research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1-(12-bromo­dodec­yl)indoline-2,3-dione

crossmark logo

aLaboratory of Applied Organic Chemistry, Faculty of Science and Technology, University of Sidi Mohamed Ben Abdellah BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dUniversity of Lille, CNRS, UAR 3290, MSAP, Miniaturization for Synthesis, Analysis and Proteomics, F-59000 Lille, France, eLaboratory of Organic and physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculty of Sciences, Morocco
*Correspondence e-mail: Nohaila.rharmili@usmba.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 25 September 2023; accepted 15 October 2023; online 19 October 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the title compound, C20H28BrNO2, the indoline portion is almost planar and the 12-bromo­dodecyl chain adopts an all-trans conformation apart from the gauche terminal C—C—C—Br fragment. A micellar-like structure is generated in the crystal by C—H⋯O hydrogen bonds and π-stacking inter­actions between indolinedione head groups and inter­calation of the 12-bromo­dodecyl tails. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (58.9%), H⋯O/O⋯H (17.9%) and H⋯Br/Br⋯H (9.5%) contacts. A density functional theory (DFT) optimized structure at the B3LYP/ 6–311 G(d,p) level shows good agreement with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

The chemistry of isatin (1H-indole-2,3-dione; C8H5NO2) and its derivatives has been studied extensively owing to its broad array of uses, particularly within the realms of organic synthesis and medicinal chemistry. The initial reports detailing the synthesis of isatin and its derivatives can be traced back to the early 19th century (Rharmili et al., 2023[Rharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023). Polycyclic Aromat. Compd. pp. 1-18.]; Sonam & Kakkar, 2019[Varun, V., Sonam, S. & Kakkar, R. (2019). Med. Chem. Commun. 10, 351-368.]). Nearly two centuries after the publication of these pioneering works, a comprehensive review highlighted the remarkable adaptability of this mol­ecular fragment (Borad et al., 2014[Borad, M. A., Bhoi, M. N., Prajapati, N. P. & Patel, H. D. (2014). Synth. Commun. 44, 897-922.]). Isatin derivatives have received much attention due to their properties such as anti-microbial (Pakravan et al., 2013[Pakravan, P., Kashanian, S., Khodaei, M. M. & Harding, F. J. (2013). Pharmacol. Rep. 65, 313-335.]), anti-mycobacterial (Li et al., 2018[Li, W., Zhao, S. J., Gao, F., Lv, Z. S., Tu, J. Y. & Xu, Z. (2018). Chemistry Select. 3(36), 10250-10254.]), anti-cancer (Khan et al., 2015[Khan, F. A. & Maalik, A. (2015). Trop. J. Pharm. Res. 14, 1937-1942.]) and corrosion-inhibitory activities (Verma et al., 2023[Verma, D. K., Sahu, R., Berdimurodov, E., Verma, C., Quraishi, M. A., Jain, V. K. & Berdimuradov, K. (2023). J. Mol. Struct. 1294, 136313.]). As a continuation of our studies in this area (Rharmili et al., 2023[Rharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023). Polycyclic Aromat. Compd. pp. 1-18.]), we now report the synthesis, structure and Hirshfeld surface analysis and DFT computations of the title compound, C20H28BrNO2 (I)[link].

2. Structural commentary

As expected, the C1–C8/N1 bicyclic portion of (I)[link] is almost planar (r.m.s. deviation of fitted atoms = 0.007 Å), with C8 showing the largest deviation from the mean plane, by 0.0130 (12) Å. The C10–C20 portion of the dodecyl chain is in an all-trans conformation (Fig. 1[link]), as indicated by the moduli of the torsion angles involving these atoms being within 6° of 180° while the terminal C18—C19—C20—Br1 torsion angle is −70.41 (19)°, indicating a gauche conformation. The sum of the bond angles about N1 is 359.9°, suggesting sp2 hybridization and involvement of the N lone pair in π bonding with the benzene ring. This is manifested in the C8—N1 bond length of 1.3595 (19) Å as compared with the C1—N1 distance of 1.4113 (19) Å.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule showing 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, chains of mol­ecules extending along the c-axis direction are formed by C2—H2⋯O2 and C9—H9A⋯O2 hydrogen bonds (Table 1[link]) and connected into layers parallel to (201) by C3—H3⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]). Pairs of layers are connected head-to-head by C5—H5⋯O1 hydrogen bonds (Table 1[link]) and slipped π-stacking inter­actions between the five- and six-membered rings [centroid–centroid = 3.6003 (11) Å, dihedral angle = 0.39 (9)°, slippage = 1.35 Å] and these units form a micellar-like structure by inter­calation of the 12-bromo­decyl chains aided by C20—H20A⋯O2 hydrogen bonds (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.56 3.441 (2) 154
C3—H3⋯O1ii 0.95 2.51 3.271 (2) 137
C5—H5⋯O1iii 0.95 2.51 3.424 (2) 160
C9—H9A⋯O2i 0.99 2.60 3.503 (2) 152
C20—H20A⋯O2iv 0.99 2.47 3.393 (2) 156
C20—H20BCg2v 0.99 2.96 3.756 (2) 139
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iv) [-x+1, -y+2, -z+1]; (v) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A portion of one layer projected onto (201) with C—H⋯O hydrogen bonds depicted by dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with C—H⋯O hydrogen bonds and slipped π-stacking inter­actions depicted, respectively, by black and dark pink dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

4. Hirshfeld surface analysis and DFT calculations

To further visualize the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) (Fig. 4[link]). The red spots indicate their roles as the respective donors and/or acceptors noted above. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into different contact types are illustrated in Fig. 5[link] bm, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 58.9% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 0.98 Å. The H⋯O/O⋯H contacts contribute 17.9% to the HS, as may be seen in Fig. 5[link]c, where the symmetric pair of spikes is observed with the tips at de + di = 2.34 Å. The wings of H⋯Br/Br⋯H contacts (Fig. 5[link]d) are observed with the tips at de + di = 2.88 Å, and a contribution of 9.5% to the HS. In the presence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 5[link]e, has a 6.9% contribution to the HS with the tips at de + di = 3.08 Å. The C⋯C contacts (Fig. 5[link]f), appearing as a bullet-shaped distribution of points, have a contribution of 3.0% to the HS with the tip at de = di = 1.64 Å. The tiny wing pair of C⋯Br/Br⋯C contacts (Fig. 5[link]g) with a 2.0% contribution to the HS has the tips at de + di = 3.54 Å. Other contact types make a negligible contribution to the HS.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range of −0.18 to 1.38 a.u.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯Br/Br⋯H,(e) H⋯C/C⋯H, (f) C⋯C, (g) C⋯Br/Br⋯C, (h) H⋯N/N⋯H, (i) C⋯O/O⋯C, (j) N⋯Br/Br⋯N,, (k) C⋯N/N⋯C, (l) O⋯O and (m) O⋯Br/Br⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The theoretical structure of (I)[link] was optimized in a gas-phase environment using density functional theory (DFT), using the B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1992[Becke, A. D. (1992). J. Chem. Phys. 96, 2155-2160.]), giving an acceptable agreement between observed and calculated geometry (supplementary Table 1): the R2 values of the bond lengths and bond angles of (I)[link] were calculated to be 0.998 and 0.991, respectively. The terminal C18—C19—C20—Br1 grouping has observed and calculated torsion angles of −70.41 (19) and 69.06°, respectively. The frontier orbitals of (I)[link] are depicted in supplementary Fig. 1 and the HOMO–LUMO gap of the mol­ecule is about 3.57 eV (supplementary Table 2).

5. Database survey

A search conducted in the Cambridge Structural Database (CSD; Version 5.42, last updated in May 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) targeting N-substituted isatin derivatives yielded a total of 58 results. Among these, there were five reports on the structure of isatin itself and four instances of the structure of N-methyl­isatin. Thirteen of these structures featured an alkyl chain consisting of two or more carbon atoms. The compound most closely related to the title compound is 1-(3-bromo­prop­yl)-1H-indole-2,3-dione (CSD refcode AKOBIN; Qachchachi et al., 2016[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016). IUCrData, 1, x160593.]), which also features a gauche terminal C—C—C—Br grouping.

6. Synthesis and crystallization

To a solution of 1H-indoline-2,3-dione (2.0 mmol), potassium carbonate (4.0 mmol) and tetra-n-butyl­ammonium­bromide (0.20 mmol) in di­methyl­formamide (20 ml) was added 1,12-di­bromo­dodecane (2.2 mmol) and the mixture was then left to stir for 18 h at room temperature. Following salt filtration, the solvent was evaporated at low pressure, and the resulting residue was dissolved in di­chloro­methane. The organic phase was then dried over Na2SO4 and concentrated. The resulting mixture was chromatographed using a silica gel column with hexa­ne/ethyl­acetate as the eluent (3/1). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H28BrNO2
Mr 394.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 20.5385 (5), 8.1977 (2), 12.3185 (3)
β (°) 105.231 (1)
V3) 2001.19 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.88
Crystal size (mm) 0.23 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.74, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 42466, 4091, 3810
Rint 0.038
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.06
No. of reflections 4091
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.66
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1-(12-Bromododecyl)indoline-2,3-dione top
Crystal data top
C20H28BrNO2F(000) = 824
Mr = 394.34Dx = 1.309 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 20.5385 (5) ÅCell parameters from 9620 reflections
b = 8.1977 (2) Åθ = 6.6–74.7°
c = 12.3185 (3) ŵ = 2.88 mm1
β = 105.231 (1)°T = 150 K
V = 2001.19 (8) Å3Column, yellow
Z = 40.23 × 0.07 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
4091 independent reflections
Radiation source: INCOATEC IµS micro—-focus source3810 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 7.3910 pixels mm-1θmax = 74.7°, θmin = 5.8°
φ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.74, Tmax = 0.87l = 1515
42466 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.8387P]
where P = (Fo2 + 2Fc2)/3
4091 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.66 e Å3
Special details top

Experimental. The diffraction data were obtained from 14 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 3 to 12 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23573 (2)0.63104 (3)0.09416 (2)0.04517 (9)
O10.94289 (6)0.56654 (16)1.23349 (9)0.0368 (3)
O20.85863 (7)0.82935 (15)1.10434 (10)0.0389 (3)
N10.86491 (7)0.66570 (16)0.95494 (10)0.0284 (3)
C10.89366 (8)0.51288 (19)0.94215 (12)0.0279 (3)
C20.89087 (9)0.4326 (2)0.84263 (13)0.0342 (3)
H20.8681760.4781830.7719130.041*
C30.92292 (10)0.2814 (2)0.85063 (15)0.0408 (4)
H30.9211450.2218440.7837630.049*
C40.95722 (11)0.2157 (2)0.95316 (17)0.0441 (4)
H40.9785530.1124440.9554710.053*
C50.96083 (9)0.2996 (2)1.05346 (15)0.0381 (4)
H50.9847860.2554931.1239700.046*
C60.92842 (8)0.44880 (19)1.04685 (12)0.0291 (3)
C70.92153 (8)0.5672 (2)1.13243 (12)0.0295 (3)
C80.87763 (8)0.70783 (19)1.06527 (12)0.0288 (3)
C90.82336 (8)0.75912 (19)0.86123 (13)0.0305 (3)
H9A0.8461270.7629870.7997060.037*
H9B0.8191510.8724680.8862820.037*
C100.75317 (8)0.6868 (2)0.81630 (13)0.0331 (3)
H10A0.7276600.6975330.8738600.040*
H10B0.7569860.5692830.8005870.040*
C110.71523 (8)0.7737 (2)0.70892 (13)0.0341 (3)
H11A0.7116840.8909400.7259200.041*
H11B0.7419890.7650680.6530240.041*
C120.64480 (9)0.7080 (2)0.65650 (15)0.0368 (4)
H12A0.6168600.7223650.7101900.044*
H12B0.6476860.5897180.6422630.044*
C130.61065 (9)0.7937 (2)0.54628 (15)0.0383 (4)
H13A0.6070810.9114800.5614490.046*
H13B0.6396550.7821830.4940000.046*
C140.54078 (9)0.7290 (2)0.48892 (16)0.0417 (4)
H14A0.5118760.7383330.5415130.050*
H14B0.5443310.6118420.4718120.050*
C150.50706 (9)0.8189 (3)0.38039 (15)0.0409 (4)
H15A0.5020370.9352610.3981120.049*
H15B0.5369130.8132680.3291280.049*
C160.43816 (10)0.7513 (3)0.31976 (16)0.0441 (4)
H16A0.4091260.7502310.3724360.053*
H16B0.4435160.6371180.2973450.053*
C170.40299 (9)0.8494 (2)0.21510 (16)0.0407 (4)
H17A0.3966790.9629190.2378240.049*
H17B0.4325410.8527110.1632910.049*
C180.33462 (9)0.7797 (2)0.15255 (15)0.0401 (4)
H18A0.3413490.6707700.1225080.048*
H18B0.3066010.7654980.2061430.048*
C190.29721 (10)0.8881 (2)0.05611 (17)0.0414 (4)
H19A0.2921430.9980120.0862160.050*
H19B0.3249370.8995380.0018410.050*
C200.22811 (10)0.8256 (2)0.00592 (17)0.0439 (4)
H20A0.2034210.9117980.0566060.053*
H20B0.2020840.7987310.0489070.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04657 (13)0.04566 (14)0.04404 (13)0.00114 (8)0.01324 (9)0.01268 (8)
O10.0439 (6)0.0442 (7)0.0219 (5)0.0049 (5)0.0078 (4)0.0027 (5)
O20.0566 (7)0.0320 (6)0.0324 (6)0.0056 (5)0.0192 (5)0.0036 (5)
N10.0378 (7)0.0268 (6)0.0222 (6)0.0072 (5)0.0106 (5)0.0020 (5)
C10.0337 (7)0.0273 (7)0.0249 (7)0.0043 (6)0.0116 (6)0.0020 (6)
C20.0437 (9)0.0350 (8)0.0255 (7)0.0052 (7)0.0120 (6)0.0016 (6)
C30.0544 (10)0.0344 (9)0.0381 (9)0.0054 (8)0.0202 (8)0.0067 (7)
C40.0571 (11)0.0319 (9)0.0494 (10)0.0138 (8)0.0246 (9)0.0036 (7)
C50.0446 (9)0.0365 (9)0.0360 (8)0.0110 (7)0.0153 (7)0.0110 (7)
C60.0351 (7)0.0303 (8)0.0239 (7)0.0034 (6)0.0114 (6)0.0041 (6)
C70.0346 (7)0.0314 (8)0.0243 (7)0.0012 (6)0.0109 (6)0.0033 (6)
C80.0374 (8)0.0285 (7)0.0229 (7)0.0006 (6)0.0124 (6)0.0004 (6)
C90.0374 (8)0.0297 (7)0.0255 (7)0.0056 (6)0.0103 (6)0.0067 (6)
C100.0368 (8)0.0338 (8)0.0302 (7)0.0029 (6)0.0113 (6)0.0063 (6)
C110.0339 (8)0.0383 (8)0.0306 (8)0.0028 (6)0.0096 (6)0.0071 (6)
C120.0353 (8)0.0396 (9)0.0365 (8)0.0003 (7)0.0114 (7)0.0037 (7)
C130.0327 (8)0.0468 (10)0.0357 (8)0.0007 (7)0.0098 (7)0.0031 (7)
C140.0365 (9)0.0459 (10)0.0413 (9)0.0022 (7)0.0079 (7)0.0006 (8)
C150.0333 (8)0.0515 (10)0.0379 (9)0.0005 (8)0.0093 (7)0.0002 (8)
C160.0389 (9)0.0501 (10)0.0401 (9)0.0043 (8)0.0050 (7)0.0003 (8)
C170.0367 (9)0.0468 (10)0.0377 (9)0.0005 (7)0.0084 (7)0.0011 (7)
C180.0384 (9)0.0433 (9)0.0367 (9)0.0009 (7)0.0067 (7)0.0011 (7)
C190.0449 (10)0.0335 (8)0.0429 (9)0.0040 (7)0.0062 (8)0.0043 (7)
C200.0440 (10)0.0399 (9)0.0442 (10)0.0116 (8)0.0050 (8)0.0084 (8)
Geometric parameters (Å, º) top
Br1—C201.9593 (18)C12—C131.526 (2)
O1—C71.2064 (19)C12—H12A0.9900
O2—C81.214 (2)C12—H12B0.9900
N1—C81.3595 (19)C13—C141.519 (2)
N1—C11.4113 (19)C13—H13A0.9900
N1—C91.4593 (19)C13—H13B0.9900
C1—C21.379 (2)C14—C151.524 (3)
C1—C61.402 (2)C14—H14A0.9900
C2—C31.395 (2)C14—H14B0.9900
C2—H20.9500C15—C161.521 (3)
C3—C41.384 (3)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C51.399 (3)C16—C171.530 (3)
C4—H40.9500C16—H16A0.9900
C5—C61.385 (2)C16—H16B0.9900
C5—H50.9500C17—C181.524 (2)
C6—C71.467 (2)C17—H17A0.9900
C7—C81.560 (2)C17—H17B0.9900
C9—C101.522 (2)C18—C191.521 (3)
C9—H9A0.9900C18—H18A0.9900
C9—H9B0.9900C18—H18B0.9900
C10—C111.524 (2)C19—C201.514 (3)
C10—H10A0.9900C19—H19A0.9900
C10—H10B0.9900C19—H19B0.9900
C11—C121.519 (2)C20—H20A0.9900
C11—H11A0.9900C20—H20B0.9900
C11—H11B0.9900
C8—N1—C1111.16 (12)H12A—C12—H12B107.9
C8—N1—C9125.20 (13)C14—C13—C12114.24 (15)
C1—N1—C9123.53 (13)C14—C13—H13A108.7
C2—C1—C6122.08 (14)C12—C13—H13A108.7
C2—C1—N1127.01 (14)C14—C13—H13B108.7
C6—C1—N1110.90 (13)C12—C13—H13B108.7
C1—C2—C3116.91 (15)H13A—C13—H13B107.6
C1—C2—H2121.5C13—C14—C15113.28 (16)
C3—C2—H2121.5C13—C14—H14A108.9
C4—C3—C2121.89 (16)C15—C14—H14A108.9
C4—C3—H3119.1C13—C14—H14B108.9
C2—C3—H3119.1C15—C14—H14B108.9
C3—C4—C5120.73 (16)H14A—C14—H14B107.7
C3—C4—H4119.6C16—C15—C14113.84 (16)
C5—C4—H4119.6C16—C15—H15A108.8
C6—C5—C4117.98 (16)C14—C15—H15A108.8
C6—C5—H5121.0C16—C15—H15B108.8
C4—C5—H5121.0C14—C15—H15B108.8
C5—C6—C1120.39 (14)H15A—C15—H15B107.7
C5—C6—C7132.69 (15)C15—C16—C17113.24 (16)
C1—C6—C7106.93 (13)C15—C16—H16A108.9
O1—C7—C6131.37 (15)C17—C16—H16A108.9
O1—C7—C8123.61 (15)C15—C16—H16B108.9
C6—C7—C8105.03 (12)C17—C16—H16B108.9
O2—C8—N1127.38 (15)H16A—C16—H16B107.7
O2—C8—C7126.65 (14)C18—C17—C16113.39 (16)
N1—C8—C7105.96 (12)C18—C17—H17A108.9
N1—C9—C10112.60 (13)C16—C17—H17A108.9
N1—C9—H9A109.1C18—C17—H17B108.9
C10—C9—H9A109.1C16—C17—H17B108.9
N1—C9—H9B109.1H17A—C17—H17B107.7
C10—C9—H9B109.1C19—C18—C17112.64 (16)
H9A—C9—H9B107.8C19—C18—H18A109.1
C9—C10—C11110.67 (13)C17—C18—H18A109.1
C9—C10—H10A109.5C19—C18—H18B109.1
C11—C10—H10A109.5C17—C18—H18B109.1
C9—C10—H10B109.5H18A—C18—H18B107.8
C11—C10—H10B109.5C20—C19—C18114.25 (16)
H10A—C10—H10B108.1C20—C19—H19A108.7
C12—C11—C10114.56 (14)C18—C19—H19A108.7
C12—C11—H11A108.6C20—C19—H19B108.7
C10—C11—H11A108.6C18—C19—H19B108.7
C12—C11—H11B108.6H19A—C19—H19B107.6
C10—C11—H11B108.6C19—C20—Br1110.79 (13)
H11A—C11—H11B107.6C19—C20—H20A109.5
C11—C12—C13112.25 (14)Br1—C20—H20A109.5
C11—C12—H12A109.2C19—C20—H20B109.5
C13—C12—H12A109.2Br1—C20—H20B109.5
C11—C12—H12B109.2H20A—C20—H20B108.1
C13—C12—H12B109.2
C8—N1—C1—C2179.95 (16)C9—N1—C8—O21.9 (3)
C9—N1—C1—C23.8 (3)C1—N1—C8—C71.52 (17)
C8—N1—C1—C61.14 (19)C9—N1—C8—C7177.72 (14)
C9—N1—C1—C6177.41 (14)O1—C7—C8—O21.5 (3)
C6—C1—C2—C31.6 (3)C6—C7—C8—O2178.29 (16)
N1—C1—C2—C3179.68 (16)O1—C7—C8—N1178.80 (15)
C1—C2—C3—C41.3 (3)C6—C7—C8—N11.37 (16)
C2—C3—C4—C50.1 (3)C8—N1—C9—C10101.92 (18)
C3—C4—C5—C60.8 (3)C1—N1—C9—C1073.83 (19)
C4—C5—C6—C10.5 (3)N1—C9—C10—C11172.10 (13)
C4—C5—C6—C7179.77 (18)C9—C10—C11—C12179.03 (14)
C2—C1—C6—C50.8 (3)C10—C11—C12—C13177.09 (15)
N1—C1—C6—C5179.66 (15)C11—C12—C13—C14178.41 (15)
C2—C1—C6—C7179.05 (15)C12—C13—C14—C15178.72 (16)
N1—C1—C6—C70.16 (18)C13—C14—C15—C16177.83 (17)
C5—C6—C7—O10.3 (3)C14—C15—C16—C17176.30 (16)
C1—C6—C7—O1179.48 (17)C15—C16—C17—C18178.65 (16)
C5—C6—C7—C8179.49 (18)C16—C17—C18—C19174.02 (16)
C1—C6—C7—C80.71 (16)C17—C18—C19—C20178.23 (16)
C1—N1—C8—O2178.14 (16)C18—C19—C20—Br170.41 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.563.441 (2)154
C3—H3···O1ii0.952.513.271 (2)137
C5—H5···O1iii0.952.513.424 (2)160
C9—H9A···O2i0.992.603.503 (2)152
C20—H20A···O2iv0.992.473.393 (2)156
C20—H20B···Cg2v0.992.963.756 (2)139
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+5/2; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Br1-C201.9593 (18)2.001
O1-C71.2064 (19)1.2341
O2-C81.214 (2)1.236
N1-C81.3595 (19)1.391
N1-C11.4113 (19)1.417
N1-C91.4593 (19)1.465
C8-N1-C1111.16 (12)110.94
C8-N1-C9125.20 (13)124.87
C1-N1-C9123.53 (13)122.98
C2-C1-C6122.08 (14)122.69
C2-C1-N1127.01 (14)128.00
C19-C20-Br1110.79 (13)110.97
Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-96820.71
EHOMO (eV)-6.62
ELUMO (eV)-3.05
Gap ΔE (eV)3.57
Dipole moment µ (Debye)5.14
Ionisation potential I (eV)6.62
Electron affinity A3.05
Electronegativity χ-4.83
Hardness η-1.78
Softness σ-0.56
Electrophilicity index ω-6.53

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBecke, A. D. (1992). J. Chem. Phys. 96, 2155–2160.  CrossRef CAS Web of Science Google Scholar
First citationBorad, M. A., Bhoi, M. N., Prajapati, N. P. & Patel, H. D. (2014). Synth. Commun. 44, 897–922.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhan, F. A. & Maalik, A. (2015). Trop. J. Pharm. Res. 14, 1937–1942.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, W., Zhao, S. J., Gao, F., Lv, Z. S., Tu, J. Y. & Xu, Z. (2018). Chemistry Select. 3(36), 10250–10254.  Google Scholar
First citationPakravan, P., Kashanian, S., Khodaei, M. M. & Harding, F. J. (2013). Pharmacol. Rep. 65, 313–335.  CrossRef CAS PubMed Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016). IUCrData, 1, x160593.  Google Scholar
First citationRharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023). Polycyclic Aromat. Compd. pp. 1–18.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVarun, V., Sonam, S. & Kakkar, R. (2019). Med. Chem. Commun. 10, 351–368.  Web of Science CrossRef CAS Google Scholar
First citationVerma, D. K., Sahu, R., Berdimurodov, E., Verma, C., Quraishi, M. A., Jain, V. K. & Berdimuradov, K. (2023). J. Mol. Struct. 1294, 136313.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds