research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the crystal structure of yttrium chromium tetra­boride, YCrB4, from single-crystal X-ray diffraction data

crossmark logo

aInstitute of Industrial Nano Materials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan, bDepartment of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan, and cInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: tokuda@nech.kumamoto-u.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 7 September 2023; accepted 12 October 2023; online 26 October 2023)

The structural parameters of yttrium chromium tetra­boride YCrB4 were refined based on single-crystal X-ray diffraction data. YCrB4 is ortho­rhom­bic, having a space group of type Pbam (No. 55) and with lattice parameters of a = 5.9425 (2), b = 11.4831 (4), c = 3.4643 (1) Å. The Y and Cr atoms are located at Wyckoff 4h sites (x, y, 0) and B atoms at the Wyckoff 4g sites (x, y, 1/2). The first structural investigation of YCrB4 was performed using a single crystalline sample [Kuz'ma, (1970[Kuz'ma, Y. B. (1970). Kristallografiya, 15, 372-374.]). Kristallografiya. 15, 372–374]. The present study successfully refined all the positional and atomic displacement parameters of the Y, Cr, and B atoms.

1. Chemical context

The investigation of AlB2-type-analogous inter­metallic compounds (RB2, MB2, RMB4, and R2MB6; R = rare-earth, M = aluminium or transition metal) has been pursued using various experimental and theoretical methods. Recently, hydrogenated monolayer boron sheets (borophene) have attracted attention because of their topological Dirac nodal loops, with the AlB2-type-analogous compounds expected to be the parent materials (Cuong et al., 2020[Cuong, N. T., Tateishi, I., Cameau, M., Niibe, M., Umezawa, N., Slater, B., Yubuta, K., Kondo, T., Ogata, M., Okada, S. & Matsuda, I. (2020). Phys. Rev. B, 101, 195412.]; Niibe et al., 2021[Niibe, M., Cameau, M., Cuong, N. T., Sunday, O. I., Zhang, X., Tsujikawa, Y., Okada, S., Yubuta, K., Kondo, T. & Matsuda, I. (2021). Phys. Rev. Mater. 5, 084007.]; Tateishi et al., 2022[Tateishi, I., Zhang, X. & Matsuda, I. (2022). Molecules, 27, 1808.]). YCrB4 is a parent material candidate for the synthesis of (5-7)-α-borophene sheets (i.e., boron networks with five- and seven-membered rings), for which detailed structural data are currently required (Zhang et al., 2022[Zhang, X., Tsujikawa, Y., Tateishi, I., Niibe, M., Wada, T., Horio, M., Hikichi, M., Ando, Y., Yubuta, K., Kondo, T. & Matsuda, I. (2022). J. Phys. Chem. C, 126, 12802-12808.], 2023[Zhang, X., Hikichi, M., Iimori, T., Tsujikawa, Y., Yuan, M., Horio, M., Yubuta, K., Komori, F., Miyauchi, M., Kondo, T. & Matsuda, I. (2023). Molecules, 28, 2985.]). YCrB4 is a promising semiconductor material with good thermoelectric properties and a good power factor of 6.0 µW cm−1 K−2 at 500 K (Simonson & Poon, 2010[Simonson, J. & Poon, S. (2010). J. Alloys Compd. 504, 265-272.]; Flipo et al., 2021[Flipo, S., Rosner, H., Bobnar, M., Kvashnina, K. O., Leithe-Jasper, A. & Gumeniuk, R. (2021). Phys. Rev. B, 103, 195121.]). The YCrB4 compound is also expected to be a super-hard material (Akopov et al., 2018[Akopov, K., Yin, H., Roh, I., Pangilinan, L. E. & Kaner, R. B. (2018). Chem. Mater. 30, 6494-6502.]) and a narrow bandgap semiconductor (Medvedeva et al., 2002[Medvedeva, N. I., Medvedeva, Y. E. & Ivanovskii, A. L. (2002). Dokl. Phys. Chem. 383, 75-77.]). A theoret­ically calculated Debye temperature θD for YCrB4 of 965 K was given by Candan et al. (2019[Candan, A., Surucu, G. & Gencer, A. (2019). Phys. Scr. 94, 125710.]). Notably, Kuz'ma (1970[Kuz'ma, Y. B. (1970). Kristallografiya, 15, 372-374.]) conducted the first structural analysis of YCrB4.

2. Structural commentary

The AlB2-type-analogous compounds are composed of borophene layers stacked with other metal atomic layers. The boron network is composed of six-membered rings (honeycomb layer), with R or M atoms located at the center of a hexa­gonal prism formed by twelve boron atoms (Fig. 1[link]a). YCrB4 exhibits an ordered and rearranged crystal structure derived from the AlB2-type structure of YB2 or CrB2 (Kuz'ma, 1970[Kuz'ma, Y. B. (1970). Kristallografiya, 15, 372-374.]). The six-membered rings are rearranged into five- and seven-membered rings [(5-7)-α-borophene layer] due to the ordering of Cr and Y (Fig. 1[link]b). These (5-7)-α-borophene layers are accumulated along the c axis in an αα stacking sequence with the metal atomic layers. The Cr and Y atoms are located at the centers of the CrB10 penta­gonal and YB14 hepta­gonal prisms, respectively (Fig. 2[link]). With different arrangements of the MB10 penta­gonal prism and RB14 hepta­gonal prism, three distinct structural types have been reported for the AlB2-type-analogous compounds: (5-7)-α-type (YCrB4-type: Rogl, 1978[Rogl, P. (1978). Mater. Res. Bull. 13, 519-523.]; Sobczak & Rogl, 1979[Sobczak, R. & Rogl, P. (1979). J. Solid State Chem. 27, 343-348.]), (5-7)-β-type (ThMoB4-type: Rogl & Nowotny 1974[Rogl, P. & Nowotny, H. (1974). Monatshefte f?r Chemie, 105, 1082-1098.]; Veremchuk et al., 2008[Veremchuk, I., Mori, T., Prots, Yu., Schnelle, W., Leithe-Jasper, A., Kohout, M. & Grin, Yu. (2008). J. Solid State Chem. 181, 1983-1991.]), and (5-6-7)-γ-type (Y2ReB6-type: Kuz'ma & Svarichevskaya, 1972[Kuz'ma, Yu. B. & Svarichevskaya, S. I. (1972). Kristallografiya, 17, 569-571.]; Okada et al., 2006[Okada, S., Shishido, T., Mori, T., Kudou, K., Iizumi, K., Lundström, T. & Nakajima, K. (2006). J. Alloys Compd. 408-412, 547-550.]).

[Figure 1]
Figure 1
Crystal structure of boron-metal-layered compounds. Honeycomb borophene layer in AlB2 (b) and (5–7)-α-borophene layer in YCrB4 (a) viewed along the c-axis and illustrated using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).
[Figure 2]
Figure 2
Cr and Y atoms settle in the center of the penta­gonal CrB10 and hepta­gonal YB14 prisms, respectively.

The Cr—B and Y—B inter­atomic distances are in the range of 2.2677 (15)–2.3254 (10) and 2.6177 (16)–2.7478 (14) Å, respectively (Table 1[link]), which are close to the sums of the respective Goldschmidt radii (rB = 0.97 Å, rCr = 1.36 Å, and rY = 1.81 Å; Brandes & Brook, 1992[Brandes, E. A. & Brook, G. B. (1992). Smithells Metals Reference Book, pp. 4-41. Oxford, London: Butterworth-Heinemann Ltd.]). The inter­planar Cr—Cr distance is 2.3745 (4) Å, indicating a strong correlation between the Cr atoms. The intra- and inter­planar Y—Y distances are 3.7446 (3)–3.7653 (5) and 3.46425 (12) Å, respectively (the latter simply corresponding to the c-axis length). The inter­planar Y—Y distance is much smaller than the sum of radii of the Y atoms. A short intra­planar R—R distance can be observed in various RM–B systems with layered structures (Higashi et al., 1988[Higashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211-220.]; Tokuda et al., 2022[Tokuda, M., Yubuta, K., Shishido, T. & Sugiyama, K. (2022). Acta Cryst. E78, 76-79.]). The B—B inter­atomic distances within the penta­gons and hepta­gons in YCrB4 are in the ranges 1.724 (4)–1.828 (2) and 1.741 (3)–1.832 (2) Å, respectively, similar to the average B—B covalent bonding distances of 1.77 Å in α-rhombohedral boron (Donohue, 1974[Donohue, J. (1974). The Structures of the Elements. New York: Wiley.]).

Table 1
Selected bond lengths (Å) in YCrB4

CrB10 Penta­gonal prism   Five-membered ring  
Cr—B3×2 2.2677 (15) B3–B3viii 1.724 (4)
Cr—B3×2 2.2723 (9) B2i–B3viii 1.741 (4)
Cr—B1×2 2.2962 (11) B3–B4 1.742 (2)
Cr—B2×2 2.3081 (16) B1i–B2i 1.807 (2)
Cr—B4×6 2.3254 (10) B1i–B4 1.828 (2)
       
YB14 Heptagonal prism   Seven-membered ring  
Y—B3×2 2.6177 (16) B2v–B3i 1.741 (3)
Y—B4×2 2.6582 (11) B3i–B4i 1.742 (2)
Y—B2×2 2.6959 (15) B2–B2v 1.788 (4)
Y—B1×2 2.7003 (12) B1–B2 1.807 (2)
Y—B2×6 2.7241 (11) B1i–B4 1.828 (2)
Y—B1×2 2.7350 (13) B1–B4 1.832 (2)
Y—B4×6 2.7478 (14) B1i–B4i 1.832 (2)
       
Inter­planar atomic distances      
Cri—Crx 2.3745 (4) Yi—Y 3.7446 (3)
Yi—Criii 3.0517 (4) Yi—Yix 3.7446 (3)
Yi—Crix 3.0760 (3) Yi—Yii 3.7653 (5)
Yi—Cr 3.0789 (3)    
Yi—Cri 3.0803 (4)    
Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z; (iii) 1 − x, 1 − y, −z; (v) 1 − x, 1 − y, 1 − z; (viii) 1 − x, −y, 1 − z; (ix) 1 + x, y, z; (x) −x + [{1\over 2}], y − [{1\over 2}], −z]

A covalently bonded boron network in boride compounds plays an important role for thermal conductivity and mechanical and lattice dynamical properties. The Debye temperature θD was used to characterize these physical properties. Previous studies on inter­metallic boride compounds have also proposed that the bulk θD is associated with the rigidity of the boron network (Korsukova et al., 1987[Korsukova, M. M., Lundström, T., Tergenius, L.-E. & Gurin, V. N. (1987). Solid State Commun. 63, 187-189.]; Levchenko et al., 2006[Levchenko, G., Lyashchenko, A., Baumer, V., Evdokimova, A., Filippov, V., Paderno, Y. & Shitsevalova, N. (2006). J. Solid State Chem. 179, 2949-2953.]; Singh et al., 2010[Singh, Y., Martin, C., Bud'ko, S. L., Ellern, A., Prozorov, R. & Johnston, D. C. (2010). Phys. Rev. B, 82, 144532.]). Using the isotropic atomic displacement parameter Uiso and Debye approximation (Willis & Pryor, 1975[Willis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crystallography. London: Cambridge University Press.]), the θD were derived using the following equation: <Uiso2> = (3h2 T) /(4π2 m kB θD2), where h is Planck's constant, m is the mass of the atom, and kB is the Boltzmann constant. The mean square <Uiso2> for B atoms was calculated using the average Uiso for the boron sites. The anisotropic displacement parameters (ADPs) for each atom are listed in Table 2[link], with no significant anisotropy being observed in the ADPs of any atom (Fig. 3[link]). The estimated θD for Y, Cr, and B were 413 (2), 524 (3), and 996 (25) K, respectively. Candan et al. (2019[Candan, A., Surucu, G. & Gencer, A. (2019). Phys. Scr. 94, 125710.]) studied the lattice-dynamical properties of YCrB4 using density functional theory and gave a calculated θD of 965 K that corresponds well with our estimated θD for the B atoms. This result indicates that the bulk θD of the AlB2-type-analogous compounds can be estimated from the ADPs for the B atom.

Table 2
Atomic coordinates and anisotropic displacement parameters (10 3Å2) for YCrB4

The Y and Cr atoms lie on the Wyckoff sites 4h (x, y, 0), and the B atoms occupy the 4g (x, y, 1/2) site. The anisotropic displacement factor exponent takes the form: −2π2[(ha*)2U11 + ⋯ + 2hka*b*U12]. Uiso is defined as a third of the trace of the orthogonalized Uij tensor. U12 = U23 = 0.

Atom x y U11 U22 U33 U12 Uiso
Y 0.12446 (2) 0.15077 (2) 0.00298 (4) 0.00275 (4) 0.00284 (4) 0.00027 (4) 0.00285 (3)
Cr 0.12421 (4) 0.41902 (2) 0.00262 (6) 0.00241 (6) 0.00297 (6) 0.00007 (6) 0.00267 (3)
B1 0.2818 (3) 0.31614 (15) 0.0045 (5) 0.0035 (4) 0.0047 (5) 0.0007 (4) 0.0042 (2)
B2 0.3630 (4) 0.46779 (13) 0.0037 (6) 0.0035 (4) 0.0053 (5) 0.0001 (5) 0.0042 (2)
B3 0.3869 (4) 0.04697 (12) 0.0029 (5) 0.0034 (4) 0.0043 (4) −0.0001 (5) 0.0036 (2)
B4 0.4746 (3) 0.19170 (13) 0.0041 (5) 0.0028 (5) 0.0054 (5) −0.0001 (4) 0.0041 (2)
[Figure 3]
Figure 3
Displacement ellipsoids of each atom in YCrB4. Displacement ellipsoids are drawn at the 99% probability level. [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z; (iii) 1 − x, 1 − y, −z; (iv) x − [{1\over 2}], −y + [{1\over 2}], z; (v) 1 − x, 1 − y, 1 − z; (vi) −x + [{1\over 2}], y + [{1\over 2}], 1 − z; (vii) −x + [{3\over 2}], y + [{1\over 2}], 1 - z; (viii) 1 − x, −y, 1 − z; (ix) 1 + x, y, z; (x) −x + [{1\over 2}], y − [{1\over 2}], −z].

3. Synthesis and crystallization

The starting materials were Y (99.9%), Cr (99.95%), and B (99.5%). They were weighed in an atomic ratio Y:Cr:B = 1:1:4. The mixture was melted in an argon-arc melting furnace (ACM-01, Diavac). The product was then turned over and remelted three times to improve its chemical homogeneity. Homogeneous YCrB4 crystals were obtained.

4. Refinement details

Refinement was conducted using a space group of type Pbam, as reported by Kuz'ma, 1970[Kuz'ma, Y. B. (1970). Kristallografiya, 15, 372-374.]. A correction for isotropic extinction was applied during the least-squares refinement. Final refinements were performed with inclusion of anisotropic ADPs to each atom. The final refinement results are listed in Table 3[link]. The refinement was successful, with the R factor converging without any problems and no noticeable residuals.

Table 3
Experimental details

Crystal data
Chemical formula YCrB4
Mr 184.15
Crystal system, space group Orthorhombic, Pbam
Temperature (K) 294
a, b, c (Å) 5.9425 (2), 11.4831 (4), 3.46425 (12)
V3) 236.40 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 28.57
Crystal size (mm) 0.05 × 0.03 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, HyPix
Absorption correction Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Corporation, Oxford, UK.])
Tmin, Tmax 0.367, 0.655
No. of measured, independent and observed [I > 2σ(I)] reflections 13376, 1074, 865
Rint 0.036
(sin θ/λ)max−1) 0.992
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.029, 1.11
No. of reflections 1074
No. of parameters 38
Δρmax, Δρmin (e Å−3) 0.58, −0.71
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Corporation, Oxford, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011).

Yttrium chromium tetraboride top
Crystal data top
YCrB4Dx = 5.174 Mg m3
Mr = 184.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbamCell parameters from 6090 reflections
a = 5.9425 (2) Åθ = 3.5–44.9°
b = 11.4831 (4) ŵ = 28.57 mm1
c = 3.46425 (12) ÅT = 294 K
V = 236.40 (1) Å3Block, metallic
Z = 40.05 × 0.03 × 0.03 mm
F(000) = 332
Data collection top
XtaLAB Synergy, HyPix
diffractometer
1074 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source865 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 44.9°, θmin = 3.6°
ω scansh = 1111
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 2222
Tmin = 0.367, Tmax = 0.655l = 66
13376 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0074P)2 + 0.1807P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.020
wR(F2) = 0.029Δρmax = 0.58 e Å3
S = 1.11Δρmin = 0.71 e Å3
1074 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 parametersExtinction coefficient: 0.0111 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y0.12446 (2)0.15077 (2)0.0000000.00285 (3)
Cr0.12421 (4)0.41902 (2)0.0000000.00267 (3)
B10.2818 (3)0.31614 (15)0.5000000.0042 (2)
B20.3630 (4)0.46779 (13)0.5000000.0042 (2)
B30.3869 (4)0.04697 (12)0.5000000.0036 (2)
B40.4746 (3)0.19170 (13)0.5000000.0041 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.00298 (4)0.00275 (4)0.00284 (4)0.00027 (4)0.0000.000
Cr0.00262 (6)0.00241 (6)0.00297 (6)0.00007 (6)0.0000.000
B10.0045 (5)0.0035 (4)0.0047 (5)0.0007 (4)0.0000.000
B20.0037 (6)0.0035 (4)0.0053 (5)0.0001 (5)0.0000.000
B30.0029 (5)0.0034 (4)0.0043 (4)0.0000 (5)0.0000.000
B40.0041 (5)0.0028 (5)0.0054 (5)0.0001 (4)0.0000.000
Geometric parameters (Å, º) top
Y—B32.6177 (16)Cr—B3vii2.2723 (9)
Y—B3i2.6177 (16)Cr—B1i2.2962 (11)
Y—B4ii2.6582 (11)Cr—B12.2962 (11)
Y—B4iii2.6582 (11)Cr—B2i2.3081 (16)
Y—B2iii2.6959 (15)Cr—B22.3081 (16)
Y—B2ii2.6959 (15)Cr—B4iii2.3254 (10)
Y—B1iii2.7003 (12)Cr—B4ii2.3254 (10)
Y—B1ii2.7003 (12)Cr—Crviii2.3745 (4)
Y—B2iv2.7241 (11)B1—B21.807 (2)
Y—B2v2.7241 (11)B1—B4ii1.828 (2)
Y—B12.7350 (13)B1—B41.832 (2)
Y—B1i2.7350 (13)B2—B3vi1.741 (4)
Cr—B3iii2.2677 (15)B2—B2ix1.789 (5)
Cr—B3ii2.2677 (15)B3—B3x1.724 (4)
Cr—B3vi2.2723 (9)B3—B41.742 (2)
B3—Y—B3i82.86 (6)B2—B1—Crxi67.24 (6)
B3—Y—B4ii94.49 (3)B4ii—B1—Crxi67.55 (5)
B3i—Y—B4ii160.16 (5)B4—B1—Crxi131.03 (3)
B3—Y—B4iii160.16 (5)Cr—B1—Crxi97.93 (6)
B3i—Y—B4iii94.49 (3)B2—B1—Yxii70.31 (7)
B4ii—Y—B4iii81.33 (4)B4ii—B1—Yxii139.48 (3)
B3—Y—B2iii122.58 (4)B4—B1—Yxii68.78 (5)
B3i—Y—B2iii71.84 (4)Cr—B1—Yxii135.97 (7)
B4ii—Y—B2iii124.69 (6)Crxi—B1—Yxii75.60 (2)
B4iii—Y—B2iii74.45 (4)B2—B1—Yxiii70.31 (7)
B3—Y—B2ii71.84 (4)B4ii—B1—Yxiii139.48 (3)
B3i—Y—B2ii122.58 (4)B4—B1—Yxiii68.78 (5)
B4ii—Y—B2ii74.45 (4)Cr—B1—Yxiii75.60 (2)
B4iii—Y—B2ii124.69 (5)Crxi—B1—Yxiii135.97 (7)
B2iii—Y—B2ii79.96 (5)Yxii—B1—Yxiii79.80 (4)
B3—Y—B1iii159.68 (5)B2—B1—Yxi139.50 (3)
B3i—Y—B1iii95.10 (4)B4ii—B1—Yxi67.94 (6)
B4ii—Y—B1iii93.99 (4)B4—B1—Yxi70.86 (5)
B4iii—Y—B1iii39.96 (4)Cr—B1—Yxi134.07 (6)
B2iii—Y—B1iii39.13 (5)Crxi—B1—Yxi74.94 (2)
B2ii—Y—B1iii92.78 (5)Yxii—B1—Yxi87.09 (2)
B3—Y—B1ii95.10 (4)Yxiii—B1—Yxi139.62 (6)
B3i—Y—B1ii159.68 (5)B2—B1—Y139.50 (3)
B4ii—Y—B1ii39.96 (4)B4ii—B1—Y67.94 (6)
B4iii—Y—B1ii93.99 (4)B4—B1—Y70.86 (5)
B2iii—Y—B1ii92.78 (5)Cr—B1—Y74.94 (2)
B2ii—Y—B1ii39.13 (5)Crxi—B1—Y134.07 (6)
B1iii—Y—B1ii79.80 (4)Yxii—B1—Y139.62 (6)
B3—Y—B2iv93.05 (4)Yxiii—B1—Y87.09 (2)
B3i—Y—B2iv37.98 (7)Yxi—B1—Y78.59 (4)
B4ii—Y—B2iv161.52 (6)B3vi—B2—B2ix124.09 (14)
B4iii—Y—B2iv96.88 (3)B3vi—B2—B1105.99 (17)
B2iii—Y—B2iv38.53 (9)B2ix—B2—B1129.92 (17)
B2ii—Y—B2iv92.00 (3)B3vi—B2—Cr66.58 (9)
B1iii—Y—B2iv73.82 (5)B2ix—B2—Cr131.30 (4)
B1ii—Y—B2iv122.48 (5)B1—B2—Cr66.55 (6)
B3—Y—B2v37.98 (7)B3vi—B2—Crxi66.58 (9)
B3i—Y—B2v93.05 (4)B2ix—B2—Crxi131.30 (4)
B4ii—Y—B2v96.88 (3)B1—B2—Crxi66.55 (6)
B4iii—Y—B2v161.52 (6)Cr—B2—Crxi97.26 (9)
B2iii—Y—B2v92.00 (3)B3vi—B2—Yxii139.05 (5)
B2ii—Y—B2v38.53 (9)B2ix—B2—Yxii71.58 (9)
B1iii—Y—B2v122.48 (5)B1—B2—Yxii70.56 (6)
B1ii—Y—B2v73.82 (5)Cr—B2—Yxii135.56 (6)
B2iv—Y—B2v78.97 (4)Crxi—B2—Yxii75.50 (2)
B3—Y—B172.15 (4)B3vi—B2—Yxiii139.05 (5)
B3i—Y—B1122.11 (5)B2ix—B2—Yxiii71.58 (9)
B4ii—Y—B139.59 (4)B1—B2—Yxiii70.56 (6)
B4iii—Y—B193.14 (3)Cr—B2—Yxiii75.50 (2)
B2iii—Y—B1162.65 (5)Crxi—B2—Yxiii135.56 (6)
B2ii—Y—B198.09 (3)Yxii—B2—Yxiii79.95 (5)
B1iii—Y—B1124.49 (3)B3vi—B2—Yvi67.70 (5)
B1ii—Y—B175.75 (3)B2ix—B2—Yvi69.88 (7)
B2iv—Y—B1158.26 (6)B1—B2—Yvi138.64 (4)
B2v—Y—B197.09 (4)Cr—B2—Yvi132.94 (8)
B3—Y—B1i122.11 (5)Crxi—B2—Yvi74.15 (3)
B3i—Y—B1i72.15 (4)Yxii—B2—Yvi88.01 (3)
B4ii—Y—B1i93.14 (3)Yxiii—B2—Yvi141.47 (9)
B4iii—Y—B1i39.59 (4)B3vi—B2—Yvii67.70 (5)
B2iii—Y—B1i98.09 (3)B2ix—B2—Yvii69.88 (7)
B2ii—Y—B1i162.65 (5)B1—B2—Yvii138.64 (4)
B1iii—Y—B1i75.75 (3)Cr—B2—Yvii74.15 (3)
B1ii—Y—B1i124.49 (3)Crxi—B2—Yvii132.94 (8)
B2iv—Y—B1i97.09 (4)Yxii—B2—Yvii141.47 (9)
B2v—Y—B1i158.26 (6)Yxiii—B2—Yvii88.01 (3)
B1—Y—B1i78.59 (4)Yvi—B2—Yvii78.97 (4)
B3iii—Cr—B3ii99.61 (9)B3x—B3—B2v109.78 (13)
B3iii—Cr—B3vi116.93 (3)B3x—B3—B4111.32 (18)
B3ii—Cr—B3vi44.63 (10)B2v—B3—B4138.90 (18)
B3iii—Cr—B3vii44.63 (10)B3x—B3—Crxii67.83 (9)
B3ii—Cr—B3vii116.93 (3)B2v—B3—Crxii128.34 (4)
B3vi—Cr—B3vii99.33 (5)B4—B3—Crxii69.48 (6)
B3iii—Cr—B1i76.47 (5)B3x—B3—Crxiii67.83 (9)
B3ii—Cr—B1i156.70 (6)B2v—B3—Crxiii128.34 (4)
B3vi—Cr—B1i156.85 (7)B4—B3—Crxiii69.48 (6)
B3vii—Cr—B1i76.67 (5)Crxii—B3—Crxiii99.61 (9)
B3iii—Cr—B1156.70 (6)B3x—B3—Criv67.54 (6)
B3ii—Cr—B176.47 (5)B2v—B3—Criv68.75 (5)
B3vi—Cr—B176.67 (5)B4—B3—Criv128.73 (4)
B3vii—Cr—B1156.85 (7)Crxii—B3—Criv135.37 (10)
B1i—Cr—B197.94 (6)Crxiii—B3—Criv63.07 (3)
B3iii—Cr—B2i76.55 (4)B3x—B3—Crv67.54 (6)
B3ii—Cr—B2i156.04 (5)B2v—B3—Crv68.75 (5)
B3vi—Cr—B2i115.66 (5)B4—B3—Crv128.73 (4)
B3vii—Cr—B2i44.67 (8)Crxii—B3—Crv63.07 (3)
B1i—Cr—B2i46.21 (5)Crxiii—B3—Crv135.37 (10)
B1—Cr—B2i116.12 (6)Criv—B3—Crv99.33 (5)
B3iii—Cr—B2156.04 (5)B3x—B3—Y138.55 (3)
B3ii—Cr—B276.55 (4)B2v—B3—Y74.33 (10)
B3vi—Cr—B244.67 (8)B4—B3—Y75.16 (6)
B3vii—Cr—B2115.66 (5)Crxii—B3—Y142.90 (6)
B1i—Cr—B2116.12 (6)Crxiii—B3—Y77.682 (19)
B1—Cr—B246.22 (5)Criv—B3—Y76.87 (3)
B2i—Cr—B297.26 (9)Crv—B3—Y141.41 (10)
B3iii—Cr—B4iii44.55 (5)B3x—B3—Yxi138.55 (3)
B3ii—Cr—B4iii115.17 (6)B2v—B3—Yxi74.33 (10)
B3vi—Cr—B4iii155.54 (7)B4—B3—Yxi75.15 (6)
B3vii—Cr—B4iii76.98 (5)Crxii—B3—Yxi77.682 (19)
B1i—Cr—B4iii46.59 (5)Crxiii—B3—Yxi142.89 (6)
B1—Cr—B4iii115.88 (4)Criv—B3—Yxi141.41 (10)
B2i—Cr—B4iii78.97 (5)Crv—B3—Yxi76.87 (3)
B2—Cr—B4iii157.93 (6)Y—B3—Yxi82.86 (6)
B3iii—Cr—B4ii115.17 (6)B3—B4—B1xiii104.59 (12)
B3ii—Cr—B4ii44.55 (5)B3—B4—B1123.87 (12)
B3vi—Cr—B4ii76.98 (5)B1xiii—B4—B1131.54 (10)
B3vii—Cr—B4ii155.54 (7)B3—B4—Crxiii65.97 (6)
B1i—Cr—B4ii115.88 (4)B1xiii—B4—Crxiii65.87 (5)
B1—Cr—B4ii46.59 (5)B1—B4—Crxiii131.74 (3)
B2i—Cr—B4ii157.93 (6)B3—B4—Crxii65.97 (6)
B2—Cr—B4ii78.97 (5)B1xiii—B4—Crxii65.87 (5)
B4iii—Cr—B4ii96.30 (6)B1—B4—Crxii131.74 (3)
B3iii—Cr—Crviii58.56 (3)Crxiii—B4—Crxii96.30 (6)
B3ii—Cr—Crviii58.56 (3)B3—B4—Yxii138.56 (3)
B3vi—Cr—Crviii58.37 (4)B1xiii—B4—Yxii72.47 (6)
B3vii—Cr—Crviii58.37 (4)B1—B4—Yxii71.26 (5)
B1i—Cr—Crviii131.03 (3)Crxiii—B4—Yxii136.83 (7)
B1—Cr—Crviii131.03 (3)Crxii—B4—Yxii76.03 (2)
B2i—Cr—Crviii101.08 (4)B3—B4—Yxiii138.56 (3)
B2—Cr—Crviii101.08 (4)B1xiii—B4—Yxiii72.47 (6)
B4iii—Cr—Crviii100.98 (4)B1—B4—Yxiii71.26 (5)
B4ii—Cr—Crviii100.98 (4)Crxiii—B4—Yxiii76.03 (2)
B3iii—Cr—Yvii98.87 (4)Crxii—B4—Yxiii136.83 (7)
B3ii—Cr—Yvii98.87 (4)Yxii—B4—Yxiii81.33 (4)
B3vi—Cr—Yvii56.65 (4)B3—B4—Yxi67.06 (7)
B3vii—Cr—Yvii56.65 (4)B1xiii—B4—Yxi138.40 (4)
B1i—Cr—Yvii104.42 (4)B1—B4—Yxi70.11 (5)
B1—Cr—Yvii104.42 (4)Crxiii—B4—Yxi131.73 (6)
B2i—Cr—Yvii59.17 (4)Crxii—B4—Yxi74.13 (2)
B2—Cr—Yvii59.17 (4)Yxii—B4—Yxi87.67 (2)
B4iii—Cr—Yvii131.60 (3)Yxiii—B4—Yxi141.34 (6)
B4ii—Cr—Yvii131.60 (3)B3—B4—Y67.06 (7)
Crviii—Cr—Yvii67.744 (10)B1xiii—B4—Y138.40 (4)
B2—B1—B4ii108.31 (12)B1—B4—Y70.11 (5)
B2—B1—B4125.79 (12)Crxiii—B4—Y74.13 (2)
B4ii—B1—B4125.90 (10)Crxii—B4—Y131.73 (6)
B2—B1—Cr67.24 (6)Yxii—B4—Y141.34 (6)
B4ii—B1—Cr67.55 (5)Yxiii—B4—Y87.67 (2)
B4—B1—Cr131.03 (3)Yxi—B4—Y78.16 (4)
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z1; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z; (ix) x+1, y+1, z+1; (x) x+1, y, z+1; (xi) x, y, z+1; (xii) x+1/2, y+1/2, z+1; (xiii) x+1/2, y+1/2, z.
Selected bond lengths (Å) in YCrB4 top
CrB10 Pentagonal prismFive-membered ring
Cr—B3×22.2677 (15)B3–B3viii1.724 (4)
Cr—B3×22.2723 (9)B2i–B3viii1.741 (4)
Cr—B1×22.2962 (11)B3–B41.742 (2)
Cr—B2×22.3081 (16)B1i–B2i1.807 (2)
Cr—B4×62.3254 (10)B1i–B41.828 (2)
YB14 Heptagonal prismSeven-membered ring
Y—B3×22.6177 (16)B2v–B3i1.741 (3)
Y—B4×22.6582 (11)B3i–B4i1.742 (2)
Y—B2×22.6959 (15)B2–B2v1.788 (4)
Y—B1×22.7003 (12)B1–B21.807 (2)
Y—B2×62.7241 (11)B1i–B41.828 (2)
Y—B1×22.7350 (13)B1–B41.832 (2)
Y—B4×62.7478 (14)B1i–B4i1.832 (2)
Interplanar atomic distances
Cri—Crx2.3745 (4)Yi—Y3.7446 (3)
Yi—Criii3.0517 (4)Yi—Yix3.7446 (3)
Yi—Crix3.0760 (3)Yi—Yii3.7653 (5)
Yi—Cr3.0789 (3)
Yi—Cri3.0803 (4)
Symmetry codes: (i) x + 1/2, -y + 1/2, z; (ii) -x + 1/2, y + 1/2, -z; (iii) 1 - x, 1 - y, -z; (v) 1 - x, 1 - y, 1 - z; (viii) 1 - x, -y, 1 - z; (ix) 1 + x, y, z; (x) -x + 1/2, y - 1/2, -z]
Atomic coordinates and anisotropic displacement parameters (10 3Å2) for YCrB4 top
The Y and Cr atoms lie on the Wyckoff sites 4h (x, y, 0), and the B atoms occupy the 4g (x, y, 1/2) site. The anisotropic displacement factor exponent takes the form: –2π2[(ha*)2U11 + ··· + 2hka*b*U12]. Uiso is defined as a third of the trace of the orthogonalized Uij tensor. U12 = U23 = 0.
AtomxyU11U22U33U12Uiso
Y0.12446 (2)0.15077 (2)0.00298 (4)0.00275 (4)0.00284 (4)0.00027 (4)0.00285 (3)
Cr0.12421 (4)0.41902 (2)0.00262 (6)0.00241 (6)0.00297 (6)0.00007 (6)0.00267 (3)
B10.2818 (3)0.31614 (15)0.0045 (5)0.0035 (4)0.0047 (5)0.0007 (4)0.0042 (2)
B20.3630 (4)0.46779 (13)0.0037 (6)0.0035 (4)0.0053 (5)0.0001 (5)0.0042 (2)
B30.3869 (4)0.04697 (12)0.0029 (5)0.0034 (4)0.0043 (4)-0.0001 (5)0.0036 (2)
B40.4746 (3)0.19170 (13)0.0041 (5)0.0028 (5)0.0054 (5)-0.0001 (4)0.0041 (2)
 

Funding information

We gratefully acknowledge the support from JSPS KAKENHI (grant Nos. JP19K05643, JP20H00189 and JP23K04373) and the GIMRT program (Nos. 202111-RDKGE-0002 and 202211-RDKGE-0008) at the Institute for Materials Research, Tohoku University, Japan.

References

First citationAkopov, K., Yin, H., Roh, I., Pangilinan, L. E. & Kaner, R. B. (2018). Chem. Mater. 30, 6494–6502.  CrossRef CAS Google Scholar
First citationBrandes, E. A. & Brook, G. B. (1992). Smithells Metals Reference Book, pp. 4–41. Oxford, London: Butterworth-Heinemann Ltd.  Google Scholar
First citationCandan, A., Surucu, G. & Gencer, A. (2019). Phys. Scr. 94, 125710.  CrossRef ICSD Google Scholar
First citationCuong, N. T., Tateishi, I., Cameau, M., Niibe, M., Umezawa, N., Slater, B., Yubuta, K., Kondo, T., Ogata, M., Okada, S. & Matsuda, I. (2020). Phys. Rev. B, 101, 195412.  CrossRef Google Scholar
First citationDonohue, J. (1974). The Structures of the Elements. New York: Wiley.  Google Scholar
First citationFlipo, S., Rosner, H., Bobnar, M., Kvashnina, K. O., Leithe-Jasper, A. & Gumeniuk, R. (2021). Phys. Rev. B, 103, 195121.  CrossRef Google Scholar
First citationHigashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211–220.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKorsukova, M. M., Lundström, T., Tergenius, L.-E. & Gurin, V. N. (1987). Solid State Commun. 63, 187–189.  CrossRef CAS Google Scholar
First citationKuz'ma, Y. B. (1970). Kristallografiya, 15, 372–374.  CAS Google Scholar
First citationKuz'ma, Yu. B. & Svarichevskaya, S. I. (1972). Kristallografiya, 17, 569–571.  Google Scholar
First citationLevchenko, G., Lyashchenko, A., Baumer, V., Evdokimova, A., Filippov, V., Paderno, Y. & Shitsevalova, N. (2006). J. Solid State Chem. 179, 2949–2953.  CrossRef ICSD CAS Google Scholar
First citationMedvedeva, N. I., Medvedeva, Y. E. & Ivanovskii, A. L. (2002). Dokl. Phys. Chem. 383, 75–77.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiibe, M., Cameau, M., Cuong, N. T., Sunday, O. I., Zhang, X., Tsujikawa, Y., Okada, S., Yubuta, K., Kondo, T. & Matsuda, I. (2021). Phys. Rev. Mater. 5, 084007.  CrossRef Google Scholar
First citationOkada, S., Shishido, T., Mori, T., Kudou, K., Iizumi, K., Lundström, T. & Nakajima, K. (2006). J. Alloys Compd. 408–412, 547–550.  CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationRogl, P. (1978). Mater. Res. Bull. 13, 519–523.  CrossRef CAS Google Scholar
First citationRogl, P. & Nowotny, H. (1974). Monatshefte f?r Chemie, 105, 1082–1098.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimonson, J. & Poon, S. (2010). J. Alloys Compd. 504, 265–272.  CrossRef CAS Google Scholar
First citationSingh, Y., Martin, C., Bud'ko, S. L., Ellern, A., Prozorov, R. & Johnston, D. C. (2010). Phys. Rev. B, 82, 144532.  CrossRef Google Scholar
First citationSobczak, R. & Rogl, P. (1979). J. Solid State Chem. 27, 343–348.  CrossRef ICSD CAS Google Scholar
First citationTateishi, I., Zhang, X. & Matsuda, I. (2022). Molecules, 27, 1808.  CrossRef PubMed Google Scholar
First citationTokuda, M., Yubuta, K., Shishido, T. & Sugiyama, K. (2022). Acta Cryst. E78, 76–79.  CrossRef ICSD IUCr Journals Google Scholar
First citationVeremchuk, I., Mori, T., Prots, Yu., Schnelle, W., Leithe-Jasper, A., Kohout, M. & Grin, Yu. (2008). J. Solid State Chem. 181, 1983–1991.  CrossRef ICSD CAS Google Scholar
First citationWillis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crystallography. London: Cambridge University Press.  Google Scholar
First citationZhang, X., Hikichi, M., Iimori, T., Tsujikawa, Y., Yuan, M., Horio, M., Yubuta, K., Komori, F., Miyauchi, M., Kondo, T. & Matsuda, I. (2023). Molecules, 28, 2985.  CrossRef PubMed Google Scholar
First citationZhang, X., Tsujikawa, Y., Tateishi, I., Niibe, M., Wada, T., Horio, M., Hikichi, M., Ando, Y., Yubuta, K., Kondo, T. & Matsuda, I. (2022). J. Phys. Chem. C, 126, 12802–12808.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds