research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Unusual reaction of (E)-2-[(benzo[d]thia­zol-2-yl­imino)­meth­yl]-5-(di­ethyl­amino)­phenol with tri­phenyl­borane: crystal structures and optical properties

crossmark logo

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by S. Parkin, University of Kentucky, USA (Received 19 September 2023; accepted 27 September 2023; online 3 October 2023)

The mol­ecular and crystal structure of (E)-2-[(benzo[d]thia­zol-2-yl­imino)­meth­yl]-5-(di­ethyl­amino)­phenol (C18H19N3O2S, Et2N-Bz) and its unexpected reaction product with tri­phenyl­borane, 2,2-diphenyl-1,3-dioxa-2-borata-1,2-di­hydro­naphthalene [systematic name: N,N-diethyl-2,2-diphenyl-2H-1,3λ3,2λ4-ben­zodioxaborinin-7-amine, C23H24BNO2, (I)] are described. For Et2N-Bz, the hydroxyl group is involved in an intra­molecular hydrogen bond with the imino nitro­gen atom and the C=N bond displays an E configuration. The crystal packing is characterized by layers of inversion dimers parallel to the (10[\overline{1}]) plane and chains of mol­ecule in the a-axis direction formed through C—H⋯O inter­actions. Complex (I) crystallizes with two mol­ecules (A and B) in the asymmetric unit, which differ in the orientation of the ethyl groups. The 1,3-dioxa-2-borata-1,2,3,4-tetra­hydro­naphthalene ring displays a slight envelope conformation with the boron atom as the flap. In the crystal packing, chains of alternating A and B mol­ecules formed by C—H⋯O hydrogen bonds run in the b-axis direction. The UV–vis absorption and emission properties of the compounds are discussed and their aggregation-induced emission properties are further investigated.

1. Chemical context

Recently, boron complexes have gained increasing attention in fluorescent materials because they have many potential applications in the field of photoelectric devices, fluorescent sensors and probes (Li et al., 2013[Li, D., Zhang, H. & Wang, Y. (2013). Chem. Soc. Rev. 42, 8416-8433.]; Shi et al., 2020[Shi, Z., Han, X., Hu, W., Bai, H., Peng, B., Ji, L., Fan, Q., Li, L. & Huang, W. (2020). Chem. Soc. Rev. 49, 7533-7567.]). Among them, boranils, i.e. boron complexes using salicylaldimine as a ligand, have emerged as promising materials due to their excellent optical properties, ICT (inter­molecular charge transfer), high Stokes shift and simple synthesis (Vidyasagar et al., 2019[Vidyasagar, C. C., Muñoz Flores, B. M., Jiménez-Pérez, V. M. & Gurubasavaraj, P. M. (2019). Materials Today Chemistry, 11, 133-155.]). An additional advantage of boranils is that their emission characteristics can be adjusted in a flexible way through structural changes such as extending the π-conjugation system, adding donor/acceptor substituents, increasing mol­ecular rigidity and flattening the structures (Frath et al., 2014[Frath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290-2310.]; Zhao et al., 2019[Zhao, N., Ma, C., Yang, W., Yin, W., Wei, J. & Li, N. (2019). Chem. Commun. 55, 8494-8497.]; Macé et al., 2021[Macé, A., Hamrouni, K., Gauthier, E. S., Jean, M., Vanthuyne, N., Frédéric, L., Pieters, G., Caytan, E., Roisnel, T., Aloui, F., Srebro-Hooper, M., Carboni, B., Berrée, F. & Crassous, J. (2021). Chem. Eur. J. 27, 7959-7967.]; Al-Sharif et al., 2020[Al-Sharif, H. H. T., Ziessel, R., Waddell, P. G., Dixon, C. & Harriman, A. (2020). J. Phys. Chem. A, 124, 2160-2172.]). These complexes can be synthesized on a multi-gram scale with a two-step process, including synthesis of a Schiff-base ligand via a condensation reaction between an amine and an hy­droxy­aldehyde, and complexation with commercial boron compounds (Massue et al., 2021[Massue, J., Jacquemin, D. & Ulrich, G. (2021). Organics 2, 365-375.]). In addition, Schiff bases containing the benzo­thia­zole component have a wide range of bioapplications (Shinde & Waghamode, 2017[Shinde, P. K. & Waghamode, K. T. (2017). Int. J. Sci. Res. 7, 365-370.]; Ceramella et al., 2022[Ceramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R. & Sinicropi, M. S. (2022). Antibiotics 11, 191.]; Bhat et al., 2017[Bhat, M., Karnad, S. & Belagali, S. L. (2017). World J. Pharm. Res. 6, 610-616.]), but their optical potential does not seem to have received much attention. Recently, several studies have shown that these derivatives can be used as fluorescent chemosensors in living cells (Khan et al., 2021[Khan, S. A., Ullah, Q., Almalki, A. S. A., Kumar, S., Obaid, R. J., Alsharif, M. A., Alfaifi, S. Y. & Hashmi, A. A. (2021). J. Mol. Liq. 328, 115407.]), aggregation-induced emission (AIE) active materials (Kachwal et al., 2018[Kachwal, V., Vamsi Krishna, I. S., Fageria, L., Chaudhary, J., Kinkar Roy, R., Chowdhury, R. & Laskar, I. R. (2018). Analyst, 143, 3741-3748.]) and potential non-linear optical mat­erials (Muhammad et al., 2018[Muhammad, S., Kumar, S., Koh, J., Saravanabhavan, M., Ayub, K. & Chaudhary, M. (2018). Mol. Simul. 44, 1191-1199.]).

[Scheme 1]

In this study, we intended to design a new boron(III) complex by replacing the amine component in the structure of boranils with 2-amino­benzo­thia­zole to extend their π-conjugated system. From this idea, (E)-2-[(benzo[d]thia­zol-2-yl­imino)­meth­yl]-5-(di­ethyl­amino)­phenol (compound Et2N-Bz) was synthesized with high efficiency via a condensation reaction between 2-amino­benzo­thia­zole and 4-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (Fig. 1[link]). As planned, boron complex (II) would be formed by reaction between ligand Et2N-Bz and BPh3 (triphenyl borane). In the expected complex, boron would coordinate with the ligand through the oxygen atom of the hydroxyl group and the nitro­gen atom of the imine group. But more surprisingly, the results of NMR and SC-XRD analysis indicated that the product obtained had structure (I) instead of the expected structure (II). This phenomenon can be explained by the fact that due to the simultaneous presence of Lewis acid BPh3 in the CHCl3 solvent, ligand Et2N-Bz is hydrolyzed and the boron atom is cyclized with the two oxygen atoms. To further elucidate this assumption, the inter­action of 4-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (Et2N-CHO) with BPh3 has been tested under similar experimental conditions. However, the TLC analysis results showed that no compounds were formed. The crystal structures and photophysical properties of the ligand Et2N-Bz and complex (I) are presented in this work.

[Figure 1]
Figure 1
Synthesis of compounds Et2N-Bz and (I).

2. Structural commentary

Compound Et2N-Bz crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 2[link]). One of the ethyl groups (C20–C21) and the benzo­thia­zole ring are disordered over two sets of atomic sites with major occupancy components of 0.822 (5) and 0.843 (2), respectively. The Schiff base displays an E configuration with respect to the C11=N10 double bond. The benzo­thia­zole ring is planar [maximum deviation = 0.010 (3) Å for N3] and subtends a dihedral angle of 5.08 (7)° with phenyl ring C12–C17. The hydroxyl group O18—H18 is involved in an intra­molecular hydrogen bond with the imino nitro­gen atom N10 (Fig. 2[link], Table 1[link]). One of the orientations of the benzo­thia­zole group shows a short intra­molecular contact (H11⋯S1B = 2.46 Å).

Table 1
Hydrogen-bond geometry (Å, °) for Et2N-Bz[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯N10 0.90 (3) 1.79 (3) 2.582 (2) 147 (1)
C16—H16⋯O18i 0.93 2.48 3.312 (3) 149
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
The mol­ecular structure of Et2N-Bz showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line. Minor disorder components are shown in orange (ethyl group) and red (benzo­thia­zole ring).

Complex (I) crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules in the asymmetric unit (Fig. 3[link]). The r.m.s. deviation for the best fit (with inversion) of the two mol­ecules is 0.849 Å. The orientations of the ethyl groups differ in mol­ecules A (containing atom B1) and B (containing atom B2). In mol­ecule A, the ethyl groups are on a different side of the ring to which the di­ethyl­amino group is attached, whereas in mol­ecule B both ethyl groups are on the same side. The 1,3-dioxa-2-borata-1,2,3,4-tetra­hydro­naphthalene ring shows a slight envelope conformation with the boron atom as the flap. For mol­ecule A, the deviation of atom B1 from the best plane through the ring is 0.315 (3) Å, for mol­ecule B the deviation for B2 is 0.301 (3) Å. For mol­ecule A, this boron-containing plane makes dihedral angles of 84.96 (14) and 81.09 (12)° with phenyl rings C8–C13 and C14–C19, respectively. For mol­ecule B, the boron-containing plane makes angles of 77.83 (14) and 81.92 (12)° with phenyl rings C31–C36 and C37–C42, respectively.

[Figure 3]
Figure 3
The mol­ecular structure of mol­ecules A and B in the asymmetric unit of (I) showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level.

3. Supra­molecular features

The crystal packing of Et2N-Bz is characterized by the formation of inversion dimers showing ππ stacking between the phenyl (C12–C17) and thia­zole (S1/C2/N3/C4/C9) rings [centroid–centroid distance = 3.7856 (13) Å]. The dimers form layers parallel to the (10[\overline{1}]) plane as shown in Fig. 4[link]. Neighboring layers inter­act through C16—H16⋯O18i hydrogen bonds that form chains of mol­ecules in the a-axis direction (Fig. 5[link]. see Table 1[link] for details).

[Figure 4]
Figure 4
Formation of inversion dimers showing ππ stacking between the phenyl C12–C17 (yellow) and thia­zole S1/C2/N3/C4/C9 (blue) rings in the crystal packing of Et2N-Bz.
[Figure 5]
Figure 5
Chain of mol­ecules running in the a-axis direction in the crystal packing of Et2N-Bz. The O—H⋯N and C—H⋯O hydrogen bonds are shown as blue and gray dashed lines, respectively. Only major disorder components are shown. Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.

For compound (I), both mol­ecules A and B are linked by a C24—H24⋯O2 hydrogen bond (Table 2[link]). In addition, mol­ecules A and B inter­act further through C1—H1⋯O4i hydrogen bonds (see Table 2[link] for details). This builds a chain of alternating A and B mol­ecules running in the b-axis direction (Fig. 6[link]). Within this chain and between neighboring chains several C—H⋯π inter­actions occur (Table 2[link]), but ππ inter­actions are not present.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3, Cg4, Cg7, Cg8 and Cg9 are the centroids of rings C8–C13, C14–C19, C25–C30, C31–C36 and C37–C42, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O2 0.93 2.51 3.343 (3) 149
C1—H1⋯O4i 0.93 2.55 3.334 (3) 142
C3—H3⋯Cg9i 0.93 2.59 3.510 (4) 169
C23—H23ACg9 0.96 2.88 3.771 (5) 155
C26—H26⋯Cg4 0.93 2.66 3.562 (3) 164
C46—H46BCg4ii 0.96 2.69 3.623 (4) 164
C21—H21ACg3iii 0.96 2.87 3.815 (5) 168
C43—H43BCg7iv 0.96 2.93 3.626 (3) 129
C44—H44CCg8iv 0.96 2.95 3.876 (4) 162
Symmetry codes: (i) [x, y-1, z]; (ii) x, y+1, z; (iii) [-x+2, -y, -z+1]; (iv) [-x+1, -y+1, -z+2].
[Figure 6]
Figure 6
Chain of mol­ecules running in the b-axis direction in the crystal packing of (I). The C—H⋯O and C—H⋯π hydrogen bonds are shown as gray dashed lines. Symmetry codes: (i) x, −1 + y, z; (ii) x, 1 + y, z. Cg4 and Cg9 are the centroids of rings C14–C19 and C37–C42, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzo­thia­zole fragment shown in Fig. 7[link]a gave 39 hits. For the majority of the hits (32 out of 50 values) the S—C—N=C torsion angle averages around ±180° (±ap or trans), while for 17 entries this torsion angle is close to 0° (±sp or cis; see Fig. 7[link]b). For one entry (refcode UXIRIE; Sović et al., 2016[Sović, I., Orehovec, I., Stilinović, V., Basarić, N. & Karminski-Zamola, G. (2016). Monatsh. Chem. 147, 1825-1837.]), the unusual value of 121.0° (+ac) is caused by the incorporation of the terminal C—C bond of the search fragment into an indole ring. For Et2N-Bz this torsion angle is 177.55 (15)° for the major component of the benzo­thia­zole ring and −2.6 (4)° for the minor component.

[Figure 7]
Figure 7
(a) Search fragment used in Conquest to perform the CSD survey. (b) The distribution of the torsion angle S—C—N—C in the search fragment shown as a histogram.

A search for crystal structures containing a 1,3-dioxa-2-borata-1,2,3,4-tetra­hydro­naphthalene fragment in which the boron atom bears two additional carbon atoms resulted in five hits with refcodes ALUBOA (Light et al., 2016[Light, M. E., Quesada, R. & Gale, P. A. (2016). Private Communication (refcode ALUBOA). CCDC, Cambridge, England.]), PEWLOS (Kliegel et al., 1993[Kliegel, W., Drückler, K., Rettig, S. J. & Trotter, J. (1993). Can. J. Chem. 71, 919-923.]), PUSBIO (Kliegel et al., 1997[Kliegel, W., Metge, J., Rettig, S. J. & Trotter, J. (1997). Can. J. Chem. 75, 1203-1214.]), SEZGEJ and SEZGIN (Kliegel et al., 1989[Kliegel, W., Tajerbashi, M., Rettig, S. J. & Trotter, J. (1989). Can. J. Chem. 67, 1636-1643.]). For all hits, the two carbon substituents are two phenyl groups. In these crystal structures, the 1,3-dioxa-2-borata-1,2,3,4-tetra­hydro­naphthalene also exhibits an envelope conformation with the boron atom as the flap and deviating from the best plane between 0.139 Å (PUSBIO) and 0.556 Å (PEWLOS). The average B—C(phen­yl) distance is 1.615 (7) Å [1.602 (4) Å in (I)]. The average B—O(phen­yl) and B—O(alk­yl) distances are 1.498 (10) and 1.543 (30) Å, respectively [1.507 (3) Å and 1.560 (3) Å in (I)].

5. Photophysical properties

The UV–vis absorption and emission properties of the compounds Et2N-CHO, Et2N-Bz, and complex (I) at 10 µM in chloro­form solvent are shown in Fig. 8[link] and Table 3[link]. Accordingly, it can be seen that Et2N-Bz absorbs at 436 nm, while complex (I) shows absorption at 347 nm, which is a small shift from that of Et2N-CHO (343 nm). The absorption peaks (343 nm and 347 nm) are attributed to the ππ* transition of the aromatic ring. Under a UV lamp with a 365 nm excitation wavelength, a solution of Et2N-Bz fluoresces green, while a solution of complex (I) shifts towards blue. In addition, this complex exhibits a longer emission wavelength and greater fluorescence intensity than that of Et2N-CHO, demonstrating that complexation with boron can improve fluorescence properties compared to the free ligand.

Table 3
Photophysical data for the examined compounds (in CHCl3, 10 µM)

Compound Absorption Emission   Stokes shift
  λABS (nm) / (ɛ 103 M−1.cm−1) λem (nm) Intensity (a.u.) Δν (cm−1)
Et2N-CHO 343 (111) 425 224
Et2N-Bz 436 (65); 504 (5) 481 / 510 19533 / 18516 3327
complex (I) 347 (73) 432 27349 5670
[Figure 8]
Figure 8
(a) UV–Vis absorption and (b) emission spectra of the examined compounds (10 µM in CHCl3, λex = 365 nm).

To investigate the AIE (aggregation-induced emission) properties of Et2N-Bz and (I), we recorded the emission spectra of their 10 µM solutions in different fractions of water in a MeOH–water mixture. The results show that only compound Et2N-Bz is present as AIE active material (Fig. 9[link] and Fig. S1). The fluorescence color change from 0% to 99% water in the MeOH–water mixture from green to yellow is easily observed under a 365 nm UV lamp. The λem of Et2N-Bz in AIE spectra increases as the water fraction increases. This phenomenon can be explained by the fact that the solubility of Et2N-Bz decreased when the water ratio increased, which shortened the distance between mol­ecules and ππ stacking inter­actions appeared (Fig. 4[link]), which affected the electron density in the mol­ecule, thus the emission wavelength and the emission intensity also changed (Hong et al., 2009[Hong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332-4353.]).

[Figure 9]
Figure 9
(a) Photoluminescence spectra and (b) fluorescent color change of compound Et2N-Bz at 10 µM in different fractions of water in a MeOH–water mixture.

6. Synthesis and crystallization

Synthesis of (E)-2-[(benzo[d]thia­zol-2-yl­imino)­meth­yl]-5-(di­ethyl­amino)­phenol (Et2N-Bz).

A solution of 4-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (193 mg, 1.0 mmol) and benzo[d]thia­zol-2-amine (150 mg, 1.0 mmol) in 10 mL of ethanol in a pressure tube was stirred at 348 K for 5 h. After cooling to room temperature (RT), the brown–yellow precipitated powder was filtered off, washed consecutively with a cold ethanol (1 × 5 mL), diethyl ether (1 × 5 mL) and then dried under vacuum at 323 K for 3 h. The yield was 87% (283 mg, 0.87 mmol). Single crystals suitable for X-ray diffraction and other analysis were obtained by slow evaporation within 8 h from a concentrated chloro­form/ethanol (2:1 v/v) solution at RT. 1H NMR (CDCl3, 600 MHz): δ 12.71 (s, 1H, OH), 8.96 (s, 1H, Himine), 7.88 (dd, 3J = 8.4 Hz, 4J = 0.6 Hz, 1H, Ar-H), 7.77 (dd, 3J = 8.4 Hz, 4J = 0.6 Hz, 1H, Ar-H), 7.43 (m 1H, Ar-H), 7.30 (m 1H, Ar-H), 7.26 (d, 3J = 8.4 Hz, 1H, Ar-H), 6.31 (dd, 3J = 8.4 Hz, 4J = 2.4 Hz, 1H, Ar-H), 6.19 (d, 4J = 2.4 Hz, 1H, Ar-H), 3.43 (q, 3J = 7.2 Hz, 4H, CH2CH3), 1.23 (t, 3J = 7.2 Hz, 6H, CH2CH3).

Reaction of (E)-2-[(benzo[d]thia­zol-2-yl­imino)­meth­yl]-5-(di­ethyl­amino)­phenol (Et2N-Bz) with tri­phenyl­borane.

In chloro­form: A solution of compound Et2N-Bz (65 mg, 0.2 mmol) and BPh3 (73 mg, 0.30 mmol) in 3 mL of chloro­form in a pressure tube was stirred at 333 K for 24 h. After cooling down, single crystals suitable for X-ray diffraction and other analysis were obtained by slow evaporation within 8 h from a reaction solution at RT. The yield was 55% (39.30 mg, 0.11 mmol). 1H NMR (CDCl3, 600 MHz): δ 9,49 (s, 1H, CHO), 7,81 (d, 3J = 5.5 Hz, 1H, Ar-H), 7.53 (m, 3H, Ar-H), 7.46 (m, 4H, Ar-H), 7.26 (m, 2H, Ar-H l), 6.27 (dd, 3J = 5.5 Hz, 4J = 2.0 Hz, 1H, Ar-H), 6.07 (d, 4J = 2.0 Hz, 1H, Ar-H), 3.41 (q, 3J = 6.0 Hz, 4H, CH2CH3), 1.21 (t, 3J = 6.0 Hz, 6H, CH2CH3).

In other solvents: The experiments in other solvents such as toluene, THF, ethanol were conducted under the same conditions as in chloro­form. The course of reaction was monitored by TLC analysis. The results indicated that no new products were formed after 24 h of reaction.

Reaction of 4-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (Et2N-CHO) with tri­phenyl­borane. A solution of 4-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (97 mg, 0.5 mmol) and BPh3 (182 mg, 0.75 mmol) in 3 mL of chloro­form in a pressure tube was stirred at 333 K for 24 h. The TLC analysis results indicated that there was no signal of the new product.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms bonded to C atoms were placed in idealized positions and refined using a riding model with C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3). Non-hydrogen atoms were refined anisotropically and hydrogen atoms with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 for methyl groups). For the O—H group in Et2N-Bz, the SHELXL command AFIX 148 was used in combination with U(H) = 1.2Ueq(O). One of the ethyl groups in Et2N-Bz is disordered over two sets of sites with refined occupancies of 0.822 (5) and 0.178 (5). Also the benzo­thia­zole group is disordered over two positions by a rotation of 180° resulting in refined occupancies of 0.843 (2) and 0.157 (2) for atoms S1 and N3.

Table 4
Experimental details

  (I) Et2N-Bz
Crystal data
Chemical formula C23H24BNO2 C18H19N3OS
Mr 362.24 325.42
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 293 294
a, b, c (Å) 10.6725 (5), 11.8934 (4), 16.1411 (7) 7.2881 (2), 22.0453 (8), 10.2761 (3)
α, β, γ (°) 86.207 (3), 87.553 (4), 88.394 (3) 90, 90.280 (3), 90
V3) 2041.82 (15) 1651.02 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.20
Crystal size (mm) 0.5 × 0.15 × 0.15 0.45 × 0.3 × 0.05
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.839, 1.000 0.395, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33181, 8340, 4623 33381, 3366, 2650
Rint 0.046 0.039
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.196, 1.05 0.053, 0.138, 1.03
No. of reflections 8340 3366
No. of parameters 491 227
No. of restraints 0 5
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18 0.40, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 1.3 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022) for Et2N-Bz; CrysAlis PRO 1.171.40.25a (Rigaku OD, 2022) for (I). Cell refinement: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022) for Et2N-Bz; CrysAlis PRO 1.171.40.25a (Rigaku OD, 2022) for (I). Data reduction: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022) for Et2N-Bz; CrysAlis PRO 1.171.40.25a (Rigaku OD, 2022) for (I). For both structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

(E)-2-[(Benzo[d]thiazol-2-ylimino)methyl]-5-(diethylamino)phenol (Et2N-Bz) top
Crystal data top
C18H19N3OSF(000) = 688
Mr = 325.42Dx = 1.309 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2881 (2) ÅCell parameters from 10518 reflections
b = 22.0453 (8) Åθ = 2.9–28.1°
c = 10.2761 (3) ŵ = 0.20 mm1
β = 90.280 (3)°T = 294 K
V = 1651.02 (9) Å3Plate, orange
Z = 40.45 × 0.3 × 0.05 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
3366 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2650 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2727
Tmin = 0.395, Tmax = 1.000l = 1212
33381 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.010P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3366 reflectionsΔρmax = 0.40 e Å3
227 parametersΔρmin = 0.27 e Å3
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.22145 (11)0.35862 (4)0.49674 (8)0.0589 (3)0.843 (2)
N30.5480 (4)0.33979 (12)0.4072 (3)0.0509 (6)0.843 (2)
S1B0.6141 (8)0.3376 (3)0.3866 (6)0.0589 (3)0.157 (2)
N3B0.2914 (14)0.3507 (6)0.4767 (13)0.0509 (6)0.157 (2)
C20.4561 (3)0.37408 (9)0.48618 (19)0.0476 (5)
C40.4325 (3)0.29811 (10)0.3439 (2)0.0555 (6)
C50.4808 (4)0.25480 (12)0.2522 (3)0.0741 (8)
H50.6018600.2511920.2251750.089*
C60.3495 (6)0.21786 (14)0.2026 (3)0.0910 (10)
H60.3819880.1888900.1411230.109*
C70.1721 (6)0.22200 (14)0.2403 (3)0.0915 (10)
H70.0860040.1957630.2040730.110*
C80.1154 (4)0.26439 (14)0.3316 (3)0.0819 (8)
H80.0065680.2671260.3572110.098*
C90.2508 (4)0.30300 (11)0.3837 (2)0.0599 (6)
N100.5154 (2)0.42027 (8)0.56646 (16)0.0485 (4)
C110.6886 (3)0.43504 (9)0.57170 (19)0.0466 (5)
H110.7715600.4146360.5189840.056*
C120.7534 (3)0.48131 (9)0.65551 (18)0.0426 (5)
C130.6334 (3)0.51562 (9)0.7349 (2)0.0441 (5)
C140.6985 (3)0.55958 (10)0.8176 (2)0.0487 (5)
H140.6159340.5812850.8682380.058*
C150.8867 (3)0.57262 (10)0.8276 (2)0.0507 (5)
C161.0081 (3)0.53789 (11)0.7490 (2)0.0566 (6)
H161.1338040.5447470.7540320.068*
C170.9420 (3)0.49499 (11)0.6671 (2)0.0519 (5)
H171.0246810.4735320.6160780.062*
O180.45128 (19)0.50579 (8)0.73184 (17)0.0593 (4)
H180.4263 (9)0.4748 (14)0.678 (3)0.089*
N190.9503 (3)0.61697 (10)0.9084 (2)0.0656 (6)
C201.1470 (4)0.63271 (18)0.9180 (4)0.0757 (11)0.822 (5)
H20A1.1597410.6743930.9468690.091*0.822 (5)
H20B1.2030610.6292110.8329330.091*0.822 (5)
C20B1.1347 (19)0.6014 (8)0.9781 (17)0.0757 (11)0.178 (5)
H20C1.1275500.6069731.0715690.091*0.178 (5)
H20D1.1756300.5605080.9588300.091*0.178 (5)
C211.2439 (5)0.5911 (2)1.0127 (4)0.1063 (16)0.822 (5)
H21A1.2364290.5501000.9817550.159*0.822 (5)
H21B1.1866080.5939611.0963480.159*0.822 (5)
H21C1.3703790.6028741.0200400.159*0.822 (5)
C21B1.253 (2)0.6487 (10)0.9142 (18)0.1063 (16)0.178 (5)
H21D1.2604910.6406530.8225780.159*0.178 (5)
H21E1.3740320.6475800.9516880.159*0.178 (5)
H21F1.2004600.6881370.9276490.159*0.178 (5)
C220.8250 (3)0.65065 (12)0.9929 (2)0.0645 (7)
H22A0.7144480.6601610.9440810.077*
H22B0.8824880.6886931.0173380.077*
C230.7730 (4)0.61722 (15)1.1136 (3)0.0833 (9)
H23A0.7145270.5797061.0903750.125*
H23B0.6899850.6415231.1636620.125*
H23C0.8811840.6089421.1642250.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0620 (5)0.0571 (5)0.0577 (5)0.0060 (4)0.0067 (4)0.0146 (3)
N30.0554 (16)0.0500 (14)0.0473 (14)0.0042 (13)0.0004 (12)0.0006 (10)
S1B0.0620 (5)0.0571 (5)0.0577 (5)0.0060 (4)0.0067 (4)0.0146 (3)
N3B0.0554 (16)0.0500 (14)0.0473 (14)0.0042 (13)0.0004 (12)0.0006 (10)
C20.0601 (13)0.0421 (11)0.0404 (10)0.0015 (9)0.0025 (9)0.0023 (9)
C40.0757 (16)0.0406 (12)0.0501 (12)0.0028 (11)0.0060 (11)0.0037 (10)
C50.100 (2)0.0544 (15)0.0685 (16)0.0111 (14)0.0075 (15)0.0057 (13)
C60.144 (3)0.0584 (17)0.0705 (18)0.0063 (19)0.009 (2)0.0179 (14)
C70.128 (3)0.073 (2)0.0736 (19)0.035 (2)0.0106 (19)0.0159 (16)
C80.0814 (19)0.088 (2)0.0765 (18)0.0213 (16)0.0033 (15)0.0036 (16)
C90.0785 (17)0.0535 (14)0.0478 (12)0.0060 (12)0.0003 (11)0.0006 (10)
N100.0563 (11)0.0436 (10)0.0455 (9)0.0018 (8)0.0026 (8)0.0019 (8)
C110.0555 (12)0.0435 (11)0.0409 (10)0.0086 (9)0.0009 (9)0.0028 (9)
C120.0442 (11)0.0435 (11)0.0402 (10)0.0050 (8)0.0002 (8)0.0013 (8)
C130.0372 (10)0.0465 (11)0.0484 (11)0.0013 (8)0.0006 (8)0.0006 (9)
C140.0408 (11)0.0538 (13)0.0516 (12)0.0051 (9)0.0031 (9)0.0079 (10)
C150.0432 (11)0.0589 (13)0.0499 (12)0.0006 (10)0.0027 (9)0.0063 (10)
C160.0357 (10)0.0760 (16)0.0579 (13)0.0012 (10)0.0019 (9)0.0095 (12)
C170.0423 (11)0.0642 (14)0.0492 (11)0.0090 (10)0.0065 (9)0.0046 (10)
O180.0365 (8)0.0677 (11)0.0737 (11)0.0037 (7)0.0048 (7)0.0206 (9)
N190.0486 (11)0.0791 (15)0.0689 (13)0.0058 (10)0.0028 (9)0.0229 (11)
C200.0567 (18)0.090 (3)0.081 (3)0.0225 (19)0.0038 (18)0.022 (2)
C20B0.0567 (18)0.090 (3)0.081 (3)0.0225 (19)0.0038 (18)0.022 (2)
C210.059 (2)0.181 (5)0.079 (2)0.019 (3)0.0123 (19)0.016 (3)
C21B0.059 (2)0.181 (5)0.079 (2)0.019 (3)0.0123 (19)0.016 (3)
C220.0664 (15)0.0600 (15)0.0670 (15)0.0030 (12)0.0060 (12)0.0161 (12)
C230.085 (2)0.099 (2)0.0665 (17)0.0015 (17)0.0003 (14)0.0042 (16)
Geometric parameters (Å, º) top
S1c—C21.748 (2)C7—C81.389 (4)
S1Bd—C21.741 (5)C8—H80.9300
N3c—C21.298 (3)C8—C91.407 (4)
N3Bd—C21.310 (9)N10—C111.304 (3)
S1Bd—C41.642 (6)C11—H110.9300
N3c—C41.403 (3)C11—C121.415 (3)
S1c—C91.703 (2)C12—C131.418 (3)
N3Bd—C91.450 (9)C12—C171.412 (3)
C20a—H20A0.9700C13—C141.372 (3)
C20a—H20B0.9700C13—O181.345 (2)
C20Bb—H20C0.9700C14—H140.9300
C20Bb—H20D0.9700C14—C151.405 (3)
C20a—C211.510 (6)C15—C161.424 (3)
C21a—H21A0.9600C15—N191.363 (3)
C21a—H21B0.9600C16—H160.9300
C21a—H21C0.9600C16—C171.353 (3)
C20Bb—C21B1.508 (17)C17—H170.9300
C21Bb—H21D0.9600O18—H180.90 (3)
C21Bb—H21E0.9600N19—C201.477 (4)
C21Bb—H21F0.9600N19—C20B1.558 (15)
C2—N101.379 (3)N19—C221.465 (3)
C4—C51.388 (3)C22—H22A0.9700
C4—C91.392 (3)C22—H22B0.9700
C5—H50.9300C22—C231.493 (4)
C5—C61.354 (4)C23—H23A0.9600
C6—H60.9300C23—H23B0.9600
C6—C71.355 (5)C23—H23C0.9600
C7—H70.9300
C21Bb—C20Bb—N1998.2 (13)C8—C9—S1127.2 (2)
N10—C2—S1114.26 (15)C8—C9—N3B146.0 (5)
N10—C2—S1B119.1 (3)C9—S1c—C288.38 (12)
C21a—C20a—H20A109.5C11—N10—C2120.64 (19)
H20Aa—C20a—H20B108.1N10—C11—H11119.1
C21a—C20a—H20B109.5N10—C11—C12121.70 (19)
C21Bb—C20Bb—H20C112.1C12—C11—H11119.1
C21Bb—C20Bb—H20D112.1C11—C12—C13121.98 (19)
H20Cb—C20Bb—H20D109.8C17—C12—C11121.86 (19)
C20a—C21a—H21A109.5C17—C12—C13116.15 (18)
C20a—C21a—H21B109.5C14—C13—C12121.39 (18)
H21Aa—C21a—H21B109.5O18—C13—C12120.82 (18)
H21Ba—C21a—H21C109.5O18—C13—C14117.79 (18)
C20a—C21a—H21C109.5C13—C14—H14119.2
H21Aa—C21a—H21C109.5C13—C14—C15121.63 (19)
C20Bb—C21Bb—H21D109.5C15—C14—H14119.2
H21Db—C21Bb—H21E109.5C14—C15—C16117.2 (2)
C20Bb—C21Bb—H21E109.5N19—C15—C14121.4 (2)
C20Bb—C21Bb—H21F109.5N19—C15—C16121.38 (19)
H21Db—C21Bb—H21F109.5C15—C16—H16119.7
H21Eb—C21Bb—H21F109.5C17—C16—C15120.6 (2)
N3c—C2—S1115.66 (19)C17—C16—H16119.7
N3Bd—C2—S1B112.5 (5)C12—C17—H17118.5
N3c—C2—N10130.1 (2)C16—C17—C12123.0 (2)
N3Bd—C2—N10128.3 (5)C16—C17—H17118.5
C2—N3c—C4111.2 (3)C13—O18—H18109.5
C2—N3Bd—C9121.2 (8)C15—N19—C20122.4 (2)
C4—S1Bd—C282.4 (3)C15—N19—C20B114.3 (7)
C5—C4—N3127.7 (3)C15—N19—C22120.89 (19)
C5—C4—S1B109.8 (3)C22—N19—C20116.7 (2)
C5—C4—C9119.8 (2)N19—C20a—H20A109.5
C9—C4—N3112.5 (2)N19—C20a—H20B109.5
C9—C4—S1B130.3 (3)N19—C20Bb—H20C112.1
C4—C5—H5120.4N19—C20Bb—H20D112.1
C6—C5—C4119.2 (3)N19—C20a—C21110.6 (3)
C6—C5—H5120.4C22—N19—C20B112.2 (7)
C5—C6—H6119.2N19—C22—H22A108.8
C5—C6—C7121.7 (3)N19—C22—H22B108.8
C7—C6—H6119.2N19—C22—C23113.8 (2)
C6—C7—H7119.1H22A—C22—H22B107.7
C6—C7—C8121.8 (3)C23—C22—H22A108.8
C8—C7—H7119.1C23—C22—H22B108.8
C7—C8—H8121.5C22—C23—H23A109.5
C7—C8—C9117.0 (3)C22—C23—H23B109.5
C9—C8—H8121.5C22—C23—H23C109.5
C4—C9—S1112.27 (18)H23A—C23—H23B109.5
C4—C9—N3B93.4 (5)H23A—C23—H23C109.5
C4—C9—C8120.5 (2)H23B—C23—H23C109.5
C4—N3c—C2—N10179.9 (2)S1Bd—C4—C9—C8178.8 (4)
N3c—C4—C9—S1c0.5 (3)C2—N3Bd—C9—C8178.8 (4)
C5—C4—C9—S1c179.79 (18)C2—S1c—C9—C8179.8 (2)
C4—S1Bd—C2—N10179.3 (2)S1c—C2—N10—C11177.55 (15)
C9—N3Bd—C2—N10178.2 (6)N3Bd—C2—N10—C11174.4 (9)
C5—C4—C9—N3Bd177.7 (6)N3c—C2—N10—C110.6 (4)
S1Bd—C4—C9—N3Bd3.4 (7)S1Bd—C2—N10—C112.6 (4)
C2—N10—C11—C12178.51 (18)C20a—N19—C22—C2399.1 (3)
C4—S1Bd—C2—N3Bd1.8 (9)C20Bb—N19—C22—C2360.2 (7)
C4—N3c—C2—S1c1.7 (3)C9—C4—C5—C60.1 (4)
C9—S1c—C2—N10179.71 (16)N10—C11—C12—C132.3 (3)
C4—C5—C6—C70.1 (5)N10—C11—C12—C17176.20 (19)
C5—C4—C9—C80.0 (4)C11—C12—C13—C14178.74 (19)
C5—C6—C7—C80.1 (5)C11—C12—C13—O180.9 (3)
C6—C7—C8—C90.1 (5)C11—C12—C17—C16178.2 (2)
C7—C8—C9—S1c179.8 (2)C12—C13—C14—C150.0 (3)
C7—C8—C9—N3Bd175.9 (11)C13—C12—C17—C160.4 (3)
C7—C8—C9—C40.0 (4)C13—C14—C15—C160.5 (3)
C14—C15—N19—C20a178.3 (3)C13—C14—C15—N19179.0 (2)
C9—S1c—C2—N3c1.3 (2)C14—C15—C16—C171.1 (3)
C14—C15—N19—C20Bb142.1 (7)C14—C15—N19—C223.1 (4)
C16—C15—N19—C20a1.3 (4)C15—C16—C17—C121.0 (4)
C16—C15—N19—C20Bb38.4 (8)C15—N19—C20a—C21a84.6 (4)
C9—N3Bd—C2—S1Bd4.7 (15)C15—N19—C20Bb—C21Bb114.0 (11)
C2—N3c—C4—C5179.3 (2)C15—N19—C22—C2379.6 (3)
C2—S1Bd—C4—C5179.7 (2)C16—C15—N19—C22177.4 (2)
C2—S1Bd—C4—C91.3 (5)C17—C12—C13—C140.1 (3)
C2—N3c—C4—C91.4 (3)C17—C12—C13—O18179.50 (19)
S1Bd—C4—C5—C6179.0 (3)O18—C13—C14—C15179.6 (2)
N3c—C4—C5—C6179.3 (3)N19—C15—C16—C17178.5 (2)
C2—S1c—C9—C40.37 (18)C22—N19—C20Bb—C21Bb103.5 (12)
C2—N3Bd—C9—C44.7 (12)C22—N19—C20a—C21a94.1 (3)
N3c—C4—C9—C8179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···N100.90 (3)1.79 (3)2.582 (2)147 (1)
C16—H16···O18i0.932.483.312 (3)149
Symmetry code: (i) x+1, y, z.
7-(Diethylamino)-2,2-diphenyl-1,3-dioxa-2-borata-1,2-dihydronaphthalene (I) top
Crystal data top
C23H24BNO2Z = 4
Mr = 362.24F(000) = 760
Triclinic, P1Dx = 1.162 Mg m3
a = 10.6725 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8934 (4) ÅCell parameters from 7067 reflections
c = 16.1411 (7) Åθ = 2.9–22.8°
α = 86.207 (3)°µ = 0.07 mm1
β = 87.553 (4)°T = 293 K
γ = 88.394 (3)°Needle, brown
V = 2041.82 (15) Å30.5 × 0.15 × 0.15 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
8340 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4623 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1414
Tmin = 0.839, Tmax = 1.000l = 2020
33181 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.750P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
8340 reflectionsΔρmax = 0.18 e Å3
491 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53603 (19)0.09682 (14)0.73035 (12)0.0662 (5)
N10.8206 (3)0.1521 (2)0.42080 (15)0.0827 (8)
C10.5824 (3)0.1290 (2)0.66118 (19)0.0762 (9)
H10.5726470.2038350.6498760.091*
B10.5754 (3)0.0205 (2)0.75708 (19)0.0552 (8)
O20.59385 (18)0.09724 (13)0.67987 (11)0.0602 (5)
N20.3505 (2)0.6467 (2)0.95420 (14)0.0666 (6)
B20.7059 (3)0.5222 (2)0.66826 (19)0.0524 (7)
O30.65253 (18)0.40191 (14)0.66678 (12)0.0650 (5)
O40.60878 (15)0.59518 (13)0.71133 (10)0.0535 (5)
C240.5782 (3)0.3668 (2)0.72724 (17)0.0596 (7)
H240.5581920.2909860.7309690.072*
C250.5264 (2)0.4334 (2)0.78661 (16)0.0524 (6)
C260.4490 (3)0.3909 (2)0.85421 (18)0.0649 (8)
H260.4363440.3137400.8610570.078*
C270.3929 (3)0.4591 (3)0.90907 (18)0.0678 (8)
H270.3447520.4280830.9537680.081*
C280.4068 (2)0.5784 (2)0.89925 (16)0.0542 (6)
C290.4804 (2)0.6220 (2)0.83050 (15)0.0501 (6)
H290.4879680.6996600.8217330.060*
C300.5411 (2)0.5527 (2)0.77622 (15)0.0465 (6)
C310.8321 (3)0.5120 (2)0.71860 (16)0.0581 (7)
C320.9044 (3)0.4135 (3)0.7290 (2)0.0870 (10)
H320.8747400.3466630.7113730.104*
C331.0206 (5)0.4131 (5)0.7654 (3)0.1164 (16)
H331.0675310.3461840.7715360.140*
C341.0660 (4)0.5099 (6)0.7922 (3)0.1203 (18)
H341.1439840.5092660.8157940.144*
C350.9976 (4)0.6054 (4)0.7842 (2)0.1055 (13)
H351.0276740.6711920.8034190.127*
C360.8826 (3)0.6077 (3)0.7477 (2)0.0795 (9)
H360.8373990.6755850.7424860.095*
C370.7232 (3)0.5703 (2)0.57312 (16)0.0529 (6)
C380.8380 (3)0.5875 (3)0.53268 (19)0.0810 (10)
H380.9105600.5714970.5616500.097*
C390.8491 (4)0.6280 (3)0.4501 (2)0.0946 (11)
H390.9280810.6376330.4244010.114*
C400.7446 (4)0.6536 (3)0.4067 (2)0.0833 (10)
H400.7514500.6814880.3515100.100*
C410.6304 (4)0.6378 (3)0.4449 (2)0.0820 (9)
H410.5583120.6553470.4157340.098*
C420.6199 (3)0.5962 (2)0.52636 (19)0.0695 (8)
H420.5403740.5850470.5507790.083*
C430.2803 (3)0.6019 (3)1.02979 (19)0.0863 (10)
H43A0.2849600.6548401.0727240.104*
H43B0.3200420.5315851.0498030.104*
C440.1453 (4)0.5818 (4)1.0156 (2)0.1313 (17)
H44A0.1397490.5300150.9728390.197*
H44B0.1040130.6518790.9988070.197*
H44C0.1054630.5506421.0661150.197*
C450.3515 (3)0.7704 (3)0.9396 (2)0.0747 (9)
H45A0.4353590.7925520.9208210.090*
H45B0.3317270.8043840.9916590.090*
C460.2599 (3)0.8153 (3)0.8763 (3)0.1022 (12)
H46A0.2794440.7827550.8242720.153*
H46B0.2655740.8958250.8689170.153*
H46C0.1762860.7961090.8952830.153*
C20.6454 (3)0.0609 (2)0.60257 (18)0.0752 (9)
C30.7001 (5)0.1017 (3)0.5287 (2)0.1132 (15)
H30.6975010.1783850.5207800.136*
C40.7556 (4)0.0329 (3)0.4695 (2)0.1091 (14)
H40.7908060.0626570.4217040.131*
C50.7612 (3)0.0854 (3)0.47927 (18)0.0736 (9)
C60.7043 (3)0.1275 (2)0.55203 (16)0.0640 (8)
H60.7040110.2045560.5588610.077*
C70.6496 (3)0.0568 (2)0.61259 (16)0.0595 (7)
C80.7027 (3)0.0022 (2)0.80481 (17)0.0607 (7)
C90.7525 (3)0.1014 (3)0.83307 (19)0.0749 (9)
H90.7100550.1664180.8239030.090*
C100.8643 (4)0.1113 (4)0.8748 (2)0.0990 (12)
H100.8962080.1820340.8923400.119*
C110.9272 (4)0.0162 (5)0.8900 (2)0.1057 (13)
H111.0012300.0225990.9185130.127*
C120.8820 (4)0.0869 (4)0.8635 (3)0.1111 (14)
H120.9251090.1512700.8733400.133*
C130.7716 (3)0.0957 (3)0.8218 (2)0.0878 (10)
H130.7415210.1670750.8042790.105*
C140.4570 (2)0.0692 (2)0.80939 (16)0.0516 (6)
C150.4528 (3)0.0731 (2)0.89529 (16)0.0577 (7)
H150.5231630.0495530.9244710.069*
C160.3469 (3)0.1109 (2)0.93871 (19)0.0686 (8)
H160.3469430.1128590.9962140.082*
C170.2422 (3)0.1453 (3)0.8971 (2)0.0777 (9)
H170.1707080.1700220.9262560.093*
C180.2428 (3)0.1432 (3)0.8124 (2)0.0801 (9)
H180.1717880.1668230.7839910.096*
C190.3491 (3)0.1058 (2)0.76901 (19)0.0669 (8)
H190.3483980.1052270.7114520.080*
C200.8804 (4)0.1091 (3)0.3436 (2)0.1040 (13)
H20A0.8828250.1695800.3002280.125*
H20B0.8302990.0495680.3250290.125*
C211.0107 (6)0.0647 (5)0.3574 (3)0.185 (3)
H21A1.0472920.0397310.3061990.278*
H21B1.0082220.0025400.3984640.278*
H21C1.0602960.1232540.3763360.278*
C220.8287 (4)0.2749 (3)0.4276 (2)0.0998 (12)
H22A0.8329080.2908730.4855170.120*
H22B0.9044460.3019530.3983840.120*
C230.7185 (5)0.3336 (4)0.3917 (4)0.151 (2)
H23A0.7239360.4131350.3973320.227*
H23B0.6435850.3063890.4204680.227*
H23C0.7159120.3195420.3339210.227*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0925 (15)0.0455 (10)0.0604 (12)0.0145 (9)0.0079 (10)0.0031 (9)
N10.112 (2)0.0756 (18)0.0584 (15)0.0104 (15)0.0241 (15)0.0058 (13)
C10.120 (3)0.0468 (16)0.0630 (19)0.0167 (17)0.0004 (18)0.0103 (14)
B10.063 (2)0.0452 (16)0.0575 (18)0.0090 (14)0.0031 (15)0.0031 (14)
O20.0827 (13)0.0440 (10)0.0532 (11)0.0112 (9)0.0139 (9)0.0054 (8)
N20.0601 (15)0.0826 (18)0.0561 (14)0.0031 (12)0.0089 (12)0.0027 (12)
B20.0564 (18)0.0409 (15)0.0593 (18)0.0003 (13)0.0050 (15)0.0045 (13)
O30.0817 (14)0.0476 (10)0.0655 (12)0.0067 (9)0.0066 (11)0.0067 (9)
O40.0563 (11)0.0435 (9)0.0586 (11)0.0032 (8)0.0111 (9)0.0036 (8)
C240.0701 (19)0.0446 (15)0.0642 (18)0.0079 (13)0.0086 (15)0.0028 (13)
C250.0535 (15)0.0445 (14)0.0585 (16)0.0050 (12)0.0050 (13)0.0045 (12)
C260.0685 (19)0.0525 (16)0.0717 (19)0.0119 (14)0.0004 (15)0.0133 (14)
C270.0657 (19)0.0707 (19)0.0639 (18)0.0080 (15)0.0100 (15)0.0143 (15)
C280.0471 (15)0.0621 (17)0.0527 (15)0.0036 (12)0.0014 (12)0.0028 (13)
C290.0499 (15)0.0432 (13)0.0563 (15)0.0023 (11)0.0017 (12)0.0016 (12)
C300.0408 (13)0.0469 (14)0.0514 (14)0.0048 (11)0.0041 (11)0.0038 (11)
C310.0614 (17)0.0638 (17)0.0472 (15)0.0045 (14)0.0063 (13)0.0036 (13)
C320.092 (3)0.092 (2)0.074 (2)0.035 (2)0.0040 (19)0.0008 (18)
C330.098 (3)0.158 (5)0.087 (3)0.067 (3)0.001 (2)0.009 (3)
C340.064 (3)0.226 (6)0.068 (3)0.012 (3)0.0014 (19)0.009 (3)
C350.081 (3)0.150 (4)0.087 (3)0.032 (3)0.014 (2)0.002 (3)
C360.075 (2)0.083 (2)0.081 (2)0.0115 (18)0.0165 (18)0.0019 (18)
C370.0593 (17)0.0441 (14)0.0552 (15)0.0008 (12)0.0014 (13)0.0037 (11)
C380.068 (2)0.107 (3)0.0634 (19)0.0043 (18)0.0069 (16)0.0151 (17)
C390.090 (3)0.120 (3)0.068 (2)0.003 (2)0.019 (2)0.016 (2)
C400.121 (3)0.075 (2)0.0520 (18)0.001 (2)0.000 (2)0.0031 (15)
C410.097 (3)0.086 (2)0.065 (2)0.0049 (19)0.0242 (19)0.0045 (17)
C420.070 (2)0.075 (2)0.0646 (19)0.0096 (15)0.0085 (16)0.0056 (15)
C430.085 (2)0.119 (3)0.0552 (18)0.007 (2)0.0077 (17)0.0071 (18)
C440.081 (3)0.222 (5)0.089 (3)0.042 (3)0.018 (2)0.004 (3)
C450.067 (2)0.075 (2)0.084 (2)0.0118 (16)0.0163 (17)0.0291 (17)
C460.075 (2)0.070 (2)0.161 (4)0.0040 (18)0.010 (2)0.001 (2)
C20.124 (3)0.0470 (16)0.0546 (17)0.0147 (16)0.0106 (17)0.0072 (13)
C30.218 (5)0.0530 (19)0.068 (2)0.019 (2)0.026 (3)0.0160 (17)
C40.201 (4)0.066 (2)0.058 (2)0.003 (2)0.031 (2)0.0157 (17)
C50.104 (2)0.0641 (19)0.0519 (17)0.0083 (17)0.0107 (16)0.0035 (14)
C60.088 (2)0.0499 (15)0.0541 (16)0.0097 (14)0.0108 (15)0.0047 (13)
C70.080 (2)0.0506 (16)0.0479 (15)0.0087 (14)0.0052 (14)0.0071 (12)
C80.0573 (17)0.0616 (17)0.0621 (17)0.0040 (14)0.0142 (14)0.0098 (14)
C90.072 (2)0.082 (2)0.068 (2)0.0098 (17)0.0097 (17)0.0014 (16)
C100.084 (3)0.122 (3)0.086 (3)0.032 (2)0.010 (2)0.009 (2)
C110.065 (2)0.161 (4)0.092 (3)0.022 (3)0.004 (2)0.025 (3)
C120.063 (2)0.129 (4)0.146 (4)0.005 (2)0.011 (2)0.046 (3)
C130.065 (2)0.084 (2)0.118 (3)0.0039 (18)0.010 (2)0.026 (2)
C140.0516 (15)0.0459 (14)0.0561 (16)0.0074 (11)0.0000 (12)0.0067 (11)
C150.0536 (16)0.0622 (17)0.0550 (16)0.0028 (13)0.0038 (13)0.0078 (13)
C160.068 (2)0.0730 (19)0.0616 (18)0.0023 (15)0.0165 (15)0.0040 (15)
C170.058 (2)0.073 (2)0.097 (3)0.0061 (15)0.0165 (18)0.0113 (18)
C180.0563 (19)0.080 (2)0.102 (3)0.0042 (16)0.0100 (18)0.0170 (19)
C190.0656 (19)0.0669 (18)0.0668 (18)0.0041 (15)0.0071 (15)0.0095 (14)
C200.152 (4)0.102 (3)0.055 (2)0.004 (3)0.021 (2)0.0012 (18)
C210.173 (5)0.236 (7)0.130 (4)0.085 (5)0.069 (4)0.022 (4)
C220.117 (3)0.100 (3)0.081 (2)0.040 (2)0.033 (2)0.008 (2)
C230.154 (5)0.105 (4)0.189 (5)0.016 (3)0.040 (4)0.002 (3)
Geometric parameters (Å, º) top
O1—C11.279 (3)C43—H43B0.9700
O1—B11.562 (3)C43—C441.497 (5)
N1—C51.341 (4)C44—H44A0.9600
N1—C201.490 (4)C44—H44B0.9600
N1—C221.477 (4)C44—H44C0.9600
C1—H10.9300C45—H45A0.9700
C1—C21.370 (4)C45—H45B0.9700
B1—O21.504 (3)C45—C461.507 (5)
B1—C81.593 (4)C46—H46A0.9600
B1—C141.606 (4)C46—H46B0.9600
O2—C71.328 (3)C46—H46C0.9600
N2—C281.353 (3)C2—C31.414 (4)
N2—C431.481 (4)C2—C71.422 (4)
N2—C451.474 (4)C3—H30.9300
B2—O31.557 (3)C3—C41.345 (5)
B2—O41.510 (3)C4—H40.9300
B2—C311.600 (4)C4—C51.430 (4)
B2—C371.608 (4)C5—C61.414 (4)
O3—C241.286 (3)C6—H60.9300
O4—C301.327 (3)C6—C71.369 (3)
C24—H240.9300C8—C91.386 (4)
C24—C251.372 (4)C8—C131.398 (4)
C25—C261.415 (4)C9—H90.9300
C25—C301.430 (3)C9—C101.394 (5)
C26—H260.9300C10—H100.9300
C26—C271.350 (4)C10—C111.372 (6)
C27—H270.9300C11—H110.9300
C27—C281.428 (4)C11—C121.354 (6)
C28—C291.411 (3)C12—H120.9300
C29—H290.9300C12—C131.380 (5)
C29—C301.373 (3)C13—H130.9300
C31—C321.389 (4)C14—C151.389 (4)
C31—C361.390 (4)C14—C191.392 (4)
C32—H320.9300C15—H150.9300
C32—C331.395 (6)C15—C161.385 (4)
C33—H330.9300C16—H160.9300
C33—C341.364 (6)C16—C171.367 (4)
C34—H340.9300C17—H170.9300
C34—C351.336 (6)C17—C181.368 (4)
C35—H350.9300C18—H180.9300
C35—C361.383 (5)C18—C191.386 (4)
C36—H360.9300C19—H190.9300
C37—C381.378 (4)C20—H20A0.9700
C37—C421.378 (4)C20—H20B0.9700
C38—H380.9300C20—C211.494 (6)
C38—C391.389 (4)C21—H21A0.9600
C39—H390.9300C21—H21B0.9600
C39—C401.358 (5)C21—H21C0.9600
C40—H400.9300C22—H22A0.9700
C40—C411.355 (5)C22—H22B0.9700
C41—H410.9300C22—C231.471 (6)
C41—C421.376 (4)C23—H23A0.9600
C42—H420.9300C23—H23B0.9600
C43—H43A0.9700C23—H23C0.9600
C1—O1—B1117.3 (2)H44A—C44—H44C109.5
C5—N1—C20123.0 (3)H44B—C44—H44C109.5
C5—N1—C22122.1 (3)N2—C45—H45A108.9
C22—N1—C20114.9 (3)N2—C45—H45B108.9
O1—C1—H1117.7N2—C45—C46113.3 (3)
O1—C1—C2124.6 (3)H45A—C45—H45B107.7
C2—C1—H1117.7C46—C45—H45A108.9
O1—B1—C8107.7 (2)C46—C45—H45B108.9
O1—B1—C14105.8 (2)C45—C46—H46A109.5
O2—B1—O1108.1 (2)C45—C46—H46B109.5
O2—B1—C8111.0 (2)C45—C46—H46C109.5
O2—B1—C14107.4 (2)H46A—C46—H46B109.5
C8—B1—C14116.4 (2)H46A—C46—H46C109.5
C7—O2—B1119.3 (2)H46B—C46—H46C109.5
C28—N2—C43122.1 (3)C1—C2—C3122.5 (3)
C28—N2—C45121.3 (2)C1—C2—C7119.6 (3)
C45—N2—C43116.5 (2)C3—C2—C7117.8 (3)
O3—B2—C31107.8 (2)C2—C3—H3119.1
O3—B2—C37106.8 (2)C4—C3—C2121.9 (3)
O4—B2—O3107.9 (2)C4—C3—H3119.1
O4—B2—C31110.8 (2)C3—C4—H4119.6
O4—B2—C37108.3 (2)C3—C4—C5120.7 (3)
C31—B2—C37115.0 (2)C5—C4—H4119.6
C24—O3—B2118.3 (2)N1—C5—C4119.8 (3)
C30—O4—B2120.12 (19)N1—C5—C6122.3 (3)
O3—C24—H24117.7C6—C5—C4117.8 (3)
O3—C24—C25124.6 (2)C5—C6—H6119.4
C25—C24—H24117.7C7—C6—C5121.1 (3)
C24—C25—C26123.0 (2)C7—C6—H6119.4
C24—C25—C30118.9 (2)O2—C7—C2118.6 (2)
C26—C25—C30117.8 (2)O2—C7—C6120.8 (2)
C25—C26—H26119.0C6—C7—C2120.6 (2)
C27—C26—C25121.9 (3)C9—C8—B1125.0 (3)
C27—C26—H26119.0C9—C8—C13115.4 (3)
C26—C27—H27119.6C13—C8—B1119.6 (3)
C26—C27—C28120.8 (2)C8—C9—H9119.0
C28—C27—H27119.6C8—C9—C10122.0 (3)
N2—C28—C27120.8 (2)C10—C9—H9119.0
N2—C28—C29121.4 (2)C9—C10—H10120.1
C29—C28—C27117.8 (2)C11—C10—C9119.8 (4)
C28—C29—H29119.2C11—C10—H10120.1
C30—C29—C28121.6 (2)C10—C11—H11119.9
C30—C29—H29119.2C12—C11—C10120.3 (4)
O4—C30—C25119.0 (2)C12—C11—H11119.9
O4—C30—C29120.8 (2)C11—C12—H12120.3
C29—C30—C25120.0 (2)C11—C12—C13119.5 (4)
C32—C31—B2124.0 (3)C13—C12—H12120.3
C32—C31—C36115.6 (3)C8—C13—H13118.5
C36—C31—B2120.0 (3)C12—C13—C8123.0 (4)
C31—C32—H32119.4C12—C13—H13118.5
C31—C32—C33121.2 (4)C15—C14—B1123.5 (2)
C33—C32—H32119.4C15—C14—C19116.5 (2)
C32—C33—H33119.7C19—C14—B1119.9 (2)
C34—C33—C32120.6 (4)C14—C15—H15119.0
C34—C33—H33119.7C16—C15—C14121.9 (3)
C33—C34—H34120.2C16—C15—H15119.0
C35—C34—C33119.5 (5)C15—C16—H16120.0
C35—C34—H34120.2C17—C16—C15120.0 (3)
C34—C35—H35119.7C17—C16—H16120.0
C34—C35—C36120.7 (4)C16—C17—H17120.1
C36—C35—H35119.7C16—C17—C18119.8 (3)
C31—C36—H36118.8C18—C17—H17120.1
C35—C36—C31122.3 (4)C17—C18—H18120.0
C35—C36—H36118.8C17—C18—C19120.1 (3)
C38—C37—B2123.9 (3)C19—C18—H18120.0
C38—C37—C42115.7 (3)C14—C19—H19119.2
C42—C37—B2120.4 (2)C18—C19—C14121.7 (3)
C37—C38—H38118.9C18—C19—H19119.2
C37—C38—C39122.2 (3)N1—C20—H20A109.3
C39—C38—H38118.9N1—C20—H20B109.3
C38—C39—H39120.0N1—C20—C21111.6 (3)
C40—C39—C38120.1 (3)H20A—C20—H20B108.0
C40—C39—H39120.0C21—C20—H20A109.3
C39—C40—H40120.5C21—C20—H20B109.3
C41—C40—C39119.1 (3)C20—C21—H21A109.5
C41—C40—H40120.5C20—C21—H21B109.5
C40—C41—H41119.7C20—C21—H21C109.5
C40—C41—C42120.6 (3)H21A—C21—H21B109.5
C42—C41—H41119.7H21A—C21—H21C109.5
C37—C42—H42118.8H21B—C21—H21C109.5
C41—C42—C37122.4 (3)N1—C22—H22A109.6
C41—C42—H42118.8N1—C22—H22B109.6
N2—C43—H43A108.9H22A—C22—H22B108.1
N2—C43—H43B108.9C23—C22—N1110.2 (4)
N2—C43—C44113.3 (3)C23—C22—H22A109.6
H43A—C43—H43B107.7C23—C22—H22B109.6
C44—C43—H43A108.9C22—C23—H23A109.5
C44—C43—H43B108.9C22—C23—H23B109.5
C43—C44—H44A109.5C22—C23—H23C109.5
C43—C44—H44B109.5H23A—C23—H23B109.5
C43—C44—H44C109.5H23A—C23—H23C109.5
H44A—C44—H44B109.5H23B—C23—H23C109.5
O1—C1—C2—C3177.0 (4)C31—B2—O4—C3079.9 (3)
O1—C1—C2—C77.5 (5)C31—B2—C37—C388.7 (4)
O1—B1—O2—C740.4 (3)C31—B2—C37—C42172.0 (2)
O1—B1—C8—C913.0 (4)C31—C32—C33—C340.3 (6)
O1—B1—C8—C13167.9 (2)C32—C31—C36—C350.4 (4)
O1—B1—C14—C15105.6 (3)C32—C33—C34—C350.8 (7)
O1—B1—C14—C1971.5 (3)C33—C34—C35—C361.3 (6)
N1—C5—C6—C7176.8 (3)C34—C35—C36—C310.7 (5)
C1—O1—B1—O233.7 (3)C36—C31—C32—C330.9 (4)
C1—O1—B1—C886.4 (3)C37—B2—O3—C24147.9 (2)
C1—O1—B1—C14148.5 (3)C37—B2—O4—C30153.1 (2)
C1—C2—C3—C4176.2 (4)C37—B2—C31—C3296.0 (3)
C1—C2—C7—O21.3 (5)C37—B2—C31—C3677.3 (3)
C1—C2—C7—C6175.3 (3)C37—C38—C39—C400.9 (6)
B1—O1—C1—C212.1 (5)C38—C37—C42—C410.8 (4)
B1—O2—C7—C224.8 (4)C38—C39—C40—C410.7 (6)
B1—O2—C7—C6158.6 (3)C39—C40—C41—C420.2 (5)
B1—C8—C9—C10179.7 (3)C40—C41—C42—C371.0 (5)
B1—C8—C13—C12179.4 (3)C42—C37—C38—C390.2 (5)
B1—C14—C15—C16177.0 (2)C43—N2—C28—C274.5 (4)
B1—C14—C19—C18176.8 (3)C43—N2—C28—C29175.7 (2)
O2—B1—C8—C9131.1 (3)C43—N2—C45—C46100.7 (3)
O2—B1—C8—C1349.8 (3)C45—N2—C28—C27172.7 (3)
O2—B1—C14—C15139.1 (2)C45—N2—C28—C297.1 (4)
O2—B1—C14—C1943.8 (3)C45—N2—C43—C4489.6 (4)
N2—C28—C29—C30177.7 (2)C2—C3—C4—C50.2 (7)
B2—O3—C24—C2510.8 (4)C3—C2—C7—O2177.0 (3)
B2—O4—C30—C2522.6 (3)C3—C2—C7—C60.4 (5)
B2—O4—C30—C29160.8 (2)C3—C4—C5—N1177.8 (4)
B2—C31—C32—C33172.7 (3)C3—C4—C5—C61.3 (6)
B2—C31—C36—C35173.4 (3)C4—C5—C6—C72.3 (5)
B2—C37—C38—C39179.2 (3)C5—N1—C20—C2185.1 (5)
B2—C37—C42—C41179.8 (3)C5—N1—C22—C2387.7 (4)
O3—B2—O4—C3037.9 (3)C5—C6—C7—O2178.4 (3)
O3—B2—C31—C3223.0 (3)C5—C6—C7—C21.9 (5)
O3—B2—C31—C36163.8 (2)C7—C2—C3—C40.6 (6)
O3—B2—C37—C38110.8 (3)C8—B1—O2—C777.5 (3)
O3—B2—C37—C4268.5 (3)C8—B1—C14—C1513.9 (4)
O3—C24—C25—C26177.4 (3)C8—B1—C14—C19168.9 (2)
O3—C24—C25—C308.6 (4)C8—C9—C10—C111.0 (5)
O4—B2—O3—C2431.6 (3)C9—C8—C13—C120.3 (5)
O4—B2—C31—C32140.8 (3)C9—C10—C11—C120.9 (6)
O4—B2—C31—C3645.9 (3)C10—C11—C12—C130.6 (6)
O4—B2—C37—C38133.2 (3)C11—C12—C13—C80.3 (6)
O4—B2—C37—C4247.5 (3)C13—C8—C9—C100.6 (4)
C24—C25—C26—C27175.9 (3)C14—B1—O2—C7154.2 (2)
C24—C25—C30—O42.8 (4)C14—B1—C8—C9105.5 (3)
C24—C25—C30—C29173.9 (2)C14—B1—C8—C1373.5 (3)
C25—C26—C27—C282.0 (5)C14—C15—C16—C170.3 (4)
C26—C25—C30—O4177.1 (2)C15—C14—C19—C180.6 (4)
C26—C25—C30—C290.5 (4)C15—C16—C17—C180.6 (5)
C26—C27—C28—N2180.0 (3)C16—C17—C18—C190.3 (5)
C26—C27—C28—C290.1 (4)C17—C18—C19—C140.3 (5)
C27—C28—C29—C302.5 (4)C19—C14—C15—C160.2 (4)
C28—N2—C43—C4487.7 (4)C20—N1—C5—C41.3 (5)
C28—N2—C45—C4676.7 (3)C20—N1—C5—C6179.7 (3)
C28—C29—C30—O4179.2 (2)C20—N1—C22—C2390.9 (4)
C28—C29—C30—C252.6 (4)C22—N1—C5—C4179.7 (4)
C30—C25—C26—C271.8 (4)C22—N1—C5—C61.2 (5)
C31—B2—O3—C2488.0 (3)C22—N1—C20—C2196.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4, Cg7, Cg8 and Cg9 are the centroids of rings C3–C13, C14–C19, C25–C30, C31–C36 and C37–C42, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···O20.932.513.343 (3)149
C1—H1···O4i0.932.553.334 (3)142
C3—H3···Cg9i0.932.593.510 (4)169
C23—H23A···Cg90.962.883.771 (5)155
C26—H26···Cg40.932.663.562 (3)164
C46—H46B···Cg4ii0.962.693.623 (4)164
C21—H21A···Cg3iii0.962.873.815 (5)168
C43—H43B···Cg7iv0.962.933.626 (3)129
C44—H44C···Cg8iv0.962.953.876 (4)162
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z+2.
Photophysical data of examined compounds (in CHCl3, 10 µM) top
CompoundAbsorptionEmissionStokes shift
λabs (nm) / (ε 103 M-1.cm-1)λem (nm)Intensity (a.u.)Δν (cm-1)
Et2N-CHO343 (111)425224-
Et2N-Bz436 (65); 504 (5)481 / 51019533 / 185163327
complex (I)347 (73)432273495670
 

Acknowledgements

We sincerely thank the program NAFOSTED–FWO between Vietnam and Belgium, which has sponsored this work under project No. FWO.104.2020.03 (project No. G0E5321N on the Flemish side). LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

Funding information

Funding for this research was provided by: Herculesstichting (grant No. AKUL/09/0035); National Foundation for Science and Technology Development (grant No. FWO.104.2020.03); Fonds Wetenschappelijk Onderzoek (grant No. G0E5321N).

References

First citationAl-Sharif, H. H. T., Ziessel, R., Waddell, P. G., Dixon, C. & Harriman, A. (2020). J. Phys. Chem. A, 124, 2160–2172.  Web of Science CAS PubMed Google Scholar
First citationBhat, M., Karnad, S. & Belagali, S. L. (2017). World J. Pharm. Res. 6, 610–616.  CAS Google Scholar
First citationCeramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R. & Sinicropi, M. S. (2022). Antibiotics 11, 191.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290–2310.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332–4353.  Web of Science CrossRef Google Scholar
First citationKachwal, V., Vamsi Krishna, I. S., Fageria, L., Chaudhary, J., Kinkar Roy, R., Chowdhury, R. & Laskar, I. R. (2018). Analyst, 143, 3741–3748.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhan, S. A., Ullah, Q., Almalki, A. S. A., Kumar, S., Obaid, R. J., Alsharif, M. A., Alfaifi, S. Y. & Hashmi, A. A. (2021). J. Mol. Liq. 328, 115407.  Web of Science CrossRef Google Scholar
First citationKliegel, W., Drückler, K., Rettig, S. J. & Trotter, J. (1993). Can. J. Chem. 71, 919–923.  CSD CrossRef CAS Web of Science Google Scholar
First citationKliegel, W., Metge, J., Rettig, S. J. & Trotter, J. (1997). Can. J. Chem. 75, 1203–1214.  CSD CrossRef CAS Web of Science Google Scholar
First citationKliegel, W., Tajerbashi, M., Rettig, S. J. & Trotter, J. (1989). Can. J. Chem. 67, 1636–1643.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, D., Zhang, H. & Wang, Y. (2013). Chem. Soc. Rev. 42, 8416–8433.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLight, M. E., Quesada, R. & Gale, P. A. (2016). Private Communication (refcode ALUBOA). CCDC, Cambridge, England.  Google Scholar
First citationMacé, A., Hamrouni, K., Gauthier, E. S., Jean, M., Vanthuyne, N., Frédéric, L., Pieters, G., Caytan, E., Roisnel, T., Aloui, F., Srebro–Hooper, M., Carboni, B., Berrée, F. & Crassous, J. (2021). Chem. Eur. J. 27, 7959–7967.  Web of Science PubMed Google Scholar
First citationMassue, J., Jacquemin, D. & Ulrich, G. (2021). Organics 2, 365-375.  CrossRef CAS Google Scholar
First citationMuhammad, S., Kumar, S., Koh, J., Saravanabhavan, M., Ayub, K. & Chaudhary, M. (2018). Mol. Simul. 44, 1191–1199.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z., Han, X., Hu, W., Bai, H., Peng, B., Ji, L., Fan, Q., Li, L. & Huang, W. (2020). Chem. Soc. Rev. 49, 7533–7567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShinde, P. K. & Waghamode, K. T. (2017). Int. J. Sci. Res. 7, 365–370.  Google Scholar
First citationSović, I., Orehovec, I., Stilinović, V., Basarić, N. & Karminski-Zamola, G. (2016). Monatsh. Chem. 147, 1825–1837.  Google Scholar
First citationVidyasagar, C. C., Muñoz Flores, B. M., Jiménez-Pérez, V. M. & Gurubasavaraj, P. M. (2019). Materials Today Chemistry, 11, 133–155.  Web of Science CrossRef CAS Google Scholar
First citationZhao, N., Ma, C., Yang, W., Yin, W., Wei, J. & Li, N. (2019). Chem. Commun. 55, 8494–8497.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds