research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(2,6-diiso­propyl­phen­yl)-1H-imidazole

crossmark logo

aDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: sestieber@cpp.edu

Edited by S.-L. Zheng, Harvard University, USA (Received 19 September 2023; accepted 18 October 2023; online 26 October 2023)

The crystal structure of the title compound, C15H20N2 or DippIm, is reported. At 106 (2) K, the mol­ecule has monoclinic P21/c symmetry with four mol­ecules in the unit cell. The imidazole ring is rotated 80.7 (1)° relative to the phenyl ring. Inter­molecular stabilization primarily results from close contacts between the N atom at the 3-position on the imidazole ring and the C—H bond at the 4-position on the neighboring DippIm, with ar­yl–aryl distances outside of the accepted distance of 5 Å for π-stacking.

1. Chemical context

Imidazoles are stable aromatic heterocyclic compounds comprised of a five-membered heterocycle containing two non-adjacent nitro­gen atoms and three carbon atoms. They are precursors in many synthetic processes and find use in pharmaceuticals and agrochemicals to create anti­fungal agents and fungicides (Ebel et al., 2000[Ebel, K., Koehler, H., Gamer, A. O. & Jäckh, R. (2000). Imidazole and Derivatives. In Ullman's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). 1-(2,6-Diiso­propyl­phen­yl)-1H-imidazole (DippIm) additionally has an aryl ring attached to the imidazole.

Several synthetic approaches towards the synthesis of DippIm are reported, with the most common current route being through the one-pot synthesis with glyoxal, formaldehyde, ammonium chloride, and 2,6-diisopropyl aniline, followed by an acidic workup with H3PO4 (Liu et al., 2003[Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661-2666.]). A disadvantage of this general route is that the yields are often low, especially for more hindered imidazoles. An alternative approach followed an Ullmann-type coupling using 2-iodo-1,3-diiso­propyl­benzene and imidazole, with 10% CuI, 40% N,N′-di­methyl­ethylenedi­amine, and Cs2CO3, but only resulted in 19% yield of DippIm (Alcalde et al., 2005[Alcalde, E., Dinarès, I., Rodríguez, S. & Garcia de Miguel, C. (2005). Eur. J. Org. Chem. pp. 1637-1643.]). The highest yield approach with 78% yield was originally reported in 1889 and is from the reaction of 2,6-diisopropyl aniline with thio­phosgene (Cl2CS) in H2O, followed by addition of H2NCH2CH(OEt2), and acidic workup with HCl and HNO3 (Wohl & Marckwald, 1889[Wohl, A. & Marckwald, W. (1889). Ber. Dtsch. Chem. Ges. 22, 568-580.]; Johnson et al., 1969[Johnson, A. L., Kauer, J. C., Sharma, D. C. & Dorfman, R. I. (1969). J. Med. Chem. 12, 1024-1028.]). Despite being the first reported method, this synthetic approach is significantly concerning from a chemical safety perspective because thio­phosgene is highly toxic.

DippIm is often used as a precursor to a variety of N-heterocyclic carbene (NHC) ligands, which are a common ligand class for organometallic chemistry and catalysis (Arduengo, 1999[Arduengo, A. J. (1999). Acc. Chem. Res. 32, 913-921.]; Hopkinson et al., 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]; Lumiss et al., 2015[Lummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. & Fogg, D. E. (2015). Chem. Sci. 6, 6739-6746.]). To create monodentate NHC ligands, an imidazole is typically reacted with an alkyl or aryl halide to form an imidazolium salt. For bidentate NHC ligands, two imidazoles can be reacted with an alkyl or aryl dihalide to form a bis­(imidazolium) salt (Gardiner et al., 1999[Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.]; Thompson et al., 2022[Thompson, E. S., Olivas, E. M., Torres, A., Arreaga, B. C., Alarcon, H. L., Dolberry, D., Brannon, J. P. & Stieber, S. C. E. (2022). Acta Cryst. E78, 905-911.]). These imidazolium salts are then deprotonated by a base such as sodium tert-butoxide (NaOtBu) or potassium bis­(tri­methyl­sil­yl)amide (KHMDS) to form the free carbene ligands (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]; Yamamoto et al., 2018[Yamamoto, C. D., Zhang, Z. & Stieber, S. C. E. (2018). Acta Cryst. E74, 1396-1399.]).

Few aryl­imidazoles have been structurally characterized, with 1-(2,4,6-tri­methyl­phen­yl)-1H-imidazole (MesIm) reported by our group (Brannon et al., 2018[Brannon, J. P., Stretch, B. E. & Stieber, S. C. E. (2018). CSD Communication (refcode EYIROT01, deposition No. 1875908). CCDC, Cambridge, England.]). Herein, the crystallographic characterization of 1-(2,6-diiso­propyl­phen­yl)-1H-imidazole (DippIm) is reported.

[Scheme 1]

2. Structural commentary

DippIm crystallizes as depicted in Fig. 1[link] with a planar imidazole ring containing atoms N1, N2, and C1–C3. The bond angles within the five-membered imidazole ring are C1—N1—C3 = 107.02 (9)°, N1—C3—C2 = 105.30 (10)°, C3—C2—N2 = 110.95 (10)°, C2—N2—C1 = 104.73 (10)°, and N2—C1—N1 = 112.01 (10)°. These are all within error of the reported values for MesIm of 106.44 (16), 105.65 (17), 110.89 (18), 104.54 (17), and 112.48 (17)°, respectively (Brannon et al. 2018[Brannon, J. P., Stretch, B. E. & Stieber, S. C. E. (2018). CSD Communication (refcode EYIROT01, deposition No. 1875908). CCDC, Cambridge, England.]). These data suggest that changing the aryl group from 2,4,6-tri­methyl­phenyl to 2,6-diiso­propyl­phenyl has no significant effect on the imidazole ring.

[Figure 1]
Figure 1
View of one mol­ecule of DippIm with 50% probability ellipsoids.

Bond distances to C1 are consistent with a shorter bond of 1.3544 (14) Å between N1—C1 and a longer bond of 1.3153 (16) Å between C1—N2, likely due to steric effects of the aryl group. The backbone imidazole C2—C3 bond distance of 1.3578 (16) Å is consistent with a Csp2=Csp2 double bond in an imidazole ring (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The backbone N1—C3 and N2—C2 distances are consistent with Csp2—N imidazole single bonds at 1.3769 (14) and 1.3759 (16) Å, respectively (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). Comparable distances for MesIm are N1—C1 = 1.357 (3) Å, C1—N2 = 1.316 (3) Å, C2—C3 = 1.356 (3) Å, N1—C3 = 1.384 (2) Å, and N2—C2 = 1.382 (3) Å (Brannon et al., 2018[Brannon, J. P., Stretch, B. E. & Stieber, S. C. E. (2018). CSD Communication (refcode EYIROT01, deposition No. 1875908). CCDC, Cambridge, England.]). The imidazole ring distances are comparable to those reported for MesIm, indicating that the bulkier aryl group has no significant effect.

3. Supra­molecular features

The unit cell contains four full mol­ecules of 2,6-diiso­propyl­phenyl imidazole (Fig. 2[link]). Each mol­ecule is oriented such that the imidazole groups are at 80.7 (1)° relative to the aryl ring, based on the measured C1—N1—C4—C9 torsion . Distances between aryl rings are 6.692 Å as measured between neighboring C4–C9 centroids, and 5.912 (2) Å as measured between C9–C9 on neighboring mol­ecules. There is no uncertainty in the distance between centroids, since these were placed using the Mercury program's centroid algorithm (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Both of these distances are greater than 5 Å, supporting no significant π-stacking stabilization (Janiak, 2000[Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). The closest contact between neighboring mol­ecules is between N2⋯H3 at a distance of 2.47 (2) Å. This technically can be considered a hydrogen bond (Table 1[link]) because H3 is bound to C3, which is bound to an electronegative atom, N1. Therefore, the supra­molecular structure of DippIm is primarily stabilized through hydrogen bonding between neighboring imidazoles.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.966 (17) 2.474 (17) 3.416 (2) 164.9 (12)
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
View of four mol­ecules of DippIm in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances and close contacts. Distances between centroids (red circles) are listed without standard deviations because these positions were calculated.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) on August 30, 2023 yielded no structural results for DippIm through both a drawn structure search and a search of the full name 1-(2,6-diiso­propyl­phen­yl)-1H-imidazole. A SciFinder search (SciFinder, 2018[SciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 30, 2023).]) resulted in a substance match with code 25364-47-0, however no structural data were reported.

5. Synthesis and crystallization

The synthesis for DippIm (Fig. 3[link]) was adapted from a literature procedure (Liu et al., 2003[Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661-2666.]). A 500 mL three-necked round-bottomed flask was charged with 10.01 g (0.0564 mol, 1 eq.) of 2,6-diiso­propyl­aniline followed by 8.20 g (0.141 mol, 1 eq.) of 40% aqueous glyoxal and approximately 100 mL of methanol. The resulting color changed from a clear yellow to a rusty orange solution with a yellow precipitate. Using a funnel, 6.03 g (0.112 mol, 2 eq.) of ammonium chloride and 9.16 g (0.305 mol, 2 eq.) of 37% aqueous formaldehyde were added to the round-bottomed flask and diluted with 130 mL of methanol. The mixture was refluxed for 1 h at 368 K, resulting in a dark-brown solution. The flask was removed from the heat and cooled to room temperature before being placed in an ice bath to cool, followed by addition of 15 mL (0.15 mol, 2 eq.) of phospho­ric acid over the course of 12 minutes. After addition, it was refluxed at 368 K for 14.5 h, resulting in an opaque dark-red solution. The solution was cooled to room temperature and concentrated in vacuo. The dark-brown residue was poured over 300 g of ice and neutralized with a concentrated potassium hydroxide solution until the pH reached 9, resulting in a light-brown solution with a dark-brown precipitate. The mixture was extracted three times with approximately 100 mL of diethyl ether, washed 3 times with approximately 100 mL of water, and washed three times with approximately 100 mL of brine. The mixture was transferred to a 1 L round-bottom flask, dried with sodium sulfate, and left to dry for approximately 20 h, resulting in a dark-brown solution. The sodium sulfate was removed by gravity filtration and the solution was concentrated in vacuo resulting in a light-brown solid. The solid was then recrystallized with ethyl acetate, resulting in 1.33 g (10.4% yield) of colorless crystals. The product was characterized with 1H NMR and the results were consistent with reported literature values (Liu et al., 2003[Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661-2666.]).

[Figure 3]
Figure 3
Reaction scheme.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were refined with all H-atom parameters.

Table 2
Experimental details

Crystal data
Chemical formula C15H20N2
Mr 228.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 106
a, b, c (Å) 5.6642 (13), 16.519 (6), 14.414 (6)
β (°) 90.73 (2)
V3) 1348.6 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture Kappa
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 22918, 2975, 2750
Rint 0.030
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.09
No. of reflections 2975
No. of parameters 234
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker AXS (2018). APEX3 and SAINT. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT V8.40A (Bruker, 2018); data reduction: SAINT V8.40A (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/3/1 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020).

1-(2,6-Diisopropylphenyl)-1H-imidazole top
Crystal data top
C15H20N2F(000) = 496
Mr = 228.33Dx = 1.125 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6642 (13) ÅCell parameters from 9863 reflections
b = 16.519 (6) Åθ = 2.8–47.3°
c = 14.414 (6) ŵ = 0.07 mm1
β = 90.73 (2)°T = 106 K
V = 1348.6 (8) Å3Prism, colorless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker D8 Venture Kappa
diffractometer
2750 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.030
φ and ω scansθmax = 27.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
k = 2121
22918 measured reflectionsl = 1818
2975 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.5846P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2975 reflectionsΔρmax = 0.26 e Å3
234 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44635 (15)0.73907 (5)0.71450 (6)0.0157 (2)
H10.113 (3)0.7150 (9)0.6734 (10)0.023 (3)*
C10.2081 (2)0.73808 (7)0.72124 (8)0.0215 (2)
N20.13631 (17)0.77200 (6)0.79847 (7)0.0245 (2)
H20.337 (3)0.8212 (9)0.9035 (11)0.028 (4)*
C20.3404 (2)0.79580 (7)0.84352 (8)0.0218 (2)
C30.5334 (2)0.77620 (7)0.79331 (7)0.0189 (2)
H30.701 (3)0.7824 (9)0.8042 (10)0.024 (3)*
C40.58676 (18)0.70733 (6)0.64044 (7)0.0155 (2)
H40.518 (3)0.8608 (9)0.6295 (10)0.028 (4)*
C50.67446 (19)0.76113 (6)0.57433 (7)0.0173 (2)
H50.881 (3)0.7657 (9)0.4575 (10)0.026 (4)*
C70.8606 (2)0.64725 (7)0.49976 (7)0.0204 (2)
H70.806 (3)0.5371 (9)0.5612 (10)0.028 (4)*
C80.77076 (19)0.59529 (7)0.56604 (8)0.0200 (2)
H80.455 (3)0.5972 (9)0.7572 (10)0.026 (4)*
C90.63395 (18)0.62423 (6)0.63861 (7)0.0171 (2)
H90.928 (4)0.8858 (12)0.6469 (14)0.059 (6)*
H120.429 (3)0.9356 (11)0.4939 (12)0.043 (4)*
C120.8378 (3)0.90170 (9)0.59054 (13)0.0409 (4)
H110.794 (3)0.9602 (11)0.5977 (12)0.045 (5)*
C110.4803 (3)0.87601 (8)0.48960 (11)0.0388 (3)
C100.6171 (2)0.85084 (7)0.57667 (8)0.0222 (2)
H100.933 (3)0.8961 (11)0.5377 (13)0.042 (5)*
C150.3703 (2)0.50568 (8)0.66749 (10)0.0305 (3)
H160.457 (3)0.4716 (11)0.6197 (13)0.049 (5)*
H170.311 (3)0.4685 (10)0.7143 (11)0.037 (4)*
H180.829 (3)0.4848 (10)0.7182 (12)0.042 (4)*
H190.680 (3)0.4898 (10)0.8134 (12)0.040 (4)*
H200.856 (3)0.5610 (10)0.7892 (11)0.036 (4)*
H150.237 (3)0.5350 (10)0.6368 (11)0.040 (4)*
C140.7432 (2)0.52320 (9)0.76253 (10)0.0314 (3)
H140.337 (4)0.8422 (13)0.4783 (14)0.061 (6)*
C130.5411 (2)0.56655 (7)0.71156 (8)0.0209 (2)
H130.588 (3)0.8716 (11)0.4351 (14)0.051 (5)*
C60.81454 (19)0.72946 (7)0.50430 (7)0.0196 (2)
H60.954 (2)0.6261 (8)0.4495 (9)0.020 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0140 (4)0.0180 (4)0.0150 (4)0.0011 (3)0.0003 (3)0.0003 (3)
C10.0145 (5)0.0295 (6)0.0205 (5)0.0011 (4)0.0007 (4)0.0026 (4)
N20.0167 (5)0.0336 (6)0.0232 (5)0.0032 (4)0.0024 (4)0.0032 (4)
C20.0204 (5)0.0268 (6)0.0181 (5)0.0024 (4)0.0020 (4)0.0036 (4)
C30.0173 (5)0.0224 (5)0.0170 (5)0.0004 (4)0.0004 (4)0.0029 (4)
C40.0127 (5)0.0195 (5)0.0144 (5)0.0011 (4)0.0003 (4)0.0015 (4)
C50.0171 (5)0.0191 (5)0.0158 (5)0.0003 (4)0.0022 (4)0.0000 (4)
C70.0181 (5)0.0272 (6)0.0162 (5)0.0017 (4)0.0027 (4)0.0041 (4)
C80.0196 (5)0.0191 (5)0.0214 (5)0.0023 (4)0.0004 (4)0.0030 (4)
C90.0151 (5)0.0193 (5)0.0169 (5)0.0001 (4)0.0009 (4)0.0001 (4)
C120.0394 (8)0.0226 (6)0.0603 (10)0.0047 (6)0.0099 (7)0.0053 (6)
C110.0495 (9)0.0227 (6)0.0437 (8)0.0063 (6)0.0175 (7)0.0030 (6)
C100.0284 (6)0.0177 (5)0.0205 (5)0.0011 (4)0.0023 (4)0.0019 (4)
C150.0263 (6)0.0265 (6)0.0387 (7)0.0063 (5)0.0001 (5)0.0054 (5)
C140.0278 (6)0.0359 (7)0.0303 (6)0.0002 (5)0.0021 (5)0.0130 (6)
C130.0212 (5)0.0194 (5)0.0222 (5)0.0012 (4)0.0040 (4)0.0026 (4)
C60.0185 (5)0.0252 (6)0.0151 (5)0.0027 (4)0.0009 (4)0.0015 (4)
Geometric parameters (Å, º) top
N1—C11.3544 (14)C12—H90.99 (2)
N1—C31.3769 (14)C12—H111.004 (18)
N1—C41.4382 (14)C12—C101.5173 (19)
C1—H10.950 (15)C12—H100.945 (18)
C1—N21.3153 (16)C11—H121.028 (18)
N2—C21.3759 (16)C11—C101.5245 (18)
C2—H20.961 (15)C11—H141.00 (2)
C2—C31.3578 (16)C11—H131.00 (2)
C3—H30.965 (15)C10—H40.967 (15)
C4—C51.3988 (15)C15—H161.019 (19)
C4—C91.3988 (15)C15—H170.975 (17)
C5—C101.5176 (16)C15—H150.998 (18)
C5—C61.3937 (16)C15—C131.5280 (17)
C7—C81.3860 (16)C14—H181.027 (18)
C7—C61.3845 (17)C14—H190.988 (17)
C7—H60.969 (14)C14—H200.968 (17)
C8—H70.984 (15)C14—C131.5300 (17)
C8—C91.3941 (15)C13—H80.968 (15)
C9—C131.5180 (15)C6—H50.981 (15)
C1—N1—C3107.02 (9)H12—C11—H14108.4 (15)
C1—N1—C4127.58 (9)H12—C11—H13107.0 (14)
C3—N1—C4125.40 (9)C10—C11—H12110.7 (10)
N1—C1—H1120.6 (9)C10—C11—H14112.7 (12)
N2—C1—N1112.01 (10)C10—C11—H13108.5 (11)
N2—C1—H1127.4 (9)H14—C11—H13109.4 (16)
C1—N2—C2104.73 (10)C5—C10—H4108.1 (9)
N2—C2—H2121.7 (9)C5—C10—C11110.78 (10)
C3—C2—N2110.95 (10)C12—C10—H4106.8 (9)
C3—C2—H2127.4 (9)C12—C10—C5111.56 (11)
N1—C3—H3121.5 (8)C12—C10—C11111.51 (12)
C2—C3—N1105.30 (10)C11—C10—H4107.8 (9)
C2—C3—H3133.2 (8)H16—C15—H17106.9 (14)
C5—C4—N1118.59 (9)H16—C15—H15109.6 (14)
C9—C4—N1118.64 (9)H17—C15—H15110.4 (14)
C9—C4—C5122.75 (10)C13—C15—H16109.8 (11)
C4—C5—C10121.82 (10)C13—C15—H17110.3 (10)
C6—C5—C4117.73 (10)C13—C15—H15109.8 (10)
C6—C5—C10120.44 (10)H18—C14—H19107.2 (13)
C8—C7—H6120.1 (8)H18—C14—H20109.4 (13)
C6—C7—C8120.25 (10)H19—C14—H20107.9 (13)
C6—C7—H6119.6 (8)C13—C14—H18110.3 (9)
C7—C8—H7118.6 (9)C13—C14—H19110.0 (10)
C7—C8—C9121.15 (10)C13—C14—H20111.9 (10)
C9—C8—H7120.3 (9)C9—C13—H8109.0 (8)
C4—C9—C13122.34 (10)C9—C13—C15110.37 (10)
C8—C9—C4117.31 (10)C9—C13—C14111.28 (10)
C8—C9—C13120.34 (10)C15—C13—H8107.8 (9)
H9—C12—H11107.3 (15)C15—C13—C14110.94 (11)
H9—C12—H10109.9 (16)C14—C13—H8107.4 (9)
H11—C12—H10108.8 (15)C5—C6—H5119.8 (8)
C10—C12—H9112.2 (12)C7—C6—C5120.78 (10)
C10—C12—H11109.9 (10)C7—C6—H5119.4 (8)
C10—C12—H10108.6 (11)
N1—C1—N2—C20.11 (13)C4—C5—C6—C71.25 (16)
N1—C4—C5—C102.52 (15)C4—C9—C13—C15116.01 (12)
N1—C4—C5—C6178.59 (9)C4—C9—C13—C14120.37 (12)
N1—C4—C9—C8179.92 (9)C5—C4—C9—C81.27 (15)
N1—C4—C9—C130.36 (15)C5—C4—C9—C13179.01 (10)
C1—N1—C3—C20.09 (12)C7—C8—C9—C41.46 (16)
C1—N1—C4—C5100.55 (13)C7—C8—C9—C13178.81 (10)
C1—N1—C4—C980.74 (14)C8—C7—C6—C51.08 (17)
C1—N2—C2—C30.05 (14)C8—C9—C13—C1563.71 (14)
N2—C2—C3—N10.03 (13)C8—C9—C13—C1459.92 (14)
C3—N1—C1—N20.13 (13)C9—C4—C5—C10178.83 (10)
C3—N1—C4—C579.97 (13)C9—C4—C5—C60.06 (16)
C3—N1—C4—C998.74 (13)C10—C5—C6—C7177.65 (10)
C4—N1—C1—N2179.68 (10)C6—C5—C10—C1263.43 (15)
C4—N1—C3—C2179.66 (10)C6—C5—C10—C1161.42 (15)
C4—C5—C10—C12117.71 (13)C6—C7—C8—C90.33 (17)
C4—C5—C10—C11117.43 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.966 (17)2.474 (17)3.416 (2)164.9 (12)
Symmetry code: (i) x+1, y, z.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber); National Science Foundation, Directorate for Education and Human Resources (scholarship No. 1826490 to Neil Dudeja, Briana C. Arreaga); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber); National Institutes of Health, National Institute of General Medical Sciences (award No. 5R25GM113748-03 to Briana C. Arreaga); Camille and Henry Dreyfus Foundation (award to S. Chantal E. Stieber); U.S. Department of Education (award to Jacob P. Brannon).

References

First citationAlcalde, E., Dinarès, I., Rodríguez, S. & Garcia de Miguel, C. (2005). Eur. J. Org. Chem. pp. 1637–1643.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J. (1999). Acc. Chem. Res. 32, 913–921.  Web of Science CrossRef CAS Google Scholar
First citationBrannon, J. P., Stretch, B. E. & Stieber, S. C. E. (2018). CSD Communication (refcode EYIROT01, deposition No. 1875908). CCDC, Cambridge, England.  Google Scholar
First citationBrendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741–8745.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker AXS (2018). APEX3 and SAINT. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbel, K., Koehler, H., Gamer, A. O. & Jäckh, R. (2000). Imidazole and Derivatives. In Ullman's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationGardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJaniak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJohnson, A. L., Kauer, J. C., Sharma, D. C. & Dorfman, R. I. (1969). J. Med. Chem. 12, 1024–1028.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.  Google Scholar
First citationLummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. & Fogg, D. E. (2015). Chem. Sci. 6, 6739–6746.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 30, 2023).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, E. S., Olivas, E. M., Torres, A., Arreaga, B. C., Alarcon, H. L., Dolberry, D., Brannon, J. P. & Stieber, S. C. E. (2022). Acta Cryst. E78, 905–911.  CSD CrossRef IUCr Journals Google Scholar
First citationWohl, A. & Marckwald, W. (1889). Ber. Dtsch. Chem. Ges. 22, 568–580.  CrossRef Google Scholar
First citationYamamoto, C. D., Zhang, Z. & Stieber, S. C. E. (2018). Acta Cryst. E74, 1396–1399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds