)C21—C22—C23—C240.5 (2)
C2—C3—C4—C27178.44 (13)C21—C22—C23—C26177.74 (13)
C19—C3—C4—C273.3 (2)C22—C23—C24—C200.69 (19)
C3—C4—C5—C60.0 (2)C26—C23—C24—C20177.58 (13)
C27—C4—C5—C6178.39 (13)N2—C20—C24—C230.4 (2)
C4—C5—C6—C11.5 (2)N1—C20—C24—C23179.19 (12)
C4—C5—C6—C37178.81 (13)C5—C4—C27—C2888.08 (17)
C2—C1—C6—C53.1 (2)C3—C4—C27—C2890.33 (17)
C7—C1—C6—C5176.69 (13)C31—N4—C30—N3177.1 (3)
C2—C1—C6—C37177.18 (13)C31—N4—C30—C341.1 (5)
C7—C1—C6—C373.00 (19)C29—N3—C30—N43.9 (3)
C8—O1—C7—C181.11 (14)C29—N3—C30—C34174.49 (19)
C2—C1—C7—O1106.00 (15)C30—N4—C31—C321.3 (5)
C6—C1—C7—O174.17 (16)C30—N4—C31—C35176.5 (3)
C7—O1—C8—C9106.69 (14)N4—C31—C32—C332.6 (5)
C7—O1—C8—C1380.09 (15)C35—C31—C32—C33175.1 (3)
O1—C8—C9—C10175.59 (12)C31—C32—C33—C341.5 (4)
C13—C8—C9—C102.5 (2)C31—C32—C33—C36179.0 (3)
O1—C8—C9—C142.16 (19)C32—C33—C34—C300.7 (3)
C13—C8—C9—C14175.23 (13)C36—C33—C34—C30176.9 (2)
C8—C9—C10—C110.5 (2)N4—C30—C34—C332.1 (4)
C14—C9—C10—C11178.21 (14)N3—C30—C34—C33176.15 (19)
C9—C10—C11—C122.4 (2)C29B—N3B—C30B—N4B12.4 (13)
C9—C10—C11—C15178.90 (14)C29B—N3B—C30B—C34B167.6 (6)
C10—C11—C12—C131.2 (2)C34B—C30B—N4B—C31B2 (2)
C15—C11—C12—C13179.96 (13)N3B—C30B—N4B—C31B177.6 (11)
C11—C12—C13—C81.7 (2)C30B—N4B—C31B—C32B1 (2)
C11—C12—C13—C16175.12 (13)C30B—N4B—C31B—C35B178.6 (12)
O1—C8—C13—C12176.62 (12)N4B—C31B—C32B—C33B3 (2)
C9—C8—C13—C123.6 (2)C35B—C31B—C32B—C33B176.2 (11)
O1—C8—C13—C160.29 (19)C31B—C32B—C33B—C34B2.4 (17)
C9—C8—C13—C16173.30 (13)C31B—C32B—C33B—C36B178.8 (12)
C10—C9—C14—O25.2 (2)N4B—C30B—C34B—C33B3.4 (14)
C8—C9—C14—O2177.20 (13)N3B—C30B—C34B—C33B176.6 (7)
C12—C13—C16—O32.0 (2)C32B—C33B—C34B—C30B0.9 (12)
C8—C13—C16—O3174.78 (12)C36B—C33B—C34B—C30B175.9 (7)
C1—C2—C17—C1889.61 (16)C5—C6—C37—C3886.85 (16)
C3—C2—C17—C1888.81 (16)C1—C6—C37—C3892.84 (16)
C20—N1—C19—C3163.00 (12)O1A—C1A—C2A—C3A178.58 (17)
C4—C3—C19—N183.54 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C8–C13 and C20–C24/N2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.88 (1)2.21 (1)3.0704 (18)165 (2)
O2—H2···O1A0.85 (1)1.86 (2)2.702 (2)171 (2)
O2—H2···O1W0.85 (1)1.97 (2)2.773 (6)158 (2)
O3—H3···O2ii0.85 (1)1.92 (2)2.7646 (15)171 (2)
O1A—H1A···N2iii0.85 (1)1.97 (2)2.813 (2)177 (2)
C10—H10···O20.952.442.7925 (17)102
C12—H12···O30.952.492.8362 (17)101
C24—H24···O3i0.952.653.4259 (19)139
C27—H27A···N30.992.553.257 (3)128
C34B—H34B···O1W0.952.162.969 (9)143
C37—H37A···O10.992.413.1687 (17)133
C14—H14B···Cg10.992.883.8427 (18)166
C25—H25B···Cg2iv0.982.723.4520 (18)132
C18—H18B···Cg3ii0.982.693.6317 (16)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1, y1, z.
 

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. (2004). In Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp 1076–1092. Boca Raton: CRC Press.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757–2767.  CAS Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLeibiger, B., Stapf, M. & Mazik, M. (2022). Molecules, 27, 7630.  CrossRef Google Scholar
First citationLerchner, J., Sartori, M. R., Volpe, P. O., Förster, S., Mazik, M., Vercesi, A. E. & Mertens, F. (2022). J. Therm. Anal. Calorim. 147, 2253–2263.  CrossRef CAS Google Scholar
First citationLippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622–11632.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444–7450.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147–9159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Kuschel, M. (2008a). Eur. J. Org. Chem. pp. 1517–1526.  CrossRef Google Scholar
First citationMazik, M. & Kuschel, M. (2008b). Chem. Eur. J. 14, 2405–2419.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink E. R. T. and J. Zukerman-Schpector, pp. 1–39. Chichester: Wiley.  Google Scholar
First citationSalonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842.  Web of Science CrossRef CAS Google Scholar
First citationSchulze, M. M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). Acta Cryst. E78, 825–828.  CSD CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900–4915.  Web of Science CSD CrossRef Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679–1683.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds