research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and supra­molecular features of a bis-urea-functionalized pillar[5]arene

crossmark logo

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 31 July 2023; accepted 13 October 2023; online 19 October 2023)

The crystal structure of a bis-urea derivative based on A1/A2-functionalized pillar[5]arene (DUP) that encapsulates dimethyl formamide (DMF) inside the macrocyclic cavity is reported. The crystal structure of DUP·DMF, C63H70N4O12·C3H7NO, reveals that out of two urea functionalized spacers, one arm is oriented above the macrocyclic cavity with strong hydrogen-bonding inter­actions between the urea H atoms and DMF guest, whereas, the other arm is positioned away from the macrocycle, leading to inter­molecular hydrogen-bonding inter­actions between the urea H atoms of two adjacent pillar[5]arene macrocycles, resulting in the formation of a supra­molecular dimer.

1. Chemical context

The design of mol­ecular receptors based on pillararenes is an active research area (Ogoshi & Yamagishi, 2013[Ogoshi, T. & Yamagishi, T. (2013). Eur. J. Org. Chem. 2013, 2961-2975.]; Ogoshi et al., 2016[Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937-8002.]; Fang et al., 2020[Fang, Y., Deng, Y. & Dehaen, W. (2020). Coord. Chem. Rev. 415, 213313.]). In particular, pillararene receptors bearing multiple urea-based substituents that possess polarized N—H groups are important derivatives in the field of mol­ecular recognition and sensing because of their excellent guest–host inter­actions (Duan et al., 2012[Duan, Q., Xia, W., Hu, X., Ni, M., Jiang, J., Lin, C., Pan, Y. & Wang, L. (2012). Chem. Commun. 48, 8532-8534.]; Ni et al., 2014[Ni, M., Hu, X.-Y., Jiang, J. & Wang, L. (2014). Chem. Commun. 50, 1317-1319.]; Feng et al., 2017[Feng, W. X., Sun, Z., Zhang, Y., Legrand, Y. M., Petit, E., Su, C. Y. & Barboiu, M. (2017). Org. Lett. 19, 1438-1441.]). The presence of strong hydrogen-bonding inter­action sites in the macrocyclic rim provided by the presence of N—H groups is the prime factor for determining the efficiency of such host–guest inter­actions, and consequently, the extent of their mol­ecular recognition ability. As a result, the number and relative position of the N—H groups with respect to the pillararene macrocycle is very crucial in such mol­ecular receptors. Recently, we have reported the synthesis of urea-functionalized anionic receptors based on di- and tetra-functionalized pillar[5]arenes (Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]). The influence of the receptor structure on the selectivity and binding ability toward different halides was investigated by 1H NMR titrations, diffusion-order spectroscopy (DOSY) and isothermal titration calorimetry (ITC) experiments. It was observed that the non-covalent inter­actions between the receptors and the guest anions are affected by both the number of the urea substituents and their relative positions on the pillar[5]arene frame. In addition, the supra­molecular self-assembly mediated by hydrogen-bonding inter­actions of urea-functionalized substituents on the pillararene frame in solution was also detected. Therefore, a detailed crystal-structure determination of bis-urea-functionalized pillararenes is very important for obtaining more insight into their mol­ecular recognition characteristics. In the present communication we report the single-crystal X-ray structure of an inclusion complex of A1/A2-bis-urea functionalized pillar[5]arene (DUP) with a DMF mol­ecule. The structural details, host–guest inter­actions and other supra­molecular features of this macrocyclic system (DUP·DMF) were investigated and are discussed in detail.

[Scheme 1]

2. Structural commentary

The bis-urea-functionalized pillar[5]arene (DUP) mol­ecules crystallize in the monoclinic crystal system, space group P21/c. In the crystal structure, one mol­ecule of di­methyl­formamide (DMF) is encapsulated within the cavity of the pillararene, resulting in the formation of a host–guest supra­molecular inclusion complex. As anti­cipated, the structure of the pillararene is a penta­gonal-shaped macrocycle having benzyl urea substitution at both ends of the rim. The crystal structure also reveals that one of the urea substituents is oriented above the pillar[5]arene where its N—H groups are situated just above the cavity of the macrocycle and the other urea moiety is projected outwards from the pillar[5]arene ring, as depicted in Fig. 1[link]. In this crystal, both urea-substituted arms of the pillar[5]arene were found to be disordered and this disorder was treated specially during data refinement by applying appropriate restraints. It can be seen that the guest DMF mol­ecule engages in multiple inter­molecular inter­actions with pillar[5]arene ring via N—H⋯O or C—H⋯π inter­actions, as given in Fig. 2[link] and Table 1[link] (π being the centroids of the pillar[5]arene-based C8–C13 and C29–C34 phenyl rings). The orientation of the substituted urea arm above the pillar[5]arene cavity clearly promoted pillar[5]arene–guest inter­actions by enabling a strong N—H⋯O hydrogen bond, as depicted in Fig. 2[link]. Such a spatial orientation of the urea spacer and subsequent N—H-mediated inter­action with the guest mol­ecule suggests the ability of these urea-substituted pillar[5]arenes to facilitate selective encapsulation and provide stable host–guest systems in a variety of applications.

Table 1
Inter­molecular inter­actions(Å, °) between the pillararene host and the DMF guest

π2 and π5 are the centroids of the C8–C13 and C29–C34 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O13 0.86 2.42 2.905 (12) 116
C66—H66⋯π2 0.930 2.559 3.464 165
C64—H64Bπ5 0.960 3.025 3.898 152
[Figure 1]
Figure 1
Crystal structure of DUB·DMF with displacement ellipsoids at the 30% probability Hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Inter­molecular inter­actions between the pillar[5]arene host and the DMF guest; π2, and π5 are the centroids of the phenyl rings C8–C13 and C29–C34, respectively. Hydrogen atoms except those on urea moieties and the DMF mol­ecule are omitted for clarity.

3. Supra­molecular features

The DUP species are capable of involving multiple inter­molecular inter­actions in their crystal network. The qu­anti­tative details of these inter­molecular inter­actions are provided in Table 2[link]. The multiple inter­molecular inter­actions between two adjacent pillara[5]renes are so efficient that a supra­molecular dimer is formed in this crystal system by mutual inter­actions of their urea spacers. As depicted in Fig. 3[link], this supra­molecular dimer is formed mainly by N—H⋯O=C inter­actions between two neighboring pillararenes. The urea N—H bonds in one arm of the pillar[5]arene are bound to the carbonyl C=O group belonging to the urea arm of a second pillar[5]arene. Furthermore, the C=O component of the other urea arm of this first pillararene is bound to the N—H groups of the second urea arm of the latter pillararene. Thus, supra­molecular dimers are produced as a result of these complementary contacts between two pillar[5]arene urea arms. Overall, in the bis-urea-pillar[5]arene system, two urea N—H groups in each pillar[5]arene are involved in supra­molecular dimer formation, and another N—H from the same pillar[5]arene is involved in supra­molecular host–guest inter­action with the DMF mol­ecule, as is evident in Fig. 3[link]. In addition to these dimeric inter­actions, there are a few other non-bonding inter­actions between adjacent pillar[5]arenes whose qu­anti­tative details are provided in Table 2[link]. It is observed that each pillar[5]arene unit inter­acts with four neighboring pillar[5]arenes. The packing pattern of the DUP mol­ecules when viewed along the b-axis direction is depicted in Fig. 4[link]. The urea-based N—H⋯O hydrogen bonds through which the dimer formation occurred are also shown in this figure as blue dotted lines. This packing diagram shows sets of dimeric pillar[5]arenes propagated along the a-axis direction. However, the pillar[5]arenes are oriented in two different directions, which are almost perpendicular, as represented in green and pink colors.

Table 2
Inter­molecular inter­actions (Å,°) engaged by DUP in the crystal network

π1, π3 and π7 are the centroids of the C1–C6, C15–C20 and C51A–C55A phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A⋯O2Ai 0.86 2.35 3.13 (2) 151
N4A—H4A⋯O2Ai 0.86 2.15 2.97 (2) 159
C36—H36Bπ1i 0.97 2.54 3.427 (3) 152
C39A—H39Bπ7i 0.97 3.04 3.374 (10) 105
C43A—H43A⋯O5ii 0.93 2.68 3.54 (1) 155
C58—H58A⋯O4Aiii 0.96 2.47 3.43 (2) 172
C63—H63Cπ3iv 0.96 2.91 3.638 (5) 133
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, −y, 1 − z; (iii) x, −1 + y, z; (iv) 2 − x, [{1\over 2}] + y, [{3\over 2}] − z.
[Figure 3]
Figure 3
Dimer formation of the DUB·DMF system in the crystal through urea spacers. Symmetry code: (i) 1 − x, 1 − y, 1 − z; π1 and π7 are the centroids of the C1–C6 and C50A–C55A phenyl rings, respectively. Non-inter­acting hydrogen atoms on the pillar[5]arenes are omitted for clarity.
[Figure 4]
Figure 4
Packing pattern of DUB mol­ecules in the crystal. Hydrogen atoms except those on the urea moieties are omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (version 5.44, last update September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that no A1/A2-functionalized pillar[5]arenes substituted by benzyl urea have been reported. The crystal structure of an A1/A2- functionalized pillar[5]arene that is substituted with two urea moieties has been reported earlier (DALGOP; Cheng et al., 2016[Cheng, M., Wang, Q., Cao, Y., Pan, Y., Yang, Z., Jiang, J. & Wang, L. (2016). Tetrahedron Lett. 57, 4133-4137.]). However, both urea fractions of this mol­ecule are connected to each other by a hexyl spacer, thereby making this system a mechanically self-locked pseudo[1]catenane. Similar types of mechanically self-locked pseudo[1]catenanes based on A1/A2-bis-amide-functionalized pillar[5]arenes have been reported. In these systems, the amide moieties are linked together either by n-alkyl spacers (HUKREM and HUKRIQ; Li et al., 2015[Li, S. H., Zhang, H. Y., Xu, X. & Liu, Y. (2015). Nat. Commun. 6, 7590.] and LIQHOM; Lv et al., 2023[Lv, Y., Xiao, C., Ma, J., Zhou, D., Wu, W. & Yang, C. (2023). Chin. Chem. Lett. 108757. https://doi. org/10.1016/j. cclet/108757]) or by aliphatic chains containing NH, NH2+ or O heteroatoms (GACCUM, GACDAT, GACCIA and GACDEX; Liang et al., 2020[Liang, H., Hua, B., Xu, F., Gan, L. S., Shao, L. & Huang, F. (2020). J. Am. Chem. Soc. 142, 19772-19778.]; LIQJOO and LIQJUU; Lv et al., 2023[Lv, Y., Xiao, C., Ma, J., Zhou, D., Wu, W. & Yang, C. (2023). Chin. Chem. Lett. 108757. https://doi. org/10.1016/j. cclet/108757]). An A1/A2- bis-amide-functionalized pillar[5]arene cryptand with two different cavities has also been reported (MUCGIC; Wang et al., 2015[Wang, Q., Cheng, M., Zhao, Y., Wu, L., Jiang, J., Wang, L. & Pan, Y. (2015). Chem. Commun. 51, 3623-3626.]). Other structurally related pillararene crystals reported include an A1/A2-bis-imidazolium-functionalized pillar[5]arene (QONPEQ; Gao et al., 2014[Gao, L., Yao, Y., Dong, S. & Yuan, J. (2014). RSC Adv. 4, 35489-35492.]), an A1/A2-bis-N-(9-anthrylmethy)triazole-functionalized pillar[5]arene (QACFEI; Bi et al., 2016[Bi, J., Zeng, X., Tian, D. & Li, H. (2016). Org. Lett. 18, 1092-1095.]) and an A1/A2-bis-2-azido­eth­oxy-functionalized pillar[5]arene (KEWLIL; Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]). Crystal structures of isomeric A1/A2, B1/B2-tetra­kis-2-azido­eth­oxy-functionalized pillar[5]arene and A1/A2, C1/C2-tetra­kis-2-azido­eth­oxy functionalized pillar[5]arene have also been reported (KEWLEH and KEWLOR; Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]). Crystal structures of per-functionalized pillararenes in which all ten functionalization sites are substituted with N-phenyl triazole (CECDAR; Deng et al., 2012[Deng, H., Shu, X., Hu, X., Li, J., Jia, X. & Li, C. (2012). Tetrahedron Lett. 53, 4609-4612.]), N-(naphthalen-2-yl-meth­yl)trizole (ACIYOC: Yu et al., 2012[Yu, G., Zhang, Z., He, J., Abliz, Z. & Huang, F. (2012). Eur. J. Org. Chem. pp. 5902-5907.]) or phthalimide (QUYCOF; Yuan, 2020[Yuan, C. (2020). CSD Communication (refcode QUYCOF). CCDC, Cambridge, England.]) have also been reported. The crystal structures of 4,9,14,19,24,26,28,30,32,34-deca­kis­[2-(morph­olin-4-yl)eth­oxy]pillar[5]arene in which pillararene is functionalized with ten morpholine fragments (CIZFID; Xia et al., 2018[Xia, D., Wang, L., Lv, X., Chao, J., Wei, X. & Wang, P. (2018). Macromolecules, 51, 2716-2722.]) and that of 4,8,14,18,23,26,28,31,32,35-deca-[2-(pyrrol­idin-1-yl)eth­oxy]pillar[5]arene in which in which pillararene is functionalized with ten pyrrolidine fragments at their periphery (JAPGAM; Shurpik et al., 2021[Shurpik, D. N., Makhmutova, L. I., Usachev, K. S., Islamov, D. R., Mostovaya, O. A., Nazarova, A. A., Kizhnyaev, V. N. & Stoikov, I. I. (2021). Nanomaterials, 11, 947. https://doi.org/10.3390/nano11040947]) have also been reported in the literature. Another structurally related macrocycle reported is 5,11,17,23,29-31,32,33,34,35-deca­kis­{2-[2-(4-t-butyl­benzo­yl)hydrazin­yl]-2-oxoeth­oxy}calix(5)arene trideca­hydrate (KUYFAN; Hu et al., 2012[Hu, X., Chen, Z., Tang, G., Hou, J. & Li, Z.. (2012). J. Am. Chem. Soc. 134, 8384-8387.]).

5. Synthesis and crystallization

The synthesis and characterization of DUP have been described earlier (Al-Azemi et al., 2019[Al-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2019). RSC Adv. 9, 13814-13819.]; Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]). The first step is the synthesis of A1/A2-di­bromo­eth­oxy-pillar[5]arene by the co-condensation method. The bromo-functionalized pillar[5]arene is then converted to amino derivatives by the reaction with sodium azide followed by catalytic hydrogenation. The bis-urea-functionalized pillar[5]arene DUP is finally synthesized upon its reaction with p-nitro­phenyl benzyl­carbamate. Colorless blocks of DUP·DMF crystals suitable for single-crystal analysis were grown by dissolving DUP (20mg) in DMF (0.5 mL) and keeping the solution in a 1 ml vial for 1 month.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Both urea-substituted spacers (C37–C45 and C47–C55) of the pillar[5]arene in DUP·DMF were found to be disordered and hence the refinement of the disordered fractions was done using the PART command. The final most satisfactory occupancies for the C37–C45-urea fraction are 0.55:0.45 for the major and minor components. In the case of the C47–C55 urea fraction, the final occupancies are 0.52:0.48 for the major and minor components. In this study, only the primary components of the disordered urea moieties were taken into account to calculate the inter­molecular inter­actions (as given in Tables 1[link] and 2[link]) as well as to generate Figs. 2[link]–4[link][link]. The DFIX command was used to restrain the C=O distances in the carbonyl groups of the urea fractions to 1.2 Å. In addition, the AFIX 66 command was applied to the C40B–C45B and C50A–C55A phenyl rings. In addition, DFIX commands were applied to the disordered atoms C40A–C45A and C50B–C55B to fix their bond lengths to 1.395 Å. Furthermore, DELU and SIMU commands were used in the refinement to restrain the thermal factors of the disordered C37A to C45B as well as C47A to C55B components. All the hydrogen atoms were positioned geometrically with C—H distances for methyl, methyl­ene, aromatic groups being 0.96, 0.97 and 0.93 Å, respectively, and refined with Uiso(H) = 1.2Ueq(C). The N—H distances were restrained to be 0.86 Å with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula C63H70N4O12·C3H7NO
Mr 1148.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.7726 (9), 16.2952 (11), 26.1406 (15)
β (°) 98.791 (7)
V3) 6218.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.18 × 0.11
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.652, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 48935, 10890, 5143
Rint 0.071
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 0.93
No. of reflections 10890
No. of parameters 961
No. of restraints 886
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: CrystalClear 2.1 b46 (Rigaku, 2016[Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalClear 2.1 b46, CrystalStructure 4.2 (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrystalClear 2.1 b46 (Rigaku, 2016); cell refinement: CrystalClear 2.1 b46; data reduction: CrystalClear 2.1 b46; program(s) used to solve structure: CrystalStructure 4.2 (Rigaku, 2017); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020).

Bis-urea derivative based on A1/A2-functionalized pillar[5]arene dimethylformamide monosolvate top
Crystal data top
C63H70N4O12·C3H7NOF(000) = 2448
Mr = 1148.32Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 14.7726 (9) ÅCell parameters from 22911 reflections
b = 16.2952 (11) Åθ = 3.0–25.0°
c = 26.1406 (15) ŵ = 0.09 mm1
β = 98.791 (7)°T = 150 K
V = 6218.7 (7) Å3Block, colorless
Z = 40.20 × 0.18 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5143 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.071
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.652, Tmax = 0.984k = 1919
48935 measured reflectionsl = 2731
10890 independent reflections
Refinement top
Refinement on F2886 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0817P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
10890 reflectionsΔρmax = 0.19 e Å3
961 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single crystal data collection were made on Rigaku Rapid II diffractometer by Mo-Kα radiation at 150K. The data were processed by 'Crystalclear' software package. The structures were then solved by direct methods by 'CrystalStructure' crystallographic software package and the refinement was performed using SHELXL-2019/2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.62562 (11)0.41032 (11)0.50482 (6)0.0734 (5)
O30.64175 (12)0.68117 (12)0.63257 (7)0.0786 (5)
O50.92184 (14)0.26904 (13)0.48061 (7)0.0948 (6)
O60.89860 (13)0.57968 (13)0.56136 (7)0.0863 (6)
O70.91160 (15)0.13445 (14)0.67409 (8)0.1000 (7)
O81.15962 (15)0.37805 (17)0.65071 (9)0.1176 (8)
O90.68083 (17)0.21549 (17)0.79044 (10)0.1156 (8)
O101.02487 (16)0.35280 (19)0.80979 (8)0.1112 (7)
O110.44862 (17)0.41066 (17)0.68237 (9)0.1215 (8)
O120.76036 (16)0.52578 (16)0.80306 (9)0.1159 (8)
O130.74097 (16)0.25255 (15)0.56713 (8)0.1081 (8)
N50.75554 (15)0.33315 (16)0.63726 (9)0.0810 (7)
C10.57978 (16)0.55146 (17)0.60873 (9)0.0639 (7)
C20.57428 (16)0.48341 (16)0.57642 (10)0.0661 (7)
H2A0.5328230.4419130.5806160.079*
C30.62917 (17)0.47575 (16)0.53798 (9)0.0612 (6)
C40.69112 (16)0.53707 (16)0.53078 (9)0.0603 (6)
C50.69554 (17)0.60533 (16)0.56272 (9)0.0660 (7)
H50.7361650.6473810.5582420.079*
C60.64089 (17)0.61253 (16)0.60121 (9)0.0634 (7)
C70.75205 (17)0.53017 (17)0.48923 (9)0.0693 (7)
H7A0.7164700.5082800.4579440.083*
H7B0.7729190.5845200.4813680.083*
C80.83418 (17)0.47580 (17)0.50520 (9)0.0616 (7)
C90.84070 (18)0.39889 (17)0.48388 (9)0.0665 (7)
H90.7944810.3812790.4580080.080*
C100.91391 (19)0.34721 (18)0.49985 (9)0.0660 (7)
C110.98303 (17)0.37151 (18)0.53847 (9)0.0655 (7)
C120.97783 (18)0.44915 (19)0.55917 (9)0.0680 (7)
H121.0244850.4668790.5847580.082*
C130.90563 (19)0.50083 (18)0.54299 (9)0.0656 (7)
C141.06115 (18)0.31531 (19)0.55950 (9)0.0799 (8)
H14A1.1185600.3449090.5615430.096*
H14B1.0630270.2694160.5360530.096*
C151.05064 (17)0.28325 (18)0.61285 (10)0.0693 (7)
C160.98837 (18)0.22190 (18)0.61825 (10)0.0727 (7)
H160.9560620.1978260.5887190.087*
C170.97263 (18)0.19516 (18)0.66647 (11)0.0728 (7)
C181.02084 (19)0.22880 (19)0.71111 (10)0.0732 (8)
C191.08329 (19)0.2895 (2)0.70569 (11)0.0814 (8)
H191.1169300.3124510.7352140.098*
C201.09758 (18)0.31759 (19)0.65755 (11)0.0776 (8)
C211.0057 (2)0.1993 (2)0.76424 (10)0.0915 (9)
H21A0.9937850.1407270.7627250.110*
H21B1.0612010.2082840.7886350.110*
C220.9268 (2)0.2423 (2)0.78379 (10)0.0813 (9)
C230.8408 (2)0.2063 (2)0.77991 (11)0.0893 (9)
H230.8321050.1533600.7667190.107*
C240.7680 (3)0.2478 (2)0.79535 (11)0.0866 (9)
C250.7789 (2)0.3260 (2)0.81507 (10)0.0811 (8)
C260.8647 (2)0.3610 (2)0.82018 (10)0.0871 (9)
H260.8736850.4132700.8343030.105*
C270.9374 (2)0.3198 (2)0.80469 (10)0.0851 (9)
C280.6985 (2)0.3736 (2)0.83055 (10)0.0942 (10)
H28A0.6560900.3354890.8426740.113*
H28B0.7209140.4103200.8589060.113*
C290.6482 (2)0.4234 (2)0.78584 (10)0.0780 (8)
C300.5692 (2)0.3955 (2)0.75650 (12)0.0846 (9)
H300.5435750.3465540.7656200.102*
C310.5268 (2)0.4382 (2)0.71374 (12)0.0811 (8)
C320.56182 (19)0.51127 (19)0.69913 (10)0.0731 (8)
C330.6401 (2)0.5410 (2)0.72939 (12)0.0821 (8)
H330.6643760.5909440.7209230.099*
C340.6826 (2)0.4982 (2)0.77175 (12)0.0835 (9)
C350.51981 (18)0.55673 (19)0.65097 (10)0.0807 (8)
H35A0.5113370.6138770.6594820.097*
H35B0.4600790.5336190.6382980.097*
C360.54778 (18)0.35731 (17)0.50083 (11)0.0768 (8)
H36A0.5468590.3298340.5336600.092*0.549 (9)
H36B0.4921740.3895190.4929930.092*0.549 (9)
H36C0.4911230.3882300.4939380.092*0.451 (9)
H36D0.5481200.3254780.5322110.092*0.451 (9)
C38A0.6146 (11)0.1591 (14)0.4628 (5)0.0720 (19)0.549 (9)
O2A0.5517 (11)0.1335 (13)0.4324 (6)0.097 (3)0.549 (9)
C37A0.5507 (13)0.2980 (14)0.4614 (6)0.076 (2)0.549 (9)
H37A0.5539620.3272520.4294410.091*0.549 (9)
H37B0.4928640.2687070.4567900.091*0.549 (9)
N1A0.6231 (11)0.2377 (11)0.4679 (4)0.071 (2)0.549 (9)
H1A0.6779880.2560620.4760670.086*0.549 (9)
N2A0.6760 (8)0.1091 (8)0.4760 (3)0.0854 (18)0.549 (9)
H2A10.7267360.1284590.4919630.103*0.549 (9)
C39A0.6727 (6)0.0255 (6)0.4680 (4)0.110 (2)0.549 (9)
H39A0.6711040.0140880.4314150.133*0.549 (9)
H39B0.6172320.0035600.4783510.133*0.549 (9)
C40A0.7612 (7)0.0185 (7)0.5009 (4)0.1066 (16)0.549 (9)
C41A0.7884 (7)0.0694 (7)0.5421 (4)0.1199 (18)0.549 (9)
H41A0.7507340.0750980.5672900.144*0.549 (9)
C42A0.8678 (8)0.1116 (7)0.5474 (4)0.129 (2)0.549 (9)
H42A0.8843250.1460340.5756080.155*0.549 (9)
C43A0.9218 (7)0.1032 (7)0.5116 (5)0.128 (2)0.549 (9)
H43A0.9763520.1325490.5149780.153*0.549 (9)
C44A0.8988 (7)0.0517 (7)0.4692 (4)0.137 (2)0.549 (9)
H44A0.9362290.0475140.4437790.164*0.549 (9)
C45A0.8189 (7)0.0069 (7)0.4660 (4)0.125 (2)0.549 (9)
H45A0.8046670.0315520.4397460.150*0.549 (9)
O2B0.5485 (12)0.1386 (16)0.4186 (7)0.083 (3)0.451 (9)
C38B0.6085 (15)0.1585 (18)0.4526 (6)0.075 (2)0.451 (9)
C37B0.5607 (16)0.2987 (17)0.4522 (8)0.078 (3)0.451 (9)
H37C0.5032430.2742140.4365180.094*0.451 (9)
H37D0.5879690.3279710.4260710.094*0.451 (9)
N1B0.6252 (14)0.2360 (13)0.4800 (6)0.080 (2)0.451 (9)
H1B0.6648190.2444810.5071590.095*0.451 (9)
N2B0.6821 (10)0.1073 (10)0.4948 (4)0.093 (2)0.451 (9)
H2B0.7253410.1314860.5150760.112*0.451 (9)
C39B0.6696 (7)0.0226 (7)0.4956 (5)0.108 (2)0.451 (9)
H39C0.6260550.0058150.4658550.130*0.451 (9)
H39D0.6455330.0068360.5266950.130*0.451 (9)
C40B0.7600 (7)0.0189 (8)0.4944 (4)0.1065 (18)0.451 (9)
C41B0.7598 (6)0.0549 (7)0.5426 (4)0.115 (2)0.451 (9)
H41B0.7106590.0466390.5603500.138*0.451 (9)
C42B0.8332 (7)0.1034 (6)0.5642 (3)0.124 (2)0.451 (9)
H42B0.8331680.1275480.5964580.149*0.451 (9)
C43B0.9068 (6)0.1158 (6)0.5377 (5)0.126 (2)0.451 (9)
H43B0.9558770.1482520.5521600.151*0.451 (9)
C44B0.9069 (6)0.0797 (7)0.4895 (5)0.130 (2)0.451 (9)
H44B0.9560760.0880480.4717520.157*0.451 (9)
C45B0.8335 (8)0.0313 (7)0.4679 (3)0.121 (2)0.451 (9)
H45B0.8335670.0071380.4356420.146*0.451 (9)
C460.7154 (2)0.73728 (19)0.63378 (12)0.0901 (9)
H46A0.7177820.7556800.5987220.108*0.525 (6)
H46B0.7721070.7084920.6458000.108*0.525 (6)
H46C0.7162240.7626940.6002990.108*0.475 (6)
H46D0.7740030.7113250.6453810.108*0.475 (6)
O4A0.7106 (11)0.9714 (15)0.6819 (8)0.108 (4)0.525 (6)
C48A0.6429 (11)0.9419 (16)0.6576 (9)0.084 (2)0.525 (6)
C47A0.7103 (10)0.8110 (11)0.6673 (7)0.087 (3)0.525 (6)
H47A0.7007030.7940370.7015950.105*0.525 (6)
H47B0.7672590.8414640.6704130.105*0.525 (6)
N3A0.6335 (13)0.8633 (11)0.6436 (5)0.084 (2)0.525 (6)
H3A0.5872730.8448360.6227870.100*0.525 (6)
N4A0.5565 (11)0.9843 (13)0.6390 (5)0.090 (2)0.525 (6)
H4A0.5145850.9598670.6179570.108*0.525 (6)
C49A0.5415 (5)1.0667 (4)0.6559 (3)0.1006 (17)0.525 (6)
H49A0.5992521.0961440.6607750.121*0.525 (6)
H49B0.5194011.0646600.6889120.121*0.525 (6)
C50A0.4724 (5)1.1128 (5)0.6169 (3)0.1028 (18)0.525 (6)
C51A0.4855 (4)1.1273 (5)0.5661 (3)0.127 (2)0.525 (6)
H51A0.5382371.1084860.5545170.153*0.525 (6)
C52A0.4197 (5)1.1699 (5)0.5326 (2)0.138 (2)0.525 (6)
H52A0.4283961.1795720.4986630.166*0.525 (6)
C53A0.3408 (5)1.1979 (5)0.5499 (3)0.140 (2)0.525 (6)
H53A0.2967651.2264340.5275320.168*0.525 (6)
C54A0.3277 (4)1.1834 (5)0.6007 (3)0.131 (2)0.525 (6)
H54A0.2749741.2022080.6122550.157*0.525 (6)
C55A0.3935 (5)1.1408 (5)0.6341 (2)0.124 (2)0.525 (6)
H55A0.3848141.1311220.6681100.149*0.525 (6)
O4B0.6891 (12)0.9712 (16)0.6886 (8)0.102 (4)0.475 (6)
C48B0.6277 (13)0.9417 (17)0.6589 (10)0.080 (2)0.475 (6)
C47B0.6902 (11)0.7989 (12)0.6736 (7)0.087 (3)0.475 (6)
H47C0.6691080.7686090.7014510.105*0.475 (6)
H47D0.7452090.8282640.6882290.105*0.475 (6)
N3B0.6230 (15)0.8563 (12)0.6544 (6)0.081 (2)0.475 (6)
H3B0.5728330.8366620.6379910.097*0.475 (6)
N4B0.5715 (12)0.9870 (14)0.6288 (6)0.091 (2)0.475 (6)
H4B0.5274260.9635500.6088030.109*0.475 (6)
C49B0.5786 (6)1.0744 (5)0.6271 (4)0.1059 (19)0.475 (6)
H49C0.6221521.0889710.6043430.127*0.475 (6)
H49D0.6023351.0943900.6614300.127*0.475 (6)
C50B0.4904 (7)1.1158 (8)0.6087 (4)0.1045 (18)0.475 (6)
C51B0.4736 (7)1.1659 (6)0.5671 (4)0.116 (2)0.475 (6)
H51B0.5214681.1737360.5482650.140*0.475 (6)
C52B0.3946 (8)1.2055 (7)0.5499 (4)0.127 (2)0.475 (6)
H52B0.3893721.2380080.5203460.152*0.475 (6)
C53B0.3263 (9)1.1979 (8)0.5751 (5)0.135 (2)0.475 (6)
H53B0.2726191.2272870.5650030.161*0.475 (6)
C54B0.3335 (9)1.1457 (8)0.6172 (4)0.135 (2)0.475 (6)
H54B0.2826231.1358200.6333310.162*0.475 (6)
C55B0.4189 (8)1.1070 (7)0.6360 (4)0.122 (2)0.475 (6)
H55B0.4258051.0763000.6663340.146*0.475 (6)
C560.8593 (2)0.2434 (2)0.43776 (13)0.1086 (11)
H56A0.8749830.1891560.4278190.130*
H56B0.8614230.2805060.4094310.130*
H56C0.7986170.2430640.4466850.130*
C570.9618 (2)0.6051 (2)0.60406 (12)0.1104 (11)
H57A0.9481980.6603760.6130920.132*
H57B1.0226190.6028360.5953850.132*
H57C0.9578920.5695300.6329070.132*
C580.8575 (2)0.0987 (2)0.63023 (15)0.1204 (13)
H58A0.8157010.0599060.6414140.144*
H58B0.8966230.0710970.6096040.144*
H58C0.8236310.1408390.6099810.144*
C591.1860 (3)0.4329 (3)0.69066 (18)0.182 (2)
H59A1.1325450.4541350.7029130.218*
H59B1.2194730.4773580.6783260.218*
H59C1.2241180.4054030.7184490.218*
C600.6671 (3)0.1327 (3)0.77892 (18)0.1529 (17)
H60A0.6991760.1002280.8065540.184*
H60B0.6898700.1202320.7473210.184*
H60C0.6028500.1205120.7749420.184*
C611.0326 (3)0.4372 (3)0.8090 (2)0.1614 (19)
H61A1.0954170.4519990.8085730.194*
H61B1.0126380.4597890.8393140.194*
H61C0.9952870.4584650.7786380.194*
C620.4123 (3)0.3358 (3)0.6924 (2)0.189 (2)
H62A0.3620910.3231380.6657270.227*
H62B0.3909050.3377630.7252640.227*
H62C0.4585840.2942670.6932580.227*
C630.8047 (3)0.5954 (3)0.78706 (18)0.1627 (19)
H63A0.7632360.6411790.7838290.195*
H63B0.8238070.5847280.7542200.195*
H63C0.8572720.6080020.8122170.195*
C640.6843 (3)0.2918 (3)0.65897 (15)0.1474 (16)
H64A0.6500130.2575690.6330680.177*
H64B0.6442590.3316350.6707080.177*
H64C0.7111580.2585410.6876440.177*
C650.8021 (3)0.4008 (3)0.66514 (13)0.1316 (14)
H65A0.7593910.4445660.6673690.158*
H65B0.8503030.4196920.6473250.158*
H65C0.8275720.3831740.6993720.158*
C660.7751 (2)0.3092 (2)0.59272 (11)0.0829 (9)
H660.8198470.3388430.5792940.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0728 (12)0.0564 (12)0.0902 (12)0.0020 (10)0.0095 (9)0.0117 (10)
O30.0809 (12)0.0637 (14)0.0912 (12)0.0038 (11)0.0134 (9)0.0192 (10)
O50.1073 (15)0.0850 (17)0.0872 (13)0.0167 (12)0.0007 (11)0.0277 (12)
O60.0845 (13)0.0796 (16)0.0961 (13)0.0122 (11)0.0182 (10)0.0272 (12)
O70.1071 (16)0.0854 (17)0.1028 (15)0.0224 (14)0.0012 (12)0.0122 (12)
O80.1035 (16)0.134 (2)0.1101 (16)0.0527 (16)0.0006 (13)0.0014 (15)
O90.1125 (19)0.097 (2)0.1443 (19)0.0131 (16)0.0409 (14)0.0048 (15)
O100.0924 (17)0.125 (2)0.1089 (16)0.0047 (16)0.0061 (12)0.0237 (15)
O110.1072 (17)0.112 (2)0.1376 (19)0.0312 (16)0.0078 (15)0.0056 (16)
O120.1061 (17)0.109 (2)0.1220 (17)0.0249 (15)0.0149 (14)0.0053 (14)
O130.1306 (19)0.0932 (19)0.0878 (14)0.0077 (14)0.0241 (13)0.0129 (13)
N50.0830 (16)0.094 (2)0.0665 (14)0.0043 (14)0.0121 (12)0.0049 (13)
C10.0585 (15)0.0600 (19)0.0726 (16)0.0112 (14)0.0082 (12)0.0016 (14)
C20.0585 (15)0.0569 (19)0.0819 (17)0.0047 (13)0.0077 (13)0.0061 (14)
C30.0646 (16)0.0464 (18)0.0697 (16)0.0083 (14)0.0011 (12)0.0029 (13)
C40.0658 (16)0.0461 (17)0.0670 (15)0.0062 (14)0.0039 (12)0.0018 (13)
C50.0678 (16)0.0528 (18)0.0760 (16)0.0026 (13)0.0069 (13)0.0041 (14)
C60.0643 (16)0.0532 (19)0.0702 (16)0.0089 (14)0.0024 (13)0.0053 (13)
C70.0819 (18)0.0620 (19)0.0654 (15)0.0013 (15)0.0156 (13)0.0032 (13)
C80.0686 (16)0.066 (2)0.0519 (13)0.0036 (15)0.0159 (12)0.0018 (13)
C90.0747 (18)0.072 (2)0.0534 (14)0.0020 (16)0.0098 (12)0.0107 (14)
C100.0786 (18)0.064 (2)0.0574 (15)0.0018 (16)0.0154 (13)0.0085 (14)
C110.0630 (16)0.081 (2)0.0547 (14)0.0018 (15)0.0160 (12)0.0013 (14)
C120.0653 (17)0.083 (2)0.0568 (15)0.0124 (16)0.0141 (12)0.0117 (15)
C130.0723 (18)0.064 (2)0.0650 (15)0.0089 (16)0.0243 (14)0.0111 (14)
C140.0689 (17)0.099 (2)0.0733 (17)0.0080 (17)0.0156 (13)0.0006 (16)
C150.0577 (16)0.078 (2)0.0706 (17)0.0058 (15)0.0028 (13)0.0011 (14)
C160.0725 (18)0.071 (2)0.0689 (17)0.0034 (16)0.0063 (13)0.0033 (14)
C170.0642 (17)0.063 (2)0.087 (2)0.0017 (15)0.0024 (14)0.0076 (15)
C180.0694 (18)0.074 (2)0.0723 (18)0.0104 (16)0.0012 (14)0.0105 (15)
C190.0767 (19)0.089 (2)0.0717 (18)0.0022 (18)0.0116 (14)0.0010 (16)
C200.0625 (17)0.083 (2)0.083 (2)0.0093 (16)0.0012 (14)0.0014 (16)
C210.098 (2)0.097 (3)0.0741 (18)0.020 (2)0.0046 (16)0.0201 (16)
C220.096 (2)0.086 (3)0.0582 (16)0.011 (2)0.0009 (15)0.0175 (16)
C230.106 (3)0.078 (2)0.084 (2)0.003 (2)0.0143 (18)0.0148 (16)
C240.099 (3)0.085 (3)0.0765 (19)0.004 (2)0.0163 (17)0.0161 (18)
C250.100 (2)0.089 (3)0.0554 (15)0.007 (2)0.0126 (15)0.0134 (16)
C260.103 (2)0.097 (3)0.0582 (16)0.003 (2)0.0017 (15)0.0004 (15)
C270.086 (2)0.103 (3)0.0621 (17)0.004 (2)0.0031 (15)0.0037 (17)
C280.110 (2)0.107 (3)0.0696 (18)0.000 (2)0.0252 (17)0.0061 (17)
C290.085 (2)0.082 (2)0.0719 (18)0.0001 (18)0.0287 (16)0.0066 (16)
C300.086 (2)0.085 (2)0.088 (2)0.0121 (19)0.0284 (17)0.0017 (18)
C310.0705 (19)0.086 (3)0.088 (2)0.0102 (18)0.0167 (16)0.0110 (18)
C320.0691 (18)0.074 (2)0.0799 (18)0.0019 (16)0.0241 (15)0.0043 (16)
C330.0755 (19)0.080 (2)0.093 (2)0.0063 (17)0.0188 (16)0.0029 (17)
C340.077 (2)0.090 (3)0.084 (2)0.0061 (19)0.0125 (16)0.0091 (18)
C350.0725 (17)0.082 (2)0.0904 (19)0.0143 (16)0.0227 (15)0.0012 (16)
C360.0721 (17)0.0569 (19)0.0954 (19)0.0053 (15)0.0062 (14)0.0084 (15)
C38A0.075 (3)0.057 (3)0.077 (4)0.009 (3)0.013 (3)0.010 (4)
O2A0.098 (4)0.069 (4)0.109 (7)0.000 (3)0.027 (5)0.026 (6)
C37A0.075 (4)0.061 (3)0.085 (5)0.011 (3)0.011 (4)0.008 (4)
N1A0.065 (3)0.066 (3)0.074 (4)0.007 (2)0.023 (3)0.013 (4)
N2A0.095 (3)0.062 (3)0.094 (4)0.019 (2)0.003 (4)0.009 (4)
C39A0.121 (3)0.085 (3)0.120 (4)0.010 (3)0.002 (4)0.001 (4)
C40A0.113 (3)0.082 (3)0.124 (3)0.033 (3)0.014 (3)0.013 (3)
C41A0.123 (4)0.095 (4)0.140 (4)0.039 (3)0.013 (3)0.013 (3)
C42A0.124 (5)0.106 (4)0.152 (4)0.043 (4)0.004 (4)0.009 (4)
C43A0.122 (4)0.108 (4)0.145 (5)0.057 (3)0.002 (3)0.011 (4)
C44A0.131 (4)0.117 (5)0.157 (5)0.056 (4)0.008 (4)0.015 (4)
C45A0.122 (4)0.106 (5)0.145 (4)0.042 (3)0.017 (3)0.017 (3)
O2B0.074 (5)0.079 (6)0.092 (7)0.000 (4)0.005 (4)0.028 (5)
C38B0.079 (4)0.062 (3)0.082 (5)0.008 (3)0.010 (4)0.004 (4)
C37B0.078 (5)0.062 (4)0.087 (5)0.012 (4)0.012 (4)0.013 (4)
N1B0.080 (3)0.066 (3)0.084 (6)0.015 (3)0.013 (4)0.011 (4)
N2B0.105 (3)0.062 (3)0.107 (5)0.002 (3)0.000 (4)0.007 (5)
C39B0.118 (4)0.082 (4)0.121 (5)0.016 (3)0.008 (4)0.015 (4)
C40B0.113 (3)0.084 (3)0.122 (4)0.029 (3)0.016 (3)0.010 (3)
C41B0.116 (5)0.096 (4)0.132 (4)0.032 (4)0.016 (4)0.012 (4)
C42B0.120 (5)0.102 (5)0.145 (5)0.028 (4)0.005 (4)0.014 (4)
C43B0.117 (5)0.107 (4)0.150 (5)0.044 (4)0.006 (4)0.015 (4)
C44B0.129 (4)0.110 (5)0.150 (5)0.047 (4)0.011 (4)0.019 (4)
C45B0.121 (4)0.103 (5)0.140 (4)0.046 (4)0.017 (3)0.015 (4)
C460.0774 (19)0.077 (2)0.111 (2)0.0006 (17)0.0009 (16)0.0283 (17)
O4A0.087 (6)0.086 (5)0.141 (7)0.024 (5)0.013 (5)0.009 (5)
C48A0.087 (5)0.067 (3)0.097 (4)0.008 (4)0.010 (4)0.014 (3)
C47A0.079 (5)0.077 (5)0.103 (5)0.002 (4)0.002 (4)0.021 (4)
N3A0.076 (4)0.071 (4)0.099 (5)0.003 (3)0.002 (4)0.016 (4)
N4A0.091 (4)0.066 (3)0.109 (4)0.010 (3)0.004 (3)0.015 (4)
C49A0.111 (4)0.070 (3)0.120 (4)0.005 (3)0.015 (3)0.014 (3)
C50A0.109 (4)0.071 (3)0.130 (4)0.014 (3)0.020 (3)0.005 (3)
C51A0.127 (4)0.110 (5)0.148 (4)0.007 (4)0.029 (3)0.023 (4)
C52A0.148 (5)0.125 (5)0.144 (4)0.005 (4)0.030 (4)0.031 (4)
C53A0.156 (4)0.117 (4)0.148 (4)0.005 (4)0.027 (4)0.028 (4)
C54A0.150 (4)0.104 (4)0.139 (4)0.021 (4)0.026 (4)0.031 (4)
C55A0.136 (4)0.096 (4)0.139 (4)0.021 (4)0.017 (3)0.014 (3)
O4B0.098 (7)0.080 (5)0.119 (6)0.014 (6)0.017 (6)0.033 (5)
C48B0.078 (4)0.064 (3)0.095 (4)0.016 (4)0.006 (4)0.016 (3)
C47B0.081 (5)0.075 (5)0.101 (5)0.006 (4)0.000 (4)0.025 (4)
N3B0.077 (4)0.066 (3)0.098 (5)0.003 (3)0.009 (4)0.019 (4)
N4B0.093 (5)0.066 (3)0.109 (5)0.014 (4)0.000 (4)0.013 (4)
C49B0.112 (4)0.069 (3)0.133 (4)0.015 (3)0.005 (3)0.000 (4)
C50B0.113 (3)0.072 (3)0.128 (4)0.014 (3)0.016 (3)0.005 (3)
C51B0.118 (4)0.091 (5)0.141 (4)0.004 (4)0.024 (3)0.016 (4)
C52B0.129 (4)0.105 (4)0.148 (4)0.006 (4)0.029 (4)0.025 (4)
C53B0.149 (4)0.111 (4)0.146 (5)0.015 (4)0.031 (4)0.019 (4)
C54B0.147 (4)0.111 (5)0.153 (5)0.000 (4)0.041 (4)0.016 (4)
C55B0.139 (4)0.090 (4)0.139 (4)0.004 (4)0.032 (3)0.011 (3)
C560.108 (2)0.101 (3)0.115 (2)0.000 (2)0.010 (2)0.046 (2)
C570.122 (3)0.108 (3)0.103 (2)0.026 (2)0.020 (2)0.045 (2)
C580.111 (3)0.087 (3)0.148 (3)0.029 (2)0.028 (2)0.026 (2)
C590.211 (5)0.168 (5)0.158 (4)0.114 (4)0.001 (3)0.024 (4)
C600.151 (4)0.118 (4)0.199 (5)0.038 (3)0.058 (3)0.011 (3)
C610.112 (3)0.134 (5)0.236 (5)0.029 (3)0.021 (3)0.060 (4)
C620.151 (4)0.156 (5)0.241 (6)0.075 (4)0.027 (4)0.034 (4)
C630.133 (3)0.154 (5)0.187 (4)0.068 (3)0.021 (3)0.030 (3)
C640.151 (3)0.177 (5)0.128 (3)0.022 (3)0.065 (3)0.020 (3)
C650.160 (3)0.136 (4)0.095 (2)0.009 (3)0.007 (2)0.028 (2)
C660.083 (2)0.102 (3)0.0623 (18)0.0095 (19)0.0071 (15)0.0061 (17)
Geometric parameters (Å, º) top
O1—C31.370 (3)C44A—C45A1.379 (11)
O1—C361.429 (3)C44A—H44A0.9300
O3—C61.386 (3)C45A—H45A0.9300
O3—C461.417 (3)O2B—C38B1.2008 (11)
O5—C101.381 (3)C38B—N1B1.45 (4)
O5—C561.402 (3)C38B—N2B1.65 (3)
O6—C131.381 (3)C37B—N1B1.51 (4)
O6—C571.404 (3)C37B—H37C0.9700
O7—C171.373 (3)C37B—H37D0.9700
O7—C581.419 (4)N1B—H1B0.8600
O8—C201.376 (3)N2B—C39B1.394 (16)
O8—C591.385 (4)N2B—H2B0.8600
O9—C241.379 (4)C39B—C40B1.500 (13)
O9—C601.390 (4)C39B—H39C0.9700
O10—C611.380 (5)C39B—H39D0.9700
O10—C271.386 (4)C40B—C41B1.3900
O11—C621.374 (4)C40B—C45B1.3900
O11—C311.385 (3)C41B—C42B1.3900
O12—C341.380 (3)C41B—H41B0.9300
O12—C631.406 (4)C42B—C43B1.3900
O13—C661.204 (3)C42B—H42B0.9300
N5—C661.301 (3)C43B—C44B1.3900
N5—C651.437 (4)C43B—H43B0.9300
N5—C641.437 (4)C44B—C45B1.3900
C1—C61.378 (3)C44B—H44B0.9300
C1—C21.389 (3)C45B—H45B0.9300
C1—C351.520 (3)C46—C47A1.495 (18)
C2—C31.390 (3)C46—C47B1.53 (2)
C2—H2A0.9300C46—H46A0.9700
C3—C41.387 (3)C46—H46B0.9700
C4—C51.386 (3)C46—H46C0.9700
C4—C71.517 (3)C46—H46D0.9700
C5—C61.388 (3)O4A—C48A1.2008 (11)
C5—H50.9300C48A—N3A1.33 (3)
C7—C81.509 (3)C48A—N4A1.47 (3)
C7—H7A0.9700C47A—N3A1.48 (2)
C7—H7B0.9700C47A—H47A0.9700
C8—C91.381 (3)C47A—H47B0.9700
C8—C131.392 (3)N3A—H3A0.8600
C9—C101.384 (3)N4A—C49A1.44 (2)
C9—H90.9300N4A—H4A0.8600
C10—C111.380 (3)C49A—C50A1.526 (8)
C11—C121.383 (4)C49A—H49A0.9700
C11—C141.510 (3)C49A—H49B0.9700
C12—C131.374 (4)C50A—C51A1.3900
C12—H120.9300C50A—C55A1.3900
C14—C151.519 (3)C51A—C52A1.3900
C14—H14A0.9700C51A—H51A0.9300
C14—H14B0.9700C52A—C53A1.3900
C15—C161.380 (4)C52A—H52A0.9300
C15—C201.383 (4)C53A—C54A1.3900
C16—C171.386 (4)C53A—H53A0.9300
C16—H160.9300C54A—C55A1.3900
C17—C181.384 (4)C54A—H54A0.9300
C18—C191.375 (4)C55A—H55A0.9300
C18—C211.518 (4)O4B—C48B1.2008 (11)
C19—C201.385 (4)C48B—N4B1.29 (3)
C19—H190.9300C48B—N3B1.40 (3)
C21—C221.514 (4)C47B—N3B1.40 (2)
C21—H21A0.9700C47B—H47C0.9700
C21—H21B0.9700C47B—H47D0.9700
C22—C271.376 (4)N3B—H3B0.8600
C22—C231.389 (4)N4B—C49B1.43 (2)
C23—C241.383 (4)N4B—H4B0.8600
C23—H230.9300C49B—C50B1.481 (11)
C24—C251.374 (4)C49B—H49C0.9700
C25—C261.378 (4)C49B—H49D0.9700
C25—C281.524 (4)C50B—C51B1.352 (13)
C26—C271.379 (4)C50B—C55B1.370 (8)
C26—H260.9300C51B—C52B1.349 (12)
C28—C291.520 (4)C51B—H51B0.9300
C28—H28A0.9700C52B—C53B1.293 (14)
C28—H28B0.9700C52B—H52B0.9300
C29—C301.372 (4)C53B—C54B1.380 (14)
C29—C341.392 (4)C53B—H53B0.9300
C30—C311.383 (4)C54B—C55B1.429 (14)
C30—H300.9300C54B—H54B0.9300
C31—C321.376 (4)C55B—H55B0.9300
C32—C331.385 (4)C56—H56A0.9600
C32—C351.510 (4)C56—H56B0.9600
C33—C341.376 (4)C56—H56C0.9600
C33—H330.9300C57—H57A0.9600
C35—H35A0.9700C57—H57B0.9600
C35—H35B0.9700C57—H57C0.9600
C36—C37A1.418 (18)C58—H58A0.9600
C36—C37B1.62 (2)C58—H58B0.9600
C36—H36A0.9700C58—H58C0.9600
C36—H36B0.9700C59—H59A0.9600
C36—H36C0.9700C59—H59B0.9600
C36—H36D0.9700C59—H59C0.9600
C38A—O2A1.2011 (10)C60—H60A0.9600
C38A—N2A1.23 (3)C60—H60B0.9600
C38A—N1A1.29 (3)C60—H60C0.9600
C37A—N1A1.44 (3)C61—H61A0.9600
C37A—H37A0.9700C61—H61B0.9600
C37A—H37B0.9700C61—H61C0.9600
N1A—H1A0.8600C62—H62A0.9600
N2A—C39A1.378 (13)C62—H62B0.9600
N2A—H2A10.8600C62—H62C0.9600
C39A—C40A1.619 (12)C63—H63A0.9600
C39A—H39A0.9700C63—H63B0.9600
C39A—H39B0.9700C63—H63C0.9600
C40A—C45A1.354 (7)C64—H64A0.9600
C40A—C41A1.369 (10)C64—H64B0.9600
C41A—C42A1.348 (11)C64—H64C0.9600
C41A—H41A0.9300C65—H65A0.9600
C42A—C43A1.325 (12)C65—H65B0.9600
C42A—H42A0.9300C65—H65C0.9600
C43A—C44A1.391 (11)C66—H660.9300
C43A—H43A0.9300
C3—O1—C36118.0 (2)N1B—C37B—H37C111.9
C6—O3—C46118.1 (2)C36—C37B—H37C111.9
C10—O5—C56118.9 (2)N1B—C37B—H37D111.9
C13—O6—C57118.3 (2)C36—C37B—H37D111.9
C17—O7—C58118.7 (2)H37C—C37B—H37D109.6
C20—O8—C59118.7 (3)C38B—N1B—C37B107.8 (19)
C24—O9—C60119.6 (3)C38B—N1B—H1B126.1
C61—O10—C27117.6 (3)C37B—N1B—H1B126.1
C62—O11—C31119.3 (3)C39B—N2B—C38B115.8 (14)
C34—O12—C63118.0 (3)C39B—N2B—H2B122.1
C66—N5—C65122.0 (3)C38B—N2B—H2B122.1
C66—N5—C64119.2 (3)N2B—C39B—C40B109.0 (11)
C65—N5—C64118.8 (3)N2B—C39B—H39C109.9
C6—C1—C2117.9 (2)C40B—C39B—H39C109.9
C6—C1—C35122.0 (2)N2B—C39B—H39D109.9
C2—C1—C35120.0 (2)C40B—C39B—H39D109.9
C1—C2—C3121.7 (2)H39C—C39B—H39D108.3
C1—C2—H2A119.2C41B—C40B—C45B120.0
C3—C2—H2A119.2C41B—C40B—C39B92.7 (9)
O1—C3—C4115.9 (2)C45B—C40B—C39B147.3 (9)
O1—C3—C2123.9 (2)C42B—C41B—C40B120.0
C4—C3—C2120.2 (2)C42B—C41B—H41B120.0
C5—C4—C3117.9 (2)C40B—C41B—H41B120.0
C5—C4—C7120.8 (2)C43B—C42B—C41B120.0
C3—C4—C7121.3 (2)C43B—C42B—H42B120.0
C4—C5—C6121.7 (2)C41B—C42B—H42B120.0
C4—C5—H5119.2C42B—C43B—C44B120.0
C6—C5—H5119.2C42B—C43B—H43B120.0
C1—C6—O3116.4 (2)C44B—C43B—H43B120.0
C1—C6—C5120.6 (2)C43B—C44B—C45B120.0
O3—C6—C5122.9 (2)C43B—C44B—H44B120.0
C8—C7—C4112.67 (19)C45B—C44B—H44B120.0
C8—C7—H7A109.1C44B—C45B—C40B120.0
C4—C7—H7A109.1C44B—C45B—H45B120.0
C8—C7—H7B109.1C40B—C45B—H45B120.0
C4—C7—H7B109.1O3—C46—C47A115.1 (6)
H7A—C7—H7B107.8O3—C46—C47B100.0 (6)
C9—C8—C13117.4 (2)O3—C46—H46A108.5
C9—C8—C7121.6 (2)C47A—C46—H46A108.5
C13—C8—C7121.0 (2)O3—C46—H46B108.5
C8—C9—C10122.0 (2)C47A—C46—H46B108.5
C8—C9—H9119.0H46A—C46—H46B107.5
C10—C9—H9119.0O3—C46—H46C111.8
C11—C10—O5115.9 (3)C47B—C46—H46C111.8
C11—C10—C9120.2 (2)O3—C46—H46D111.8
O5—C10—C9123.9 (2)C47B—C46—H46D111.8
C10—C11—C12118.0 (3)H46C—C46—H46D109.5
C10—C11—C14122.1 (3)O4A—C48A—N3A125 (2)
C12—C11—C14119.8 (2)O4A—C48A—N4A127 (2)
C13—C12—C11121.8 (2)N3A—C48A—N4A108.3 (15)
C13—C12—H12119.1N3A—C47A—C46108.8 (11)
C11—C12—H12119.1N3A—C47A—H47A109.9
C12—C13—O6124.0 (2)C46—C47A—H47A109.9
C12—C13—C8120.5 (3)N3A—C47A—H47B109.9
O6—C13—C8115.5 (3)C46—C47A—H47B109.9
C11—C14—C15111.3 (2)H47A—C47A—H47B108.3
C11—C14—H14A109.4C48A—N3A—C47A113.5 (15)
C15—C14—H14A109.4C48A—N3A—H3A123.2
C11—C14—H14B109.4C47A—N3A—H3A123.2
C15—C14—H14B109.4C49A—N4A—C48A120.3 (16)
H14A—C14—H14B108.0C49A—N4A—H4A119.9
C16—C15—C20117.6 (2)C48A—N4A—H4A119.9
C16—C15—C14120.4 (2)N4A—C49A—C50A111.9 (8)
C20—C15—C14121.9 (3)N4A—C49A—H49A109.2
C15—C16—C17121.8 (3)C50A—C49A—H49A109.2
C15—C16—H16119.1N4A—C49A—H49B109.2
C17—C16—H16119.1C50A—C49A—H49B109.2
O7—C17—C18115.3 (3)H49A—C49A—H49B107.9
O7—C17—C16124.3 (3)C51A—C50A—C55A120.0
C18—C17—C16120.4 (3)C51A—C50A—C49A123.1 (6)
C19—C18—C17117.7 (3)C55A—C50A—C49A116.9 (6)
C19—C18—C21121.2 (3)C50A—C51A—C52A120.0
C17—C18—C21121.1 (3)C50A—C51A—H51A120.0
C18—C19—C20121.9 (3)C52A—C51A—H51A120.0
C18—C19—H19119.0C51A—C52A—C53A120.0
C20—C19—H19119.0C51A—C52A—H52A120.0
O8—C20—C15116.0 (3)C53A—C52A—H52A120.0
O8—C20—C19123.5 (3)C54A—C53A—C52A120.0
C15—C20—C19120.5 (3)C54A—C53A—H53A120.0
C22—C21—C18113.0 (2)C52A—C53A—H53A120.0
C22—C21—H21A109.0C55A—C54A—C53A120.0
C18—C21—H21A109.0C55A—C54A—H54A120.0
C22—C21—H21B109.0C53A—C54A—H54A120.0
C18—C21—H21B109.0C54A—C55A—C50A120.0
H21A—C21—H21B107.8C54A—C55A—H55A120.0
C27—C22—C23117.7 (3)C50A—C55A—H55A120.0
C27—C22—C21120.8 (3)O4B—C48B—N4B121 (3)
C23—C22—C21121.5 (3)O4B—C48B—N3B118 (2)
C24—C23—C22121.0 (3)N4B—C48B—N3B120.1 (18)
C24—C23—H23119.5N3B—C47B—C46115.3 (12)
C22—C23—H23119.5N3B—C47B—H47C108.4
C25—C24—O9116.3 (3)C46—C47B—H47C108.4
C25—C24—C23120.8 (3)N3B—C47B—H47D108.4
O9—C24—C23122.9 (3)C46—C47B—H47D108.4
C24—C25—C26118.2 (3)H47C—C47B—H47D107.5
C24—C25—C28121.4 (3)C48B—N3B—C47B127.8 (16)
C26—C25—C28120.4 (3)C48B—N3B—H3B116.1
C25—C26—C27121.1 (3)C47B—N3B—H3B116.1
C25—C26—H26119.4C48B—N4B—C49B123.2 (19)
C27—C26—H26119.4C48B—N4B—H4B118.4
C22—C27—C26121.1 (3)C49B—N4B—H4B118.4
C22—C27—O10116.3 (3)N4B—C49B—C50B113.6 (10)
C26—C27—O10122.7 (3)N4B—C49B—H49C108.8
C29—C28—C25112.1 (2)C50B—C49B—H49C108.8
C29—C28—H28A109.2N4B—C49B—H49D108.8
C25—C28—H28A109.2C50B—C49B—H49D108.8
C29—C28—H28B109.2H49C—C49B—H49D107.7
C25—C28—H28B109.2C51B—C50B—C55B114.9 (10)
H28A—C28—H28B107.9C51B—C50B—C49B125.5 (9)
C30—C29—C34117.1 (3)C55B—C50B—C49B119.6 (10)
C30—C29—C28121.8 (3)C52B—C51B—C50B126.9 (10)
C34—C29—C28121.0 (3)C52B—C51B—H51B116.6
C29—C30—C31121.8 (3)C50B—C51B—H51B116.6
C29—C30—H30119.1C53B—C52B—C51B119.1 (11)
C31—C30—H30119.1C53B—C52B—H52B120.4
C32—C31—C30121.1 (3)C51B—C52B—H52B120.4
C32—C31—O11115.5 (3)C52B—C53B—C54B119.7 (12)
C30—C31—O11123.4 (3)C52B—C53B—H53B120.2
C31—C32—C33117.4 (3)C54B—C53B—H53B120.2
C31—C32—C35122.1 (3)C53B—C54B—C55B120.1 (12)
C33—C32—C35120.4 (3)C53B—C54B—H54B119.9
C34—C33—C32121.4 (3)C55B—C54B—H54B119.9
C34—C33—H33119.3C50B—C55B—C54B119.0 (10)
C32—C33—H33119.3C50B—C55B—H55B120.5
C33—C34—O12123.3 (3)C54B—C55B—H55B120.5
C33—C34—C29121.1 (3)O5—C56—H56A109.5
O12—C34—C29115.6 (3)O5—C56—H56B109.5
C32—C35—C1111.5 (2)H56A—C56—H56B109.5
C32—C35—H35A109.3O5—C56—H56C109.5
C1—C35—H35A109.3H56A—C56—H56C109.5
C32—C35—H35B109.3H56B—C56—H56C109.5
C1—C35—H35B109.3O6—C57—H57A109.5
H35A—C35—H35B108.0O6—C57—H57B109.5
C37A—C36—O1110.6 (8)H57A—C57—H57B109.5
O1—C36—C37B102.9 (9)O6—C57—H57C109.5
C37A—C36—H36A109.5H57A—C57—H57C109.5
O1—C36—H36A109.5H57B—C57—H57C109.5
C37A—C36—H36B109.5O7—C58—H58A109.5
O1—C36—H36B109.5O7—C58—H58B109.5
H36A—C36—H36B108.1H58A—C58—H58B109.5
O1—C36—H36C111.2O7—C58—H58C109.5
C37B—C36—H36C111.2H58A—C58—H58C109.5
O1—C36—H36D111.2H58B—C58—H58C109.5
C37B—C36—H36D111.2O8—C59—H59A109.5
H36C—C36—H36D109.1O8—C59—H59B109.5
O2A—C38A—N2A114.7 (19)H59A—C59—H59B109.5
O2A—C38A—N1A117.8 (18)O8—C59—H59C109.5
N2A—C38A—N1A124.9 (16)H59A—C59—H59C109.5
C36—C37A—N1A118.9 (14)H59B—C59—H59C109.5
C36—C37A—H37A107.6O9—C60—H60A109.5
N1A—C37A—H37A107.6O9—C60—H60B109.5
C36—C37A—H37B107.6H60A—C60—H60B109.5
N1A—C37A—H37B107.6O9—C60—H60C109.5
H37A—C37A—H37B107.0H60A—C60—H60C109.5
C38A—N1A—C37A127.2 (18)H60B—C60—H60C109.5
C38A—N1A—H1A116.4O10—C61—H61A109.5
C37A—N1A—H1A116.4O10—C61—H61B109.5
C38A—N2A—C39A127.2 (14)H61A—C61—H61B109.5
C38A—N2A—H2A1116.4O10—C61—H61C109.5
C39A—N2A—H2A1116.4H61A—C61—H61C109.5
N2A—C39A—C40A110.5 (8)H61B—C61—H61C109.5
N2A—C39A—H39A109.6O11—C62—H62A109.5
C40A—C39A—H39A109.6O11—C62—H62B109.5
N2A—C39A—H39B109.6H62A—C62—H62B109.5
C40A—C39A—H39B109.6O11—C62—H62C109.5
H39A—C39A—H39B108.1H62A—C62—H62C109.5
C45A—C40A—C41A118.3 (7)H62B—C62—H62C109.5
C45A—C40A—C39A96.9 (9)O12—C63—H63A109.5
C41A—C40A—C39A143.4 (9)O12—C63—H63B109.5
C42A—C41A—C40A122.4 (8)H63A—C63—H63B109.5
C42A—C41A—H41A118.8O12—C63—H63C109.5
C40A—C41A—H41A118.8H63A—C63—H63C109.5
C43A—C42A—C41A118.9 (9)H63B—C63—H63C109.5
C43A—C42A—H42A120.6N5—C64—H64A109.5
C41A—C42A—H42A120.6N5—C64—H64B109.5
C42A—C43A—C44A121.6 (9)H64A—C64—H64B109.5
C42A—C43A—H43A119.2N5—C64—H64C109.5
C44A—C43A—H43A119.2H64A—C64—H64C109.5
C45A—C44A—C43A118.0 (9)H64B—C64—H64C109.5
C45A—C44A—H44A121.0N5—C65—H65A109.5
C43A—C44A—H44A121.0N5—C65—H65B109.5
C40A—C45A—C44A120.5 (8)H65A—C65—H65B109.5
C40A—C45A—H45A119.8N5—C65—H65C109.5
C44A—C45A—H45A119.8H65A—C65—H65C109.5
O2B—C38B—N1B130 (3)H65B—C65—H65C109.5
O2B—C38B—N2B134 (2)O13—C66—N5126.6 (3)
N1B—C38B—N2B93.7 (13)O13—C66—H66116.7
N1B—C37B—C3699.4 (15)N5—C66—H66116.7
C6—C1—C2—C30.9 (4)C28—C29—C30—C31175.7 (3)
C35—C1—C2—C3178.8 (2)C29—C30—C31—C320.6 (4)
C36—O1—C3—C4163.3 (2)C29—C30—C31—O11178.0 (3)
C36—O1—C3—C215.7 (3)C62—O11—C31—C32176.1 (4)
C1—C2—C3—O1179.3 (2)C62—O11—C31—C302.6 (5)
C1—C2—C3—C40.4 (4)C30—C31—C32—C331.2 (4)
O1—C3—C4—C5178.6 (2)O11—C31—C32—C33179.9 (2)
C2—C3—C4—C50.4 (3)C30—C31—C32—C35176.6 (3)
O1—C3—C4—C71.2 (3)O11—C31—C32—C352.2 (4)
C2—C3—C4—C7179.8 (2)C31—C32—C33—C341.6 (4)
C3—C4—C5—C60.7 (4)C35—C32—C33—C34176.2 (3)
C7—C4—C5—C6179.5 (2)C32—C33—C34—O12179.7 (3)
C2—C1—C6—O3177.2 (2)C32—C33—C34—C290.2 (4)
C35—C1—C6—O33.1 (3)C63—O12—C34—C338.4 (5)
C2—C1—C6—C50.6 (4)C63—O12—C34—C29172.1 (3)
C35—C1—C6—C5179.1 (2)C30—C29—C34—C331.5 (4)
C46—O3—C6—C1167.2 (2)C28—C29—C34—C33176.1 (3)
C46—O3—C6—C515.1 (4)C30—C29—C34—O12177.9 (2)
C4—C5—C6—C10.2 (4)C28—C29—C34—O124.4 (4)
C4—C5—C6—O3177.9 (2)C31—C32—C35—C1108.0 (3)
C5—C4—C7—C8100.6 (3)C33—C32—C35—C169.7 (3)
C3—C4—C7—C879.7 (3)C6—C1—C35—C3296.1 (3)
C4—C7—C8—C9107.8 (3)C2—C1—C35—C3283.6 (3)
C4—C7—C8—C1370.8 (3)C3—O1—C36—C37A174.3 (8)
C13—C8—C9—C101.4 (3)C3—O1—C36—C37B171.0 (9)
C7—C8—C9—C10177.2 (2)O1—C36—C37A—N1A65.5 (19)
C56—O5—C10—C11173.5 (2)O2A—C38A—N1A—C37A31 (3)
C56—O5—C10—C98.8 (4)N2A—C38A—N1A—C37A168.7 (14)
C8—C9—C10—C110.6 (4)C36—C37A—N1A—C38A129.7 (18)
C8—C9—C10—O5178.1 (2)O2A—C38A—N2A—C39A13 (2)
O5—C10—C11—C12179.6 (2)N1A—C38A—N2A—C39A174.8 (14)
C9—C10—C11—C121.9 (4)C38A—N2A—C39A—C40A169.2 (16)
O5—C10—C11—C141.7 (3)N2A—C39A—C40A—C45A84.5 (9)
C9—C10—C11—C14176.1 (2)N2A—C39A—C40A—C41A111.0 (15)
C10—C11—C12—C131.3 (3)C45A—C40A—C41A—C42A3.8 (13)
C14—C11—C12—C13176.8 (2)C39A—C40A—C41A—C42A158.7 (16)
C11—C12—C13—O6178.1 (2)C40A—C41A—C42A—C43A0.4 (14)
C11—C12—C13—C80.7 (4)C41A—C42A—C43A—C44A0.5 (16)
C57—O6—C13—C129.3 (4)C42A—C43A—C44A—C45A2.1 (15)
C57—O6—C13—C8171.9 (2)C41A—C40A—C45A—C44A6.4 (13)
C9—C8—C13—C122.1 (3)C39A—C40A—C45A—C44A163.2 (10)
C7—C8—C13—C12176.6 (2)C43A—C44A—C45A—C40A5.6 (13)
C9—C8—C13—O6176.8 (2)O1—C36—C37B—N1B83.8 (16)
C7—C8—C13—O64.5 (3)O2B—C38B—N1B—C37B10 (4)
C10—C11—C14—C15105.6 (3)N2B—C38B—N1B—C37B176.1 (16)
C12—C11—C14—C1572.4 (3)C36—C37B—N1B—C38B150.1 (17)
C11—C14—C15—C1676.2 (3)O2B—C38B—N2B—C39B7 (3)
C11—C14—C15—C2099.3 (3)N1B—C38B—N2B—C39B158.9 (13)
C20—C15—C16—C170.1 (4)C38B—N2B—C39B—C40B131.9 (15)
C14—C15—C16—C17175.5 (2)N2B—C39B—C40B—C41B117.4 (8)
C58—O7—C17—C18178.1 (3)N2B—C39B—C40B—C45B60 (2)
C58—O7—C17—C163.0 (4)C45B—C40B—C41B—C42B0.0
C15—C16—C17—O7180.0 (3)C39B—C40B—C41B—C42B178.7 (11)
C15—C16—C17—C181.2 (4)C40B—C41B—C42B—C43B0.0
O7—C17—C18—C19179.6 (2)C41B—C42B—C43B—C44B0.0
C16—C17—C18—C190.7 (4)C42B—C43B—C44B—C45B0.0
O7—C17—C18—C210.0 (4)C43B—C44B—C45B—C40B0.0
C16—C17—C18—C21179.0 (3)C41B—C40B—C45B—C44B0.0
C17—C18—C19—C200.8 (4)C39B—C40B—C45B—C44B178 (2)
C21—C18—C19—C20179.6 (3)C6—O3—C46—C47A178.3 (7)
C59—O8—C20—C15158.8 (3)C6—O3—C46—C47B178.0 (8)
C59—O8—C20—C1923.1 (5)O3—C46—C47A—N3A68.7 (10)
C16—C15—C20—O8179.5 (3)O4A—C48A—N3A—C47A9 (3)
C14—C15—C20—O84.9 (4)N4A—C48A—N3A—C47A170.5 (15)
C16—C15—C20—C191.4 (4)C46—C47A—N3A—C48A155.8 (13)
C14—C15—C20—C19176.9 (3)O4A—C48A—N4A—C49A9 (3)
C18—C19—C20—O8179.8 (3)N3A—C48A—N4A—C49A169.7 (11)
C18—C19—C20—C151.8 (5)C48A—N4A—C49A—C50A154.7 (16)
C19—C18—C21—C2294.6 (3)N4A—C49A—C50A—C51A60.2 (10)
C17—C18—C21—C2285.8 (4)N4A—C49A—C50A—C55A119.9 (9)
C18—C21—C22—C2778.9 (3)C55A—C50A—C51A—C52A0.0
C18—C21—C22—C2399.1 (3)C49A—C50A—C51A—C52A179.9 (8)
C27—C22—C23—C241.6 (4)C50A—C51A—C52A—C53A0.0
C21—C22—C23—C24176.5 (2)C51A—C52A—C53A—C54A0.0
C60—O9—C24—C25169.5 (3)C52A—C53A—C54A—C55A0.0
C60—O9—C24—C2312.6 (5)C53A—C54A—C55A—C50A0.0
C22—C23—C24—C250.1 (4)C51A—C50A—C55A—C54A0.0
C22—C23—C24—O9177.6 (2)C49A—C50A—C55A—C54A179.9 (8)
O9—C24—C25—C26179.4 (2)O3—C46—C47B—N3B80.3 (11)
C23—C24—C25—C261.5 (4)O4B—C48B—N3B—C47B12 (3)
O9—C24—C25—C280.0 (4)N4B—C48B—N3B—C47B162 (2)
C23—C24—C25—C28177.9 (2)C46—C47B—N3B—C48B127.3 (17)
C24—C25—C26—C271.7 (4)O4B—C48B—N4B—C49B2 (4)
C28—C25—C26—C27177.7 (2)N3B—C48B—N4B—C49B172.7 (13)
C23—C22—C27—C261.4 (4)C48B—N4B—C49B—C50B155 (2)
C21—C22—C27—C26176.7 (2)N4B—C49B—C50B—C51B121.5 (13)
C23—C22—C27—O10177.7 (2)N4B—C49B—C50B—C55B61.1 (15)
C21—C22—C27—O104.2 (4)C55B—C50B—C51B—C52B1.3 (16)
C25—C26—C27—C220.2 (4)C49B—C50B—C51B—C52B178.8 (11)
C25—C26—C27—O10179.3 (2)C50B—C51B—C52B—C53B1.2 (17)
C61—O10—C27—C22153.1 (3)C51B—C52B—C53B—C54B3.7 (17)
C61—O10—C27—C2627.8 (4)C52B—C53B—C54B—C55B6.4 (17)
C24—C25—C28—C2989.6 (3)C51B—C50B—C55B—C54B3.8 (15)
C26—C25—C28—C2989.8 (3)C49B—C50B—C55B—C54B178.5 (9)
C25—C28—C29—C3098.3 (3)C53B—C54B—C55B—C50B6.5 (16)
C25—C28—C29—C3479.2 (4)C65—N5—C66—O13178.6 (3)
C34—C29—C30—C312.0 (4)C64—N5—C66—O132.5 (5)
Intermolecular interactions(Å, °) between the pillararene host and the DMF guest top
π2 and π5 are the centroids of the C8–C13 and C29–C34 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O130.862.422.905 (12)116
C66—H66···π20.9302.5593.464165
C64—H64B···π50.9603.0253.898152
Intermolecular interactions (Å,°) engaged by DUP in the crystal network top
π1, π3 and π7 are the centroids of the C1–C6, C15–C20 and C51A–C55A phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3A—H3A···O2Ai0.862.353.13 (2)151
N4A—H4A···O2Ai0.862.152.97 (2)159
C36—H36B···π1i0.972.543.427 (3)152
C39A—H39B···π7i0.973.043.374 (10)105
C43A—H43A···O5ii0.932.683.54 (1)155
C58—H58A···O4Aiii0.962.473.43 (2)172
C63—H63C···π3iv0.962.913.638 (5)133
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, -y, 1 - z; (iii) x, -1 + y, z; (iv) 2 - x, 1/2 + y, 3/2 - z.
 

Acknowledgements

The support received from the Kuwait Foundation of Advancement of Science (KFAS), made available through research grant No. PR17–14SC-07, Kuwait University Research Administration and the Facilities of the RSPU (grant Nos. GS03/08 and GS01/03) are gratefully acknowledged.

Funding information

Funding for this research was provided by: Kuwait Foundation for the Advancement of Sciences (grant No. PR17-14SC-07).

References

First citationAl-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2019). RSC Adv. 9, 13814–13819.  CAS PubMed Google Scholar
First citationBi, J., Zeng, X., Tian, D. & Li, H. (2016). Org. Lett. 18, 1092–1095.  CSD CrossRef CAS PubMed Google Scholar
First citationCheng, M., Wang, Q., Cao, Y., Pan, Y., Yang, Z., Jiang, J. & Wang, L. (2016). Tetrahedron Lett. 57, 4133–4137.  CSD CrossRef CAS Google Scholar
First citationDeng, H., Shu, X., Hu, X., Li, J., Jia, X. & Li, C. (2012). Tetrahedron Lett. 53, 4609–4612.  CSD CrossRef CAS Google Scholar
First citationDuan, Q., Xia, W., Hu, X., Ni, M., Jiang, J., Lin, C., Pan, Y. & Wang, L. (2012). Chem. Commun. 48, 8532–8534.  CrossRef CAS Google Scholar
First citationFang, Y., Deng, Y. & Dehaen, W. (2020). Coord. Chem. Rev. 415, 213313.  CrossRef Google Scholar
First citationFeng, W. X., Sun, Z., Zhang, Y., Legrand, Y. M., Petit, E., Su, C. Y. & Barboiu, M. (2017). Org. Lett. 19, 1438–1441.  CrossRef CAS PubMed Google Scholar
First citationGao, L., Yao, Y., Dong, S. & Yuan, J. (2014). RSC Adv. 4, 35489–35492.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, X., Chen, Z., Tang, G., Hou, J. & Li, Z.. (2012). J. Am. Chem. Soc. 134, 8384–8387.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, S. H., Zhang, H. Y., Xu, X. & Liu, Y. (2015). Nat. Commun. 6, 7590.  CSD CrossRef PubMed Google Scholar
First citationLiang, H., Hua, B., Xu, F., Gan, L. S., Shao, L. & Huang, F. (2020). J. Am. Chem. Soc. 142, 19772–19778.  CSD CrossRef CAS PubMed Google Scholar
First citationLv, Y., Xiao, C., Ma, J., Zhou, D., Wu, W. & Yang, C. (2023). Chin. Chem. Lett. 108757. https://doi. org/10.1016/j. cclet/108757  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNi, M., Hu, X.-Y., Jiang, J. & Wang, L. (2014). Chem. Commun. 50, 1317–1319.  CSD CrossRef CAS Google Scholar
First citationOgoshi, T. & Yamagishi, T. (2013). Eur. J. Org. Chem. 2013, 2961–2975.  CrossRef CAS Google Scholar
First citationOgoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurpik, D. N., Makhmutova, L. I., Usachev, K. S., Islamov, D. R., Mostovaya, O. A., Nazarova, A. A., Kizhnyaev, V. N. & Stoikov, I. I. (2021). Nanomaterials, 11, 947. https://doi.org/10.3390/nano11040947  Google Scholar
First citationVinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466–1475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, Q., Cheng, M., Zhao, Y., Wu, L., Jiang, J., Wang, L. & Pan, Y. (2015). Chem. Commun. 51, 3623–3626.  CSD CrossRef CAS Google Scholar
First citationXia, D., Wang, L., Lv, X., Chao, J., Wei, X. & Wang, P. (2018). Macromolecules, 51, 2716–2722.  CSD CrossRef CAS Google Scholar
First citationYu, G., Zhang, Z., He, J., Abliz, Z. & Huang, F. (2012). Eur. J. Org. Chem. pp. 5902–5907.  CSD CrossRef Google Scholar
First citationYuan, C. (2020). CSD Communication (refcode QUYCOF). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds