research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of poly[[tetra­aqua­(μ-1,3,4,7,8,10,12,13,16,17,19,22-dodeca­aza­tetra­cyclo­[8.8.4.13,17.18,12]tetra­cosane-5,6,14,15,20,21-hexaonato)iron(IV)dilithium] tetra­hydrate]

crossmark logo

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, bPetruPoni Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41 A, Iasi 700487, Romania, and cInnovation development center ABN, Pirogov str.2/37, 01030 Kiev, Ukraine
*Correspondence e-mail: plutenkom@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 5 September 2023; accepted 28 September 2023; online 19 October 2023)

The title compound, [FeLi2(C12H12N12O6)(H2O)4]·4H2O, consists of iron complex anions, lithium cations and water mol­ecules. The complex anion shows a clathrochelate topology. The coordination geometry of the FeIV centre is inter­mediate between a trigonal prism and a trigonal anti­prism. In the crystal, the complex anions are connected through two Li cations into dimers, which are connected by Li—O bonds, forming infinite chains along the b-axis direction.

1. Chemical context

In 2017, a series of unprecedentedly stable iron(IV) complexes was described (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]). The substances can be obtained by a one-pot template reaction between iron(III) salts, oxalodihydrazide and formaldehyde in the presence of atmospheric oxygen in alkaline aqueous media. All complexes possess the clathrochelate topology with very similar geometric parameters for the FeIV atom but different crystal packings. Further studies showed that these compounds are promising redox catalysts for photochemical water splitting (Shylin et al., 2019[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019). Faraday Discuss. 215, 162-174.]) and can be used as building blocks for obtaining new metal–organic frameworks (Xu et al., 2020a[Xu, Y., Hu, Z., Wu, L., Li, M., Wang, Z. & Song, Y. (2020a). Polyhedron, 175, 114243.],b[Xu, Y., Wu, L.-N., Li, M.-X., Shi, F.-N. & Wang, Z.-X. (2020b). Inorg. Chem. Commun. 117, 107950.], 2020[Xu, Y., Li, C., Wu, X., Li, M.-X., Ma, Y., Yang, H., Zeng, Q., Sessler, J. L. & Wang, Z.-X. (2022). J. Am. Chem. Soc. 144, 18834-18843.]).

[Scheme 1]

Here, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title compound Li2[FeL]·8H2O (H6L = (1s,3s,8s,10s,12s,17s)-1,3,4,7,8,10,12,13,16,17,19,22- dodeca­aza­tetra­cyclo­[8.8.4.13,17.18,12]tetra­cosane-5,6,14,15,20,21-hexa­one) (1) obtained as a result of a template reaction between oxalohydrazide, formaldehyde and iron(III) chloride in the presence of atmospheric oxygen (Fig. 1[link]). Thus, the present work is devoted to the further study of the synthetic approach proposed by Tomyn and co-workers (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]). This work is also a continuation of our research into template aldehyde–hydrazide inter­actions in the presence of 3d metal ions (Plutenko et al., 2021a[Plutenko, M. O., Haukka, M., Husak, A. O., Golenya, I. A. & Mulloev, N. U. (2021a). Acta Cryst. E77, 1289-1295.],b[Plutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021b). Acta Cryst. E77, 298-304.]).

[Figure 1]
Figure 1
The synthesis of the title compound.

2. Structural commentary

The title compound crystallizes in the C2/c space group. The unit cell contains eight complex anions [FeL]2−, 16 lithium cations and 64 water mol­ecules (Fig. 2[link]). The coord­ination geometry of the FeIV centre (Fig. 3[link]) is inter­mediate between a trigonal prism (TP, distortion angle φ = 0°) and a trigonal anti­prism (TAP, distortion angle φ = 60°); the distortion angle φ average value being 33.04 (5)°, which is quite close to those of the earlier published FeIV clathrochelates (28.0–31.9°) (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]).

[Figure 2]
Figure 2
The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level.
[Figure 3]
Figure 3
TP–TAP distortion of the FeN6 polyhedron in the complex anion.

The Fe1—N bond distances are in the range 1.9340 (17)–1.9572 (15) Å (Table 1[link]). The N⋯N separations in the hydrazide apical groups vary from 2.670 (2) to 2.701 (3) Å. The height of the coordination polyhedron h is equal to 2.3557 (13) Å. The bite angle α (half of the chelate N—Fe—N′ angle) is equal to 40.53 (4)°, the chelate N—Fe—N′ angles being in the range 80.29 (6)–80.87 (6)°. Thus, all geometric parameters of the FeIV coordination polyhedron are close to those of the earlier published FeIV clathrochelates (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]).

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 1.9405 (15) N5—Fe1—N6 80.87 (8)
Fe1—N2 1.9572 (15) N1⋯N3 2.688 (3)
Fe1—N3 1.9516 (16) N1⋯N3 2.672 (3)
Fe1—N4 1.9504 (16) N3⋯N5 2.673 (2)
Fe1—N5 1.9340 (16) N2⋯N4 2.689 (2)
Fe1—N6 1.9398 (15) N2⋯N6 2.701 (3)
N1—Fe1—N2 80.43 (6) N4⋯N6 2.670 (2)
N3—Fe1—N4 80.29 (6)    

3. Supra­molecular features

It is important to note that the [FeL]2− complex anion is chiral. Both stereoisomers of the complex cation are included in the crystal packing, thus, 1 is a racemate. In the crystal, both chiral isomers are connected through two Li cations (by O4⋯Li2, N10⋯Li2, O1⋯Li2 and O2⋯Li2 inter­actions), forming a racemic dimer {Li2[FeL]2}2−. Such dimers are connected by Li2⋯O5 inter­actions, forming continuous chains along the b-axis direction (Fig. 4[link]).

[Figure 4]
Figure 4
Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines.

In addition, the crystal structure is consolidated by an extensive system of hydrogen bonds (Table 2[link]). Based on the results of recent studies (Lobato et al., 2021[Lobato, A., Salvadó, M. A., Recio, J. M., Taravillo, M. & Baonza, V. G. (2021). Angew. Chem. Int. Ed. 60, 17028-17036.]), the distance of 2.14 Å was used as a criterion for the demarcation of O—H⋯O hydrogen bonds and O⋯H van der Waals inter­actions. According to this criterion, 14 O⋯H contacts were identified as hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H00E⋯O10i 0.86 1.87 2.715 (2) 167
O7—H00F⋯O8ii 0.86 2.08 2.921 (2) 164
O8—H00C⋯O14iii 0.86 1.90 2.759 (2) 175
O8—H00D⋯O13iv 0.86 1.97 2.812 (2) 167
O9—H00G⋯O11iv 0.86 1.97 2.827 (2) 176
O9—H00H⋯O14v 0.86 2.02 2.881 (2) 177
O10—H00A⋯O6vi 0.87 2.00 2.768 (2) 147
O10—H00B⋯O4vii 0.87 1.97 2.8301 (18) 178
O11—H00O⋯O3 0.86 2.05 2.844 (2) 154
O12—H00S⋯O11 0.86 1.97 2.828 (2) 177
O13—H00Q⋯O12iv 0.86 1.88 2.736 (3) 177
O13—H00R⋯O3 0.86 1.93 2.767 (2) 165
O14—H00M⋯O6 0.86 1.98 2.784 (2) 155
O14—H00N⋯O13vii 0.86 2.01 2.867 (2) 176
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) x, y+1, z; (vii) [-x+1, y, -z+{\script{1\over 2}}].

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surfaces of the [FeL]2− complex anion are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm is shown in Fig. 5[link]. According to the Hirshfeld surface, the most noticeable inter­molecular inter­action are Li⋯O contacts (O1⋯Li1, N7⋯Li1, O1⋯Li2, O2⋯Li2, O4⋯Li2, O5⋯Li2, N10⋯Li2) and O–H⋯O hydrogen bonds (O10—H00B⋯O4, O13—H00R⋯O3, O11—H00O⋯O3, O14—H00M⋯O6, O10—H00A⋯O6).

[Figure 5]
Figure 5
The Hirshfeld surfaces of the complex anion mapped over dnorm.

A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in grey. Fig. 6[link] shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface. The most significant contributions to the Hirshfeld surface are from O⋯H/H⋯O (33.3%) and H⋯H (32.9%) contacts. In addition, N⋯H/H⋯N (8.9%) is also a highly significant contribution to the total Hirshfeld surface.

[Figure 6]
Figure 6
(a) Full two-dimensional fingerprint plot of the complex anion and delineated into (b) O⋯H/H⋯O (33.3%) (c) H⋯H (32.9%) and (d) N⋯H/H⋯N (8.9%) contacts.

5. Database survey

A search in the Cambridge Structural Database (CSD version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in nine hits dealing with hydrazide-based clathrochelates of 3d-metals. There are three structures of MnIV clathrochelates (Shylin et al., 2021[Shylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060-11063.]; Xu et al., 2022[Xu, Y., Li, C., Wu, X., Li, M.-X., Ma, Y., Yang, H., Zeng, Q., Sessler, J. L. & Wang, Z.-X. (2022). J. Am. Chem. Soc. 144, 18834-18843.]), three structures of FeIV clathrochelates (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]) and three hits dealing with FeIV clathrochelate-based metal-organic frameworks (MOFs). The MOFs reveal a 1D coordination polymer topology: the FeIV clathrochelate complex anions being connected by Mn2+ (Xu et al., 2020b[Xu, Y., Wu, L.-N., Li, M.-X., Shi, F.-N. & Wang, Z.-X. (2020b). Inorg. Chem. Commun. 117, 107950.]) or Cu2+ (Xu et al., 2020a[Xu, Y., Hu, Z., Wu, L., Li, M., Wang, Z. & Song, Y. (2020a). Polyhedron, 175, 114243.], 2022[Xu, Y., Li, C., Wu, X., Li, M.-X., Ma, Y., Yang, H., Zeng, Q., Sessler, J. L. & Wang, Z.-X. (2022). J. Am. Chem. Soc. 144, 18834-18843.]) cations, forming zigzag hetero-bimetallic chains, and being bimetallic helps to understand the link with Mn2+ and Cu2+.

6. Synthesis and crystallization

To a mixture of 0.354 g oxalodihydrazide (3 mmol) and 0.144 g LiOH (6 mmol), 10 ml of FeCl3 aqueous solution (1 mmol) were added dropwise. Then an aqueous formaldehyde solution (37% in water, 0.73 ml, 9 mmol) was added. The reaction mixture was stirred for 2 h under slight warming (∼313 K), filtered off, and the solvent removed on a rotary evaporator. The crude product was dissolved in 5 ml of water and left for crystallization by slow diffusion of tetra­hydro­furan vapour. Single crystals suitable for X-ray analysis were obtained after one month. Yield 0.124g (22%). IR (KBr, cm−1): 3409 (O—H), 2942 (C—H), 1648 (C=O amide I). Analysis calculated for C12H28FeLi2N12O14: C 22.73, H 4.45, N 26.51. Found: C 22.79, H 4.36, N 26.73.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The water hydrogen atoms were located in a difference-Fourier map and refined isotropically. Other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.99 Å, and Uiso(H)= 1.2Ueq(parent atom).

Table 3
Experimental details

Crystal data
Chemical formula [FeLi2(C12H12N12O6)(H2O)4]·4H2O
Mr 634.19
Crystal system, space group Monoclinic, C2/c
Temperature (K) 240
a, b, c (Å) 25.4076 (8), 9.9854 (2), 22.3570 (8)
β (°) 120.265 (5)
V3) 4899.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.35 × 0.25 × 0.15
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.])
Tmin, Tmax 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15658, 5611, 4704
Rint 0.028
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.05
No. of reflections 5611
No. of parameters 370
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

Poly[[tetraaqua(µ-1,3,4,7,8,10,12,13,16,17,19,22-dodecaazatetracyclo[8.8.4.13,17.18,12]tetracosane-5,6,14,15,20,21-hexaonato)iron(IV)dilithium] tetrahydrate] top
Crystal data top
[FeLi2(C12H12N12O6)(H2O)4]·4H2OF(000) = 2624
Mr = 634.19Dx = 1.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.4076 (8) ÅCell parameters from 6976 reflections
b = 9.9854 (2) Åθ = 2.3–29.0°
c = 22.3570 (8) ŵ = 0.71 mm1
β = 120.265 (5)°T = 240 K
V = 4899.0 (3) Å3Plate, clear dark brown
Z = 80.35 × 0.25 × 0.15 mm
Data collection top
Xcalibur, Eos
diffractometer
4704 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.028
ω scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 3134
Tmin = 0.856, Tmax = 1.000k = 1212
15658 measured reflectionsl = 3028
5611 independent reflections3 standard reflections every 100 reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0346P)2 + 4.922P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5611 reflectionsΔρmax = 0.36 e Å3
370 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.46624 (2)0.22908 (3)0.38076 (2)0.01262 (8)
Li10.31903 (16)0.2166 (4)0.4662 (2)0.0285 (8)
Li20.51611 (16)0.6998 (4)0.36559 (18)0.0247 (8)
O10.41814 (6)0.20924 (15)0.52715 (7)0.0253 (3)
O20.53645 (6)0.30502 (15)0.58348 (7)0.0235 (3)
O30.34175 (7)0.45564 (14)0.22349 (8)0.0304 (4)
O40.45683 (6)0.57917 (13)0.28837 (7)0.0210 (3)
O50.46493 (6)0.13454 (14)0.30406 (7)0.0224 (3)
O60.57720 (6)0.00286 (15)0.34614 (8)0.0271 (3)
O70.32263 (7)0.33148 (17)0.53909 (8)0.0347 (4)
H00E0.3504620.3175680.5813920.052*
H00F0.2911470.3547330.5414520.052*
O80.28280 (7)0.04068 (15)0.46559 (8)0.0301 (4)
H00C0.2867650.0032400.5022610.045*
H00D0.2727420.0235730.4362000.045*
O90.25088 (7)0.32555 (17)0.39188 (8)0.0368 (4)
H00G0.2222230.2982880.3522070.055*
H00H0.2371990.3988790.3990400.055*
O100.57787 (6)0.72100 (14)0.33567 (7)0.0204 (3)
H00A0.5781720.8034270.3239400.031*
H00B0.5665420.6762970.2979300.031*
O110.33933 (7)0.73725 (15)0.24099 (8)0.0291 (3)
H00O0.3492280.6596210.2331940.044*
H00P0.3733270.7795210.2634400.044*
O120.32125 (8)0.6666 (2)0.35183 (9)0.0512 (5)
H00S0.3261630.6850110.3173560.077*
H00T0.3569210.6760470.3876260.077*
O130.25329 (7)0.30629 (16)0.11515 (8)0.0351 (4)
H00Q0.2312030.2611200.1270060.053*
H00R0.2815840.3401850.1532550.053*
O140.69993 (7)0.06720 (16)0.41220 (8)0.0307 (4)
H00M0.6609230.0694940.3863200.046*
H00N0.7121630.1409470.4033850.046*
N10.41463 (7)0.22279 (16)0.42162 (8)0.0162 (3)
N20.52862 (7)0.24332 (15)0.47873 (8)0.0150 (3)
N30.39332 (7)0.27406 (16)0.29324 (8)0.0163 (3)
N40.48454 (7)0.41507 (15)0.37156 (8)0.0148 (3)
N50.44518 (7)0.04326 (16)0.35575 (8)0.0170 (3)
N60.53075 (7)0.18096 (16)0.36242 (8)0.0154 (3)
N70.35514 (7)0.16379 (17)0.38745 (8)0.0190 (3)
N80.58616 (7)0.30474 (16)0.50012 (8)0.0165 (3)
N90.33731 (7)0.20469 (16)0.26972 (8)0.0186 (3)
N100.54501 (7)0.46721 (15)0.40384 (8)0.0162 (3)
N110.38492 (7)0.00511 (17)0.32933 (8)0.0197 (3)
N120.58700 (7)0.25184 (16)0.39290 (8)0.0171 (3)
C10.44139 (8)0.22632 (19)0.49052 (10)0.0161 (4)
C20.50845 (8)0.26239 (19)0.52339 (9)0.0160 (4)
C30.38748 (9)0.39944 (19)0.27093 (9)0.0184 (4)
C40.44690 (8)0.47478 (19)0.31130 (9)0.0164 (4)
C50.47741 (8)0.02467 (19)0.33310 (9)0.0165 (4)
C60.53471 (8)0.05244 (19)0.34806 (9)0.0165 (4)
C70.31630 (9)0.2270 (2)0.31928 (10)0.0212 (4)
H01A0.2747870.1919140.2994320.025*
H01B0.3147160.3235970.3259170.025*
C80.57650 (8)0.44681 (19)0.47912 (9)0.0176 (4)
H00I0.5526400.4892200.4973010.021*
H00J0.6161520.4918000.5001960.021*
C90.34453 (9)0.0618 (2)0.26241 (10)0.0222 (4)
H01C0.3613260.0494880.2317840.027*
H01D0.3043730.0189840.2404600.027*
C100.57816 (9)0.39403 (19)0.37480 (10)0.0189 (4)
H00K0.5553320.4026700.3242510.023*
H00L0.6180740.4360270.3917780.023*
C110.36310 (9)0.0196 (2)0.37765 (10)0.0212 (4)
H01G0.3921100.0194960.4226520.025*
H01H0.3239820.0261810.3606280.025*
C120.61777 (8)0.2364 (2)0.46903 (10)0.0186 (4)
H01E0.6208620.1408370.4802630.022*
H01F0.6592660.2720300.4896940.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01409 (13)0.01225 (15)0.01214 (13)0.00028 (10)0.00707 (11)0.00015 (10)
Li10.0260 (18)0.031 (2)0.032 (2)0.0012 (16)0.0170 (17)0.0024 (16)
Li20.0267 (18)0.025 (2)0.0242 (18)0.0035 (15)0.0143 (16)0.0052 (14)
O10.0245 (7)0.0362 (9)0.0220 (7)0.0004 (6)0.0166 (7)0.0002 (6)
O20.0234 (7)0.0315 (9)0.0153 (7)0.0010 (6)0.0094 (6)0.0052 (6)
O30.0247 (8)0.0209 (8)0.0265 (8)0.0012 (6)0.0012 (7)0.0038 (6)
O40.0286 (7)0.0152 (7)0.0164 (7)0.0035 (6)0.0093 (6)0.0027 (5)
O50.0249 (7)0.0157 (8)0.0269 (8)0.0026 (6)0.0133 (7)0.0063 (6)
O60.0240 (7)0.0214 (8)0.0427 (9)0.0018 (6)0.0217 (7)0.0083 (7)
O70.0203 (7)0.0529 (11)0.0271 (8)0.0073 (7)0.0090 (7)0.0051 (7)
O80.0375 (9)0.0247 (9)0.0297 (8)0.0023 (7)0.0182 (8)0.0007 (6)
O90.0380 (9)0.0388 (10)0.0264 (8)0.0154 (8)0.0109 (8)0.0026 (7)
O100.0254 (7)0.0183 (7)0.0179 (7)0.0010 (6)0.0113 (6)0.0015 (5)
O110.0231 (7)0.0243 (8)0.0357 (9)0.0002 (6)0.0117 (7)0.0024 (7)
O120.0307 (9)0.0873 (15)0.0284 (9)0.0030 (10)0.0096 (8)0.0016 (9)
O130.0319 (8)0.0386 (10)0.0213 (8)0.0010 (7)0.0034 (7)0.0017 (7)
O140.0262 (8)0.0350 (9)0.0318 (8)0.0028 (7)0.0153 (7)0.0035 (7)
N10.0129 (7)0.0198 (9)0.0160 (8)0.0002 (6)0.0073 (7)0.0001 (6)
N20.0128 (7)0.0172 (9)0.0141 (8)0.0001 (6)0.0062 (7)0.0005 (6)
N30.0153 (7)0.0164 (9)0.0132 (8)0.0040 (6)0.0043 (7)0.0006 (6)
N40.0153 (7)0.0130 (8)0.0140 (8)0.0013 (6)0.0058 (7)0.0003 (6)
N50.0180 (8)0.0138 (9)0.0211 (8)0.0028 (6)0.0113 (7)0.0015 (6)
N60.0163 (7)0.0144 (8)0.0182 (8)0.0024 (6)0.0107 (7)0.0024 (6)
N70.0146 (7)0.0214 (9)0.0222 (8)0.0026 (6)0.0101 (7)0.0001 (7)
N80.0140 (7)0.0182 (9)0.0150 (8)0.0008 (6)0.0057 (7)0.0008 (6)
N90.0152 (8)0.0214 (9)0.0161 (8)0.0038 (6)0.0055 (7)0.0012 (6)
N100.0156 (7)0.0152 (9)0.0173 (8)0.0027 (6)0.0078 (7)0.0017 (6)
N110.0179 (8)0.0203 (9)0.0219 (8)0.0037 (7)0.0109 (7)0.0025 (7)
N120.0166 (8)0.0172 (9)0.0197 (8)0.0035 (6)0.0107 (7)0.0022 (6)
C10.0193 (9)0.0138 (10)0.0174 (9)0.0029 (7)0.0108 (8)0.0000 (7)
C20.0193 (9)0.0151 (10)0.0135 (9)0.0045 (7)0.0083 (8)0.0029 (7)
C30.0214 (9)0.0181 (11)0.0129 (9)0.0005 (8)0.0067 (8)0.0010 (7)
C40.0219 (9)0.0140 (10)0.0146 (9)0.0017 (7)0.0102 (8)0.0016 (7)
C50.0198 (9)0.0152 (10)0.0144 (9)0.0006 (7)0.0085 (8)0.0011 (7)
C60.0191 (9)0.0167 (10)0.0148 (9)0.0001 (7)0.0094 (8)0.0006 (7)
C70.0144 (9)0.0254 (11)0.0220 (10)0.0000 (8)0.0080 (8)0.0003 (8)
C80.0177 (9)0.0158 (10)0.0151 (9)0.0025 (7)0.0051 (8)0.0033 (7)
C90.0213 (10)0.0228 (11)0.0198 (10)0.0068 (8)0.0085 (9)0.0051 (8)
C100.0218 (9)0.0175 (11)0.0208 (10)0.0036 (8)0.0132 (9)0.0002 (8)
C110.0213 (10)0.0207 (11)0.0251 (10)0.0047 (8)0.0143 (9)0.0005 (8)
C120.0148 (9)0.0197 (11)0.0207 (10)0.0024 (7)0.0084 (8)0.0013 (8)
Geometric parameters (Å, º) top
Fe1—N51.9340 (16)N1—C11.334 (2)
Fe1—N61.9398 (15)N1—N71.432 (2)
Fe1—N11.9405 (15)N2—C21.346 (2)
Fe1—N41.9504 (15)N2—N81.427 (2)
Fe1—N31.9516 (16)N3—C31.328 (3)
Fe1—N21.9572 (15)N3—N91.424 (2)
Li1—O71.957 (4)N4—C41.336 (2)
Li1—O81.979 (4)N4—N101.426 (2)
Li1—O92.011 (4)N5—C51.343 (2)
Li1—O12.178 (4)N5—N111.420 (2)
Li1—N72.419 (4)N6—C61.339 (2)
Li2—O102.003 (4)N6—N121.424 (2)
Li2—O42.020 (4)N7—C71.476 (3)
Li2—O5i2.125 (4)N7—C111.486 (3)
Li2—O2ii2.148 (4)N8—C121.468 (2)
Li2—O1ii2.308 (4)N8—C81.476 (2)
Li2—N102.456 (4)N9—C91.458 (3)
Li2—C42.732 (4)N9—C71.469 (2)
O1—C11.239 (2)N10—C81.469 (2)
O2—C21.236 (2)N10—C101.489 (2)
O3—C31.244 (2)N11—C111.462 (2)
O4—C41.242 (2)N11—C91.480 (3)
O5—C51.232 (2)N12—C101.462 (2)
O6—C61.232 (2)N12—C121.480 (2)
O7—H00E0.8601C1—C21.520 (3)
O7—H00F0.8598C3—C41.512 (3)
O8—H00C0.8596C5—C61.528 (3)
O8—H00D0.8599C7—H01A0.9800
O9—H00G0.8602C7—H01B0.9800
O9—H00H0.8595C8—H00I0.9800
O10—H00A0.8651C8—H00J0.9800
O10—H00B0.8656C9—H01C0.9800
O11—H00O0.8595C9—H01D0.9800
O11—H00P0.8598C10—H00K0.9800
O12—H00S0.8604C10—H00L0.9800
O12—H00T0.8600C11—H01G0.9800
O13—H00Q0.8595C11—H01H0.9800
O13—H00R0.8601C12—H01E0.9800
O14—H00M0.8600C12—H01F0.9800
O14—H00N0.8599
N5—Fe1—N680.87 (6)C6—N6—Fe1117.50 (12)
N5—Fe1—N187.19 (7)N12—N6—Fe1121.81 (11)
N6—Fe1—N1159.22 (7)N1—N7—C7110.58 (15)
N5—Fe1—N4158.28 (7)N1—N7—C11106.97 (14)
N6—Fe1—N486.67 (7)C7—N7—C11109.38 (15)
N1—Fe1—N4109.51 (7)N1—N7—Li1101.98 (13)
N5—Fe1—N386.93 (7)C7—N7—Li1110.93 (14)
N6—Fe1—N3108.74 (7)C11—N7—Li1116.64 (14)
N1—Fe1—N387.37 (7)N2—N8—C12110.73 (14)
N4—Fe1—N380.29 (6)N2—N8—C8109.18 (14)
N5—Fe1—N2110.08 (7)C12—N8—C8109.81 (15)
N6—Fe1—N287.75 (6)N3—N9—C9111.01 (15)
N1—Fe1—N280.43 (6)N3—N9—C7108.86 (14)
N4—Fe1—N286.97 (6)C9—N9—C7110.30 (16)
N3—Fe1—N2158.35 (7)N4—N10—C8110.79 (14)
O7—Li1—O8110.66 (19)N4—N10—C10107.59 (14)
O7—Li1—O991.73 (17)C8—N10—C10109.30 (14)
O8—Li1—O9105.70 (18)N4—N10—Li296.45 (13)
O7—Li1—O186.84 (15)C8—N10—Li2115.13 (14)
O8—Li1—O1111.20 (18)C10—N10—Li2116.61 (14)
O9—Li1—O1141.0 (2)N5—N11—C11111.48 (15)
O7—Li1—N7149.1 (2)N5—N11—C9108.65 (15)
O8—Li1—N798.46 (16)C11—N11—C9110.05 (15)
O9—Li1—N790.03 (15)N6—N12—C10111.91 (15)
O1—Li1—N772.83 (12)N6—N12—C12108.65 (14)
O10—Li2—O498.61 (16)C10—N12—C12109.73 (15)
O10—Li2—O5i91.62 (15)O1—C1—N1128.60 (18)
O4—Li2—O5i87.79 (15)O1—C1—C2120.30 (17)
O10—Li2—O2ii168.6 (2)N1—C1—C2111.04 (16)
O4—Li2—O2ii92.56 (15)O2—C2—N2128.98 (18)
O5i—Li2—O2ii91.13 (14)O2—C2—C1119.85 (16)
O10—Li2—O1ii91.53 (14)N2—C2—C1111.16 (16)
O4—Li2—O1ii163.8 (2)O3—C3—N3128.68 (18)
O5i—Li2—O1ii104.64 (15)O3—C3—C4120.46 (17)
O2ii—Li2—O1ii77.06 (12)N3—C3—C4110.85 (16)
O10—Li2—N1093.96 (15)O4—C4—N4126.82 (18)
O4—Li2—N1072.34 (12)O4—C4—C3121.36 (17)
O5i—Li2—N10159.95 (18)N4—C4—C3111.81 (16)
O2ii—Li2—N1087.18 (13)O4—C4—Li243.45 (12)
O1ii—Li2—N1094.45 (14)N4—C4—Li286.89 (13)
O10—Li2—C4112.06 (15)C3—C4—Li2154.14 (15)
O4—Li2—C425.02 (7)O5—C5—N5127.19 (18)
O5i—Li2—C4107.80 (15)O5—C5—C6121.85 (17)
O2ii—Li2—C477.53 (12)N5—C5—C6110.96 (16)
O1ii—Li2—C4138.76 (16)O6—C6—N6127.65 (18)
N10—Li2—C452.36 (9)O6—C6—C5121.43 (17)
C1—O1—Li1111.59 (16)N6—C6—C5110.92 (15)
C1—O1—Li2ii107.21 (15)N9—C7—N7113.96 (15)
Li1—O1—Li2ii129.77 (15)N9—C7—H01A108.8
C2—O2—Li2ii113.40 (15)N7—C7—H01A108.8
C4—O4—Li2111.52 (16)N9—C7—H01B108.8
C5—O5—Li2iii116.16 (15)N7—C7—H01B108.8
Li1—O7—H00E119.2H01A—C7—H01B107.7
Li1—O7—H00F123.7N10—C8—N8113.91 (15)
H00E—O7—H00F104.5N10—C8—H00I108.8
Li1—O8—H00C123.3N8—C8—H00I108.8
Li1—O8—H00D128.7N10—C8—H00J108.8
H00C—O8—H00D104.5N8—C8—H00J108.8
Li1—O9—H00G127.6H00I—C8—H00J107.7
Li1—O9—H00H124.6N9—C9—N11113.01 (16)
H00G—O9—H00H104.5N9—C9—H01C109.0
Li2—O10—H00A109.3N11—C9—H01C109.0
Li2—O10—H00B109.8N9—C9—H01D109.0
H00A—O10—H00B104.2N11—C9—H01D109.0
H00O—O11—H00P104.5H01C—C9—H01D107.8
H00S—O12—H00T104.5N12—C10—N10113.43 (15)
H00Q—O13—H00R104.5N12—C10—H00K108.9
H00M—O14—H00N104.5N10—C10—H00K108.9
C1—N1—N7114.41 (15)N12—C10—H00L108.9
C1—N1—Fe1118.07 (12)N10—C10—H00L108.9
N7—N1—Fe1122.96 (11)H00K—C10—H00L107.7
C2—N2—N8113.54 (15)N11—C11—N7113.76 (15)
C2—N2—Fe1116.37 (12)N11—C11—H01G108.8
N8—N2—Fe1121.41 (11)N7—C11—H01G108.8
C3—N3—N9114.73 (15)N11—C11—H01H108.8
C3—N3—Fe1117.61 (12)N7—C11—H01H108.8
N9—N3—Fe1121.70 (12)H01G—C11—H01H107.7
C4—N4—N10112.84 (15)N8—C12—N12113.46 (15)
C4—N4—Fe1116.34 (12)N8—C12—H01E108.9
N10—N4—Fe1123.19 (11)N12—C12—H01E108.9
C5—N5—N11113.94 (15)N8—C12—H01F108.9
C5—N5—Fe1117.46 (13)N12—C12—H01F108.9
N11—N5—Fe1122.00 (12)H01E—C12—H01F107.7
C6—N6—N12114.37 (15)
C1—N1—N7—C7147.87 (16)Fe1—N4—C4—O4162.81 (15)
Fe1—N1—N7—C756.60 (19)N10—N4—C4—C3167.76 (14)
C1—N1—N7—C1193.11 (18)Fe1—N4—C4—C317.16 (19)
Fe1—N1—N7—C1162.43 (18)N10—N4—C4—Li230.62 (15)
C1—N1—N7—Li129.85 (19)Fe1—N4—C4—Li2178.77 (11)
Fe1—N1—N7—Li1174.61 (12)O3—C3—C4—O418.6 (3)
C2—N2—N8—C12155.31 (15)N3—C3—C4—O4160.73 (17)
Fe1—N2—N8—C1258.22 (18)O3—C3—C4—N4161.42 (18)
C2—N2—N8—C883.67 (18)N3—C3—C4—N419.2 (2)
Fe1—N2—N8—C862.80 (17)O3—C3—C4—Li227.6 (4)
C3—N3—N9—C9149.01 (16)N3—C3—C4—Li2153.0 (3)
Fe1—N3—N9—C958.87 (18)Li2iii—O5—C5—N5104.0 (2)
C3—N3—N9—C789.40 (19)Li2iii—O5—C5—C675.8 (2)
Fe1—N3—N9—C762.73 (18)N11—N5—C5—O514.6 (3)
C4—N4—N10—C8154.71 (15)Fe1—N5—C5—O5166.75 (16)
Fe1—N4—N10—C857.00 (18)N11—N5—C5—C6165.57 (15)
C4—N4—N10—C1085.87 (17)Fe1—N5—C5—C613.4 (2)
Fe1—N4—N10—C1062.42 (17)N12—N6—C6—O614.4 (3)
C4—N4—N10—Li234.70 (17)Fe1—N6—C6—O6167.09 (16)
Fe1—N4—N10—Li2177.01 (12)N12—N6—C6—C5165.63 (14)
C5—N5—N11—C11151.14 (16)Fe1—N6—C6—C513.0 (2)
Fe1—N5—N11—C1158.11 (19)O5—C5—C6—O616.4 (3)
C5—N5—N11—C987.42 (19)N5—C5—C6—O6163.45 (18)
Fe1—N5—N11—C963.32 (18)O5—C5—C6—N6163.53 (17)
C6—N6—N12—C10149.74 (16)N5—C5—C6—N616.6 (2)
Fe1—N6—N12—C1058.92 (18)N3—N9—C7—N767.7 (2)
C6—N6—N12—C1288.94 (18)C9—N9—C7—N754.3 (2)
Fe1—N6—N12—C1262.40 (17)N1—N7—C7—N964.7 (2)
Li1—O1—C1—N113.6 (3)C11—N7—C7—N952.8 (2)
Li2ii—O1—C1—N1161.0 (2)Li1—N7—C7—N9177.14 (15)
Li1—O1—C1—C2163.46 (17)N4—N10—C8—N864.37 (19)
Li2ii—O1—C1—C216.0 (2)C10—N10—C8—N854.02 (19)
N7—N1—C1—O114.7 (3)Li2—N10—C8—N8172.47 (14)
Fe1—N1—C1—O1171.54 (16)N2—N8—C8—N1067.39 (19)
N7—N1—C1—C2168.01 (15)C12—N8—C8—N1054.19 (19)
Fe1—N1—C1—C211.2 (2)N3—N9—C9—N1166.1 (2)
Li2ii—O2—C2—N2175.26 (19)C7—N9—C9—N1154.7 (2)
Li2ii—O2—C2—C16.0 (2)N5—N11—C9—N967.47 (19)
N8—N2—C2—O213.0 (3)C11—N11—C9—N954.8 (2)
Fe1—N2—C2—O2161.26 (17)N6—N12—C10—N1065.88 (19)
N8—N2—C2—C1165.79 (15)C12—N12—C10—N1054.8 (2)
Fe1—N2—C2—C117.5 (2)N4—N10—C10—N1265.81 (19)
O1—C1—C2—O216.8 (3)C8—N10—C10—N1254.6 (2)
N1—C1—C2—O2160.70 (17)Li2—N10—C10—N12172.70 (14)
O1—C1—C2—N2164.26 (17)N5—N11—C11—N766.5 (2)
N1—C1—C2—N218.2 (2)C9—N11—C11—N754.2 (2)
N9—N3—C3—O314.3 (3)N1—N7—C11—N1166.78 (19)
Fe1—N3—C3—O3167.66 (17)C7—N7—C11—N1153.0 (2)
N9—N3—C3—C4166.41 (15)Li1—N7—C11—N11179.90 (15)
Fe1—N3—C3—C413.1 (2)N2—N8—C12—N1266.67 (19)
Li2—O4—C4—N427.3 (3)C8—N8—C12—N1254.0 (2)
Li2—O4—C4—C3152.74 (17)N6—N12—C12—N867.94 (19)
N10—N4—C4—O412.2 (3)C10—N12—C12—N854.7 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H00E···O10ii0.861.872.715 (2)167
O7—H00F···O8iv0.862.082.921 (2)164
O8—H00C···O14v0.861.902.759 (2)175
O8—H00D···O13vi0.861.972.812 (2)167
O9—H00G···O11vi0.861.972.827 (2)176
O9—H00H···O14vii0.862.022.881 (2)177
O10—H00A···O6i0.872.002.768 (2)147
O10—H00B···O4viii0.871.972.8301 (18)178
O11—H00O···O30.862.052.844 (2)154
O12—H00S···O110.861.972.828 (2)177
O13—H00Q···O12vi0.861.882.736 (3)177
O13—H00R···O30.861.932.767 (2)165
O14—H00M···O60.861.982.784 (2)155
O14—H00N···O13viii0.862.012.867 (2)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z; (viii) x+1, y, z+1/2.
Selected geometric parameters (Å, °) top
Fe1—N11.9405 (15)N5—Fe1—N680.87 (8)
Fe1—N21.9572 (15)N1···N32.688 (3)
Fe1—N31.9516 (16)N1···N32.672 (3)
Fe1—N41.9504 (16)N3···N52.673 (2)
Fe1—N51.9340 (16)N2···N42.689 (2)
Fe1—N61.9398 (15)N2···N62.701 (3)
N1—Fe1—N280.43 (6)N4···N62.670 (2)
N3—Fe1—N480.29 (6)
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (grants No. 22BF037–03 and 22BF037–09 at Taras Shevchenko National University of Kyiv). This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 778245.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLobato, A., Salvadó, M. A., Recio, J. M., Taravillo, M. & Baonza, V. G. (2021). Angew. Chem. Int. Ed. 60, 17028–17036.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPlutenko, M. O., Haukka, M., Husak, A. O., Golenya, I. A. & Mulloev, N. U. (2021a). Acta Cryst. E77, 1289–1295.  CSD CrossRef IUCr Journals Google Scholar
First citationPlutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021b). Acta Cryst. E77, 298–304.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019). Faraday Discuss. 215, 162–174.  CrossRef CAS PubMed Google Scholar
First citationShylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060–11063.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1–9.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationXu, Y., Hu, Z., Wu, L., Li, M., Wang, Z. & Song, Y. (2020a). Polyhedron, 175, 114243.  CSD CrossRef Google Scholar
First citationXu, Y., Li, C., Wu, X., Li, M.-X., Ma, Y., Yang, H., Zeng, Q., Sessler, J. L. & Wang, Z.-X. (2022). J. Am. Chem. Soc. 144, 18834–18843.  CSD CrossRef CAS PubMed Google Scholar
First citationXu, Y., Wu, L.-N., Li, M.-X., Shi, F.-N. & Wang, Z.-X. (2020b). Inorg. Chem. Commun. 117, 107950.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds