research communications
Redetermination of the 4, from single-crystal X-ray diffraction data
of yttrium chromium tetraboride, YCrBaInstitute of Industrial Nano Materials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan, bDepartment of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan, and cInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: tokuda@nech.kumamoto-u.ac.jp
The structural parameters of yttrium chromium tetraboride YCrB4 were refined based on single-crystal X-ray diffraction data. YCrB4 is orthorhombic, having a of type Pbam (No. 55) and with lattice parameters of a = 5.9425 (2), b = 11.4831 (4), c = 3.4643 (1) Å. The Y and Cr atoms are located at Wyckoff 4h sites (x, y, 0) and B atoms at the Wyckoff 4g sites (x, y, 1/2). The first structural investigation of YCrB4 was performed using a single crystalline sample [Kuz'ma, (1970). Kristallografiya. 15, 372–374]. The present study successfully refined all the positional and atomic displacement parameters of the Y, Cr, and B atoms.
Keywords: single-crystal diffraction; crystal structure; boride.
CCDC reference: 2300781
1. Chemical context
The investigation of AlB2-type-analogous intermetallic compounds (RB2, MB2, RMB4, and R2MB6; R = rare-earth, M = aluminium or transition metal) has been pursued using various experimental and theoretical methods. Recently, hydrogenated monolayer boron sheets (borophene) have attracted attention because of their topological Dirac nodal loops, with the AlB2-type-analogous compounds expected to be the parent materials (Cuong et al., 2020; Niibe et al., 2021; Tateishi et al., 2022). YCrB4 is a parent material candidate for the synthesis of (5-7)-α-borophene sheets (i.e., boron networks with five- and seven-membered rings), for which detailed structural data are currently required (Zhang et al., 2022, 2023). YCrB4 is a promising semiconductor material with good thermoelectric properties and a good power factor of 6.0 µW cm−1 K−2 at 500 K (Simonson & Poon, 2010; Flipo et al., 2021). The YCrB4 compound is also expected to be a super-hard material (Akopov et al., 2018) and a narrow bandgap semiconductor (Medvedeva et al., 2002). A theoretically calculated Debye temperature θD for YCrB4 of 965 K was given by Candan et al. (2019). Notably, Kuz'ma (1970) conducted the first structural analysis of YCrB4.
2. Structural commentary
The AlB2-type-analogous compounds are composed of borophene layers stacked with other metal atomic layers. The boron network is composed of six-membered rings (honeycomb layer), with R or M atoms located at the center of a hexagonal prism formed by twelve boron atoms (Fig. 1a). YCrB4 exhibits an ordered and rearranged derived from the AlB2-type structure of YB2 or CrB2 (Kuz'ma, 1970). The six-membered rings are rearranged into five- and seven-membered rings [(5-7)-α-borophene layer] due to the ordering of Cr and Y (Fig. 1b). These (5-7)-α-borophene layers are accumulated along the c axis in an αα stacking sequence with the metal atomic layers. The Cr and Y atoms are located at the centers of the CrB10 pentagonal and YB14 heptagonal prisms, respectively (Fig. 2). With different arrangements of the MB10 pentagonal prism and RB14 heptagonal prism, three distinct structural types have been reported for the AlB2-type-analogous compounds: (5-7)-α-type (YCrB4-type: Rogl, 1978; Sobczak & Rogl, 1979), (5-7)-β-type (ThMoB4-type: Rogl & Nowotny 1974; Veremchuk et al., 2008), and (5-6-7)-γ-type (Y2ReB6-type: Kuz'ma & Svarichevskaya, 1972; Okada et al., 2006).
The Cr—B and Y—B interatomic distances are in the range of 2.2677 (15)–2.3254 (10) and 2.6177 (16)–2.7478 (14) Å, respectively (Table 1), which are close to the sums of the respective Goldschmidt radii (rB = 0.97 Å, rCr = 1.36 Å, and rY = 1.81 Å; Brandes & Brook, 1992). The interplanar Cr—Cr distance is 2.3745 (4) Å, indicating a strong correlation between the Cr atoms. The intra- and interplanar Y—Y distances are 3.7446 (3)–3.7653 (5) and 3.46425 (12) Å, respectively (the latter simply corresponding to the c-axis length). The interplanar Y—Y distance is much smaller than the sum of radii of the Y atoms. A short intraplanar R—R distance can be observed in various R–M–B systems with layered structures (Higashi et al., 1988; Tokuda et al., 2022). The B—B interatomic distances within the pentagons and heptagons in YCrB4 are in the ranges 1.724 (4)–1.828 (2) and 1.741 (3)–1.832 (2) Å, respectively, similar to the average B—B covalent bonding distances of 1.77 Å in α-rhombohedral boron (Donohue, 1974).
A covalently bonded boron network in boride compounds plays an important role for θD was used to characterize these physical properties. Previous studies on intermetallic boride compounds have also proposed that the bulk θD is associated with the rigidity of the boron network (Korsukova et al., 1987; Levchenko et al., 2006; Singh et al., 2010). Using the isotropic atomic displacement parameter Uiso and Debye approximation (Willis & Pryor, 1975), the θD were derived using the following equation: <Uiso2> = (3h2 T) /(4π2 m kB θD2), where h is Planck's constant, m is the mass of the atom, and kB is the The mean square <Uiso2> for B atoms was calculated using the average Uiso for the boron sites. The anisotropic displacement parameters (ADPs) for each atom are listed in Table 2, with no significant anisotropy being observed in the ADPs of any atom (Fig. 3). The estimated θD for Y, Cr, and B were 413 (2), 524 (3), and 996 (25) K, respectively. Candan et al. (2019) studied the lattice-dynamical properties of YCrB4 using density functional theory and gave a calculated θD of 965 K that corresponds well with our estimated θD for the B atoms. This result indicates that the bulk θD of the AlB2-type-analogous compounds can be estimated from the ADPs for the B atom.
and mechanical and lattice dynamical properties. The Debye temperature
|
3. Synthesis and crystallization
The starting materials were Y (99.9%), Cr (99.95%), and B (99.5%). They were weighed in an atomic ratio Y:Cr:B = 1:1:4. The mixture was melted in an argon-arc melting furnace (ACM-01, Diavac). The product was then turned over and remelted three times to improve its chemical 4 crystals were obtained.
Homogeneous YCrB4. details
Pbam, as reported by Kuz'ma, 1970. A correction for isotropic extinction was applied during the least-squares Final refinements were performed with inclusion of anisotropic ADPs to each atom. The final results are listed in Table 3. The was successful, with the R factor converging without any problems and no noticeable residuals.
was conducted using a of type
|
Supporting information
CCDC reference: 2300781
https://doi.org/10.1107/S2056989023008952/pk2696sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023008952/pk2696Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011).YCrB4 | Dx = 5.174 Mg m−3 |
Mr = 184.15 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbam | Cell parameters from 6090 reflections |
a = 5.9425 (2) Å | θ = 3.5–44.9° |
b = 11.4831 (4) Å | µ = 28.57 mm−1 |
c = 3.46425 (12) Å | T = 294 K |
V = 236.40 (1) Å3 | Block, metallic |
Z = 4 | 0.05 × 0.03 × 0.03 mm |
F(000) = 332 |
XtaLAB Synergy, HyPix diffractometer | 1074 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 865 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.036 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 44.9°, θmin = 3.6° |
ω scans | h = −11→11 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −22→22 |
Tmin = 0.367, Tmax = 0.655 | l = −6→6 |
13376 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0074P)2 + 0.1807P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max = 0.020 |
wR(F2) = 0.029 | Δρmax = 0.58 e Å−3 |
S = 1.11 | Δρmin = −0.71 e Å−3 |
1074 reflections | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
38 parameters | Extinction coefficient: 0.0111 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Y | 0.12446 (2) | 0.15077 (2) | 0.000000 | 0.00285 (3) | |
Cr | 0.12421 (4) | 0.41902 (2) | 0.000000 | 0.00267 (3) | |
B1 | 0.2818 (3) | 0.31614 (15) | 0.500000 | 0.0042 (2) | |
B2 | 0.3630 (4) | 0.46779 (13) | 0.500000 | 0.0042 (2) | |
B3 | 0.3869 (4) | 0.04697 (12) | 0.500000 | 0.0036 (2) | |
B4 | 0.4746 (3) | 0.19170 (13) | 0.500000 | 0.0041 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Y | 0.00298 (4) | 0.00275 (4) | 0.00284 (4) | 0.00027 (4) | 0.000 | 0.000 |
Cr | 0.00262 (6) | 0.00241 (6) | 0.00297 (6) | 0.00007 (6) | 0.000 | 0.000 |
B1 | 0.0045 (5) | 0.0035 (4) | 0.0047 (5) | 0.0007 (4) | 0.000 | 0.000 |
B2 | 0.0037 (6) | 0.0035 (4) | 0.0053 (5) | 0.0001 (5) | 0.000 | 0.000 |
B3 | 0.0029 (5) | 0.0034 (4) | 0.0043 (4) | 0.0000 (5) | 0.000 | 0.000 |
B4 | 0.0041 (5) | 0.0028 (5) | 0.0054 (5) | −0.0001 (4) | 0.000 | 0.000 |
Y—B3 | 2.6177 (16) | Cr—B3vii | 2.2723 (9) |
Y—B3i | 2.6177 (16) | Cr—B1i | 2.2962 (11) |
Y—B4ii | 2.6582 (11) | Cr—B1 | 2.2962 (11) |
Y—B4iii | 2.6582 (11) | Cr—B2i | 2.3081 (16) |
Y—B2iii | 2.6959 (15) | Cr—B2 | 2.3081 (16) |
Y—B2ii | 2.6959 (15) | Cr—B4iii | 2.3254 (10) |
Y—B1iii | 2.7003 (12) | Cr—B4ii | 2.3254 (10) |
Y—B1ii | 2.7003 (12) | Cr—Crviii | 2.3745 (4) |
Y—B2iv | 2.7241 (11) | B1—B2 | 1.807 (2) |
Y—B2v | 2.7241 (11) | B1—B4ii | 1.828 (2) |
Y—B1 | 2.7350 (13) | B1—B4 | 1.832 (2) |
Y—B1i | 2.7350 (13) | B2—B3vi | 1.741 (4) |
Cr—B3iii | 2.2677 (15) | B2—B2ix | 1.789 (5) |
Cr—B3ii | 2.2677 (15) | B3—B3x | 1.724 (4) |
Cr—B3vi | 2.2723 (9) | B3—B4 | 1.742 (2) |
B3—Y—B3i | 82.86 (6) | B2—B1—Crxi | 67.24 (6) |
B3—Y—B4ii | 94.49 (3) | B4ii—B1—Crxi | 67.55 (5) |
B3i—Y—B4ii | 160.16 (5) | B4—B1—Crxi | 131.03 (3) |
B3—Y—B4iii | 160.16 (5) | Cr—B1—Crxi | 97.93 (6) |
B3i—Y—B4iii | 94.49 (3) | B2—B1—Yxii | 70.31 (7) |
B4ii—Y—B4iii | 81.33 (4) | B4ii—B1—Yxii | 139.48 (3) |
B3—Y—B2iii | 122.58 (4) | B4—B1—Yxii | 68.78 (5) |
B3i—Y—B2iii | 71.84 (4) | Cr—B1—Yxii | 135.97 (7) |
B4ii—Y—B2iii | 124.69 (6) | Crxi—B1—Yxii | 75.60 (2) |
B4iii—Y—B2iii | 74.45 (4) | B2—B1—Yxiii | 70.31 (7) |
B3—Y—B2ii | 71.84 (4) | B4ii—B1—Yxiii | 139.48 (3) |
B3i—Y—B2ii | 122.58 (4) | B4—B1—Yxiii | 68.78 (5) |
B4ii—Y—B2ii | 74.45 (4) | Cr—B1—Yxiii | 75.60 (2) |
B4iii—Y—B2ii | 124.69 (5) | Crxi—B1—Yxiii | 135.97 (7) |
B2iii—Y—B2ii | 79.96 (5) | Yxii—B1—Yxiii | 79.80 (4) |
B3—Y—B1iii | 159.68 (5) | B2—B1—Yxi | 139.50 (3) |
B3i—Y—B1iii | 95.10 (4) | B4ii—B1—Yxi | 67.94 (6) |
B4ii—Y—B1iii | 93.99 (4) | B4—B1—Yxi | 70.86 (5) |
B4iii—Y—B1iii | 39.96 (4) | Cr—B1—Yxi | 134.07 (6) |
B2iii—Y—B1iii | 39.13 (5) | Crxi—B1—Yxi | 74.94 (2) |
B2ii—Y—B1iii | 92.78 (5) | Yxii—B1—Yxi | 87.09 (2) |
B3—Y—B1ii | 95.10 (4) | Yxiii—B1—Yxi | 139.62 (6) |
B3i—Y—B1ii | 159.68 (5) | B2—B1—Y | 139.50 (3) |
B4ii—Y—B1ii | 39.96 (4) | B4ii—B1—Y | 67.94 (6) |
B4iii—Y—B1ii | 93.99 (4) | B4—B1—Y | 70.86 (5) |
B2iii—Y—B1ii | 92.78 (5) | Cr—B1—Y | 74.94 (2) |
B2ii—Y—B1ii | 39.13 (5) | Crxi—B1—Y | 134.07 (6) |
B1iii—Y—B1ii | 79.80 (4) | Yxii—B1—Y | 139.62 (6) |
B3—Y—B2iv | 93.05 (4) | Yxiii—B1—Y | 87.09 (2) |
B3i—Y—B2iv | 37.98 (7) | Yxi—B1—Y | 78.59 (4) |
B4ii—Y—B2iv | 161.52 (6) | B3vi—B2—B2ix | 124.09 (14) |
B4iii—Y—B2iv | 96.88 (3) | B3vi—B2—B1 | 105.99 (17) |
B2iii—Y—B2iv | 38.53 (9) | B2ix—B2—B1 | 129.92 (17) |
B2ii—Y—B2iv | 92.00 (3) | B3vi—B2—Cr | 66.58 (9) |
B1iii—Y—B2iv | 73.82 (5) | B2ix—B2—Cr | 131.30 (4) |
B1ii—Y—B2iv | 122.48 (5) | B1—B2—Cr | 66.55 (6) |
B3—Y—B2v | 37.98 (7) | B3vi—B2—Crxi | 66.58 (9) |
B3i—Y—B2v | 93.05 (4) | B2ix—B2—Crxi | 131.30 (4) |
B4ii—Y—B2v | 96.88 (3) | B1—B2—Crxi | 66.55 (6) |
B4iii—Y—B2v | 161.52 (6) | Cr—B2—Crxi | 97.26 (9) |
B2iii—Y—B2v | 92.00 (3) | B3vi—B2—Yxii | 139.05 (5) |
B2ii—Y—B2v | 38.53 (9) | B2ix—B2—Yxii | 71.58 (9) |
B1iii—Y—B2v | 122.48 (5) | B1—B2—Yxii | 70.56 (6) |
B1ii—Y—B2v | 73.82 (5) | Cr—B2—Yxii | 135.56 (6) |
B2iv—Y—B2v | 78.97 (4) | Crxi—B2—Yxii | 75.50 (2) |
B3—Y—B1 | 72.15 (4) | B3vi—B2—Yxiii | 139.05 (5) |
B3i—Y—B1 | 122.11 (5) | B2ix—B2—Yxiii | 71.58 (9) |
B4ii—Y—B1 | 39.59 (4) | B1—B2—Yxiii | 70.56 (6) |
B4iii—Y—B1 | 93.14 (3) | Cr—B2—Yxiii | 75.50 (2) |
B2iii—Y—B1 | 162.65 (5) | Crxi—B2—Yxiii | 135.56 (6) |
B2ii—Y—B1 | 98.09 (3) | Yxii—B2—Yxiii | 79.95 (5) |
B1iii—Y—B1 | 124.49 (3) | B3vi—B2—Yvi | 67.70 (5) |
B1ii—Y—B1 | 75.75 (3) | B2ix—B2—Yvi | 69.88 (7) |
B2iv—Y—B1 | 158.26 (6) | B1—B2—Yvi | 138.64 (4) |
B2v—Y—B1 | 97.09 (4) | Cr—B2—Yvi | 132.94 (8) |
B3—Y—B1i | 122.11 (5) | Crxi—B2—Yvi | 74.15 (3) |
B3i—Y—B1i | 72.15 (4) | Yxii—B2—Yvi | 88.01 (3) |
B4ii—Y—B1i | 93.14 (3) | Yxiii—B2—Yvi | 141.47 (9) |
B4iii—Y—B1i | 39.59 (4) | B3vi—B2—Yvii | 67.70 (5) |
B2iii—Y—B1i | 98.09 (3) | B2ix—B2—Yvii | 69.88 (7) |
B2ii—Y—B1i | 162.65 (5) | B1—B2—Yvii | 138.64 (4) |
B1iii—Y—B1i | 75.75 (3) | Cr—B2—Yvii | 74.15 (3) |
B1ii—Y—B1i | 124.49 (3) | Crxi—B2—Yvii | 132.94 (8) |
B2iv—Y—B1i | 97.09 (4) | Yxii—B2—Yvii | 141.47 (9) |
B2v—Y—B1i | 158.26 (6) | Yxiii—B2—Yvii | 88.01 (3) |
B1—Y—B1i | 78.59 (4) | Yvi—B2—Yvii | 78.97 (4) |
B3iii—Cr—B3ii | 99.61 (9) | B3x—B3—B2v | 109.78 (13) |
B3iii—Cr—B3vi | 116.93 (3) | B3x—B3—B4 | 111.32 (18) |
B3ii—Cr—B3vi | 44.63 (10) | B2v—B3—B4 | 138.90 (18) |
B3iii—Cr—B3vii | 44.63 (10) | B3x—B3—Crxii | 67.83 (9) |
B3ii—Cr—B3vii | 116.93 (3) | B2v—B3—Crxii | 128.34 (4) |
B3vi—Cr—B3vii | 99.33 (5) | B4—B3—Crxii | 69.48 (6) |
B3iii—Cr—B1i | 76.47 (5) | B3x—B3—Crxiii | 67.83 (9) |
B3ii—Cr—B1i | 156.70 (6) | B2v—B3—Crxiii | 128.34 (4) |
B3vi—Cr—B1i | 156.85 (7) | B4—B3—Crxiii | 69.48 (6) |
B3vii—Cr—B1i | 76.67 (5) | Crxii—B3—Crxiii | 99.61 (9) |
B3iii—Cr—B1 | 156.70 (6) | B3x—B3—Criv | 67.54 (6) |
B3ii—Cr—B1 | 76.47 (5) | B2v—B3—Criv | 68.75 (5) |
B3vi—Cr—B1 | 76.67 (5) | B4—B3—Criv | 128.73 (4) |
B3vii—Cr—B1 | 156.85 (7) | Crxii—B3—Criv | 135.37 (10) |
B1i—Cr—B1 | 97.94 (6) | Crxiii—B3—Criv | 63.07 (3) |
B3iii—Cr—B2i | 76.55 (4) | B3x—B3—Crv | 67.54 (6) |
B3ii—Cr—B2i | 156.04 (5) | B2v—B3—Crv | 68.75 (5) |
B3vi—Cr—B2i | 115.66 (5) | B4—B3—Crv | 128.73 (4) |
B3vii—Cr—B2i | 44.67 (8) | Crxii—B3—Crv | 63.07 (3) |
B1i—Cr—B2i | 46.21 (5) | Crxiii—B3—Crv | 135.37 (10) |
B1—Cr—B2i | 116.12 (6) | Criv—B3—Crv | 99.33 (5) |
B3iii—Cr—B2 | 156.04 (5) | B3x—B3—Y | 138.55 (3) |
B3ii—Cr—B2 | 76.55 (4) | B2v—B3—Y | 74.33 (10) |
B3vi—Cr—B2 | 44.67 (8) | B4—B3—Y | 75.16 (6) |
B3vii—Cr—B2 | 115.66 (5) | Crxii—B3—Y | 142.90 (6) |
B1i—Cr—B2 | 116.12 (6) | Crxiii—B3—Y | 77.682 (19) |
B1—Cr—B2 | 46.22 (5) | Criv—B3—Y | 76.87 (3) |
B2i—Cr—B2 | 97.26 (9) | Crv—B3—Y | 141.41 (10) |
B3iii—Cr—B4iii | 44.55 (5) | B3x—B3—Yxi | 138.55 (3) |
B3ii—Cr—B4iii | 115.17 (6) | B2v—B3—Yxi | 74.33 (10) |
B3vi—Cr—B4iii | 155.54 (7) | B4—B3—Yxi | 75.15 (6) |
B3vii—Cr—B4iii | 76.98 (5) | Crxii—B3—Yxi | 77.682 (19) |
B1i—Cr—B4iii | 46.59 (5) | Crxiii—B3—Yxi | 142.89 (6) |
B1—Cr—B4iii | 115.88 (4) | Criv—B3—Yxi | 141.41 (10) |
B2i—Cr—B4iii | 78.97 (5) | Crv—B3—Yxi | 76.87 (3) |
B2—Cr—B4iii | 157.93 (6) | Y—B3—Yxi | 82.86 (6) |
B3iii—Cr—B4ii | 115.17 (6) | B3—B4—B1xiii | 104.59 (12) |
B3ii—Cr—B4ii | 44.55 (5) | B3—B4—B1 | 123.87 (12) |
B3vi—Cr—B4ii | 76.98 (5) | B1xiii—B4—B1 | 131.54 (10) |
B3vii—Cr—B4ii | 155.54 (7) | B3—B4—Crxiii | 65.97 (6) |
B1i—Cr—B4ii | 115.88 (4) | B1xiii—B4—Crxiii | 65.87 (5) |
B1—Cr—B4ii | 46.59 (5) | B1—B4—Crxiii | 131.74 (3) |
B2i—Cr—B4ii | 157.93 (6) | B3—B4—Crxii | 65.97 (6) |
B2—Cr—B4ii | 78.97 (5) | B1xiii—B4—Crxii | 65.87 (5) |
B4iii—Cr—B4ii | 96.30 (6) | B1—B4—Crxii | 131.74 (3) |
B3iii—Cr—Crviii | 58.56 (3) | Crxiii—B4—Crxii | 96.30 (6) |
B3ii—Cr—Crviii | 58.56 (3) | B3—B4—Yxii | 138.56 (3) |
B3vi—Cr—Crviii | 58.37 (4) | B1xiii—B4—Yxii | 72.47 (6) |
B3vii—Cr—Crviii | 58.37 (4) | B1—B4—Yxii | 71.26 (5) |
B1i—Cr—Crviii | 131.03 (3) | Crxiii—B4—Yxii | 136.83 (7) |
B1—Cr—Crviii | 131.03 (3) | Crxii—B4—Yxii | 76.03 (2) |
B2i—Cr—Crviii | 101.08 (4) | B3—B4—Yxiii | 138.56 (3) |
B2—Cr—Crviii | 101.08 (4) | B1xiii—B4—Yxiii | 72.47 (6) |
B4iii—Cr—Crviii | 100.98 (4) | B1—B4—Yxiii | 71.26 (5) |
B4ii—Cr—Crviii | 100.98 (4) | Crxiii—B4—Yxiii | 76.03 (2) |
B3iii—Cr—Yvii | 98.87 (4) | Crxii—B4—Yxiii | 136.83 (7) |
B3ii—Cr—Yvii | 98.87 (4) | Yxii—B4—Yxiii | 81.33 (4) |
B3vi—Cr—Yvii | 56.65 (4) | B3—B4—Yxi | 67.06 (7) |
B3vii—Cr—Yvii | 56.65 (4) | B1xiii—B4—Yxi | 138.40 (4) |
B1i—Cr—Yvii | 104.42 (4) | B1—B4—Yxi | 70.11 (5) |
B1—Cr—Yvii | 104.42 (4) | Crxiii—B4—Yxi | 131.73 (6) |
B2i—Cr—Yvii | 59.17 (4) | Crxii—B4—Yxi | 74.13 (2) |
B2—Cr—Yvii | 59.17 (4) | Yxii—B4—Yxi | 87.67 (2) |
B4iii—Cr—Yvii | 131.60 (3) | Yxiii—B4—Yxi | 141.34 (6) |
B4ii—Cr—Yvii | 131.60 (3) | B3—B4—Y | 67.06 (7) |
Crviii—Cr—Yvii | 67.744 (10) | B1xiii—B4—Y | 138.40 (4) |
B2—B1—B4ii | 108.31 (12) | B1—B4—Y | 70.11 (5) |
B2—B1—B4 | 125.79 (12) | Crxiii—B4—Y | 74.13 (2) |
B4ii—B1—B4 | 125.90 (10) | Crxii—B4—Y | 131.73 (6) |
B2—B1—Cr | 67.24 (6) | Yxii—B4—Y | 141.34 (6) |
B4ii—B1—Cr | 67.55 (5) | Yxiii—B4—Y | 87.67 (2) |
B4—B1—Cr | 131.03 (3) | Yxi—B4—Y | 78.16 (4) |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, z; (iii) x−1/2, −y+1/2, z−1; (iv) −x+1/2, y−1/2, −z; (v) −x+1/2, y−1/2, −z+1; (vi) −x+1/2, y+1/2, −z+1; (vii) −x+1/2, y+1/2, −z; (viii) −x, −y+1, −z; (ix) −x+1, −y+1, −z+1; (x) −x+1, −y, −z+1; (xi) x, y, z+1; (xii) x+1/2, −y+1/2, z+1; (xiii) x+1/2, −y+1/2, z. |
CrB10 Pentagonal prism | Five-membered ring | ||
Cr—B3×2 | 2.2677 (15) | B3–B3viii | 1.724 (4) |
Cr—B3×2 | 2.2723 (9) | B2i–B3viii | 1.741 (4) |
Cr—B1×2 | 2.2962 (11) | B3–B4 | 1.742 (2) |
Cr—B2×2 | 2.3081 (16) | B1i–B2i | 1.807 (2) |
Cr—B4×6 | 2.3254 (10) | B1i–B4 | 1.828 (2) |
YB14 Heptagonal prism | Seven-membered ring | ||
Y—B3×2 | 2.6177 (16) | B2v–B3i | 1.741 (3) |
Y—B4×2 | 2.6582 (11) | B3i–B4i | 1.742 (2) |
Y—B2×2 | 2.6959 (15) | B2–B2v | 1.788 (4) |
Y—B1×2 | 2.7003 (12) | B1–B2 | 1.807 (2) |
Y—B2×6 | 2.7241 (11) | B1i–B4 | 1.828 (2) |
Y—B1×2 | 2.7350 (13) | B1–B4 | 1.832 (2) |
Y—B4×6 | 2.7478 (14) | B1i–B4i | 1.832 (2) |
Interplanar atomic distances | |||
Cri—Crx | 2.3745 (4) | Yi—Y | 3.7446 (3) |
Yi—Criii | 3.0517 (4) | Yi—Yix | 3.7446 (3) |
Yi—Crix | 3.0760 (3) | Yi—Yii | 3.7653 (5) |
Yi—Cr | 3.0789 (3) | ||
Yi—Cri | 3.0803 (4) |
Symmetry codes: (i) x + 1/2, -y + 1/2, z; (ii) -x + 1/2, y + 1/2, -z; (iii) 1 - x, 1 - y, -z; (v) 1 - x, 1 - y, 1 - z; (viii) 1 - x, -y, 1 - z; (ix) 1 + x, y, z; (x) -x + 1/2, y - 1/2, -z] |
The Y and Cr atoms lie on the Wyckoff sites 4h (x, y, 0), and the B atoms occupy the 4g (x, y, 1/2) site. The anisotropic displacement factor exponent takes the form: –2π2[(ha*)2U11 + ··· + 2hka*b*U12]. Uiso is defined as a third of the trace of the orthogonalized Uij tensor. U12 = U23 = 0. |
Atom | x | y | U11 | U22 | U33 | U12 | Uiso |
Y | 0.12446 (2) | 0.15077 (2) | 0.00298 (4) | 0.00275 (4) | 0.00284 (4) | 0.00027 (4) | 0.00285 (3) |
Cr | 0.12421 (4) | 0.41902 (2) | 0.00262 (6) | 0.00241 (6) | 0.00297 (6) | 0.00007 (6) | 0.00267 (3) |
B1 | 0.2818 (3) | 0.31614 (15) | 0.0045 (5) | 0.0035 (4) | 0.0047 (5) | 0.0007 (4) | 0.0042 (2) |
B2 | 0.3630 (4) | 0.46779 (13) | 0.0037 (6) | 0.0035 (4) | 0.0053 (5) | 0.0001 (5) | 0.0042 (2) |
B3 | 0.3869 (4) | 0.04697 (12) | 0.0029 (5) | 0.0034 (4) | 0.0043 (4) | -0.0001 (5) | 0.0036 (2) |
B4 | 0.4746 (3) | 0.19170 (13) | 0.0041 (5) | 0.0028 (5) | 0.0054 (5) | -0.0001 (4) | 0.0041 (2) |
Funding information
We gratefully acknowledge the support from JSPS KAKENHI (grant Nos. JP19K05643, JP20H00189 and JP23K04373) and the GIMRT program (Nos. 202111-RDKGE-0002 and 202211-RDKGE-0008) at the Institute for Materials Research, Tohoku University, Japan.
References
Akopov, K., Yin, H., Roh, I., Pangilinan, L. E. & Kaner, R. B. (2018). Chem. Mater. 30, 6494–6502. CrossRef CAS Google Scholar
Brandes, E. A. & Brook, G. B. (1992). Smithells Metals Reference Book, pp. 4–41. Oxford, London: Butterworth-Heinemann Ltd. Google Scholar
Candan, A., Surucu, G. & Gencer, A. (2019). Phys. Scr. 94, 125710. CrossRef ICSD Google Scholar
Cuong, N. T., Tateishi, I., Cameau, M., Niibe, M., Umezawa, N., Slater, B., Yubuta, K., Kondo, T., Ogata, M., Okada, S. & Matsuda, I. (2020). Phys. Rev. B, 101, 195412. CrossRef Google Scholar
Donohue, J. (1974). The Structures of the Elements. New York: Wiley. Google Scholar
Flipo, S., Rosner, H., Bobnar, M., Kvashnina, K. O., Leithe-Jasper, A. & Gumeniuk, R. (2021). Phys. Rev. B, 103, 195121. CrossRef Google Scholar
Higashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211–220. CrossRef ICSD CAS Web of Science Google Scholar
Korsukova, M. M., Lundström, T., Tergenius, L.-E. & Gurin, V. N. (1987). Solid State Commun. 63, 187–189. CrossRef CAS Google Scholar
Kuz'ma, Y. B. (1970). Kristallografiya, 15, 372–374. CAS Google Scholar
Kuz'ma, Yu. B. & Svarichevskaya, S. I. (1972). Kristallografiya, 17, 569–571. Google Scholar
Levchenko, G., Lyashchenko, A., Baumer, V., Evdokimova, A., Filippov, V., Paderno, Y. & Shitsevalova, N. (2006). J. Solid State Chem. 179, 2949–2953. CrossRef ICSD CAS Google Scholar
Medvedeva, N. I., Medvedeva, Y. E. & Ivanovskii, A. L. (2002). Dokl. Phys. Chem. 383, 75–77. CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Niibe, M., Cameau, M., Cuong, N. T., Sunday, O. I., Zhang, X., Tsujikawa, Y., Okada, S., Yubuta, K., Kondo, T. & Matsuda, I. (2021). Phys. Rev. Mater. 5, 084007. CrossRef Google Scholar
Okada, S., Shishido, T., Mori, T., Kudou, K., Iizumi, K., Lundström, T. & Nakajima, K. (2006). J. Alloys Compd. 408–412, 547–550. CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Corporation, Oxford, UK. Google Scholar
Rogl, P. (1978). Mater. Res. Bull. 13, 519–523. CrossRef CAS Google Scholar
Rogl, P. & Nowotny, H. (1974). Monatshefte f?r Chemie, 105, 1082–1098. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simonson, J. & Poon, S. (2010). J. Alloys Compd. 504, 265–272. CrossRef CAS Google Scholar
Singh, Y., Martin, C., Bud'ko, S. L., Ellern, A., Prozorov, R. & Johnston, D. C. (2010). Phys. Rev. B, 82, 144532. CrossRef Google Scholar
Sobczak, R. & Rogl, P. (1979). J. Solid State Chem. 27, 343–348. CrossRef ICSD CAS Google Scholar
Tateishi, I., Zhang, X. & Matsuda, I. (2022). Molecules, 27, 1808. CrossRef PubMed Google Scholar
Tokuda, M., Yubuta, K., Shishido, T. & Sugiyama, K. (2022). Acta Cryst. E78, 76–79. CrossRef ICSD IUCr Journals Google Scholar
Veremchuk, I., Mori, T., Prots, Yu., Schnelle, W., Leithe-Jasper, A., Kohout, M. & Grin, Yu. (2008). J. Solid State Chem. 181, 1983–1991. CrossRef ICSD CAS Google Scholar
Willis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crystallography. London: Cambridge University Press. Google Scholar
Zhang, X., Hikichi, M., Iimori, T., Tsujikawa, Y., Yuan, M., Horio, M., Yubuta, K., Komori, F., Miyauchi, M., Kondo, T. & Matsuda, I. (2023). Molecules, 28, 2985. CrossRef PubMed Google Scholar
Zhang, X., Tsujikawa, Y., Tateishi, I., Niibe, M., Wada, T., Horio, M., Hikichi, M., Ando, Y., Yubuta, K., Kondo, T. & Matsuda, I. (2022). J. Phys. Chem. C, 126, 12802–12808. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.