research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-(anthracen-9-yl)-1-(tert-butyl­di­methyl­sil­yl)-3,6-di­hydro-1λ4,2λ4-aza­borinine

crossmark logo

aUniversity of Bremen, Institute for Organic and Analytical Chemistry, 28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany, cUniversity of Bremen, Institute for Physical and Theoretical Chemistry, 28359 Bremen, Germany, dUniversity of Bremen, Institute for Inorganic Chemistry and Crystallography, 28359 Bremen, Germany, and eBremen Center for Computational Materials Science, 28359 Bremen, Germany
*Correspondence e-mail: staubitz@uni-bremen.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 18 August 2023; accepted 23 September 2023; online 10 October 2023)

The title compound, C24H30BNSi (I), is an asymmetric 1,2,3,6-tetra­hydro-1,2-aza­borinine consisting of a BN-substituted cyclo­hexa­diene analog with a B-anthracenyl substituent. A ring-closing metathesis with subsequent substitution of the obtained BCl 1,2-aza­borinine using anthracenyl lithium yielded the title compound I. The asymmetric unit (Z = 8) belongs to the ortho­rhom­bic space group Pbca and shows an elongated N—C bond compared to previously reported BN-1,4-cyclo­hexa­diene [Abbey et al. (2008[Abbey, E. R., Zakharov, L. N. & Liu, S.-Y. (2008). J. Am. Chem. Soc. 130, 7250-7252.]) J. Am. Chem. Soc. 130, 7250–7252]. The primarily contributing surface inter­actions are H⋯H and C⋯H/H⋯C (as elucidated by Hirshfeld surface analysis) which are dominated by van der Waals forces. Moreover, the non-aromatic BN heterocycle and the protecting group exhibit intra- and inter­molecular C—H⋯π inter­actions, respectively, with the anthracenyl substituent.

1. Chemical context

The formal replacement of a C–C bond with a B–N motif (BN isosterism) in six-membered rings changes their reactivity, as well as the dipole moments and electronic and optical properties (Bélanger-Chabot et al., 2017[Bélanger-Chabot, G., Braunschweig, H. & Roy, D. K. (2017). Eur. J. Inorg. Chem. pp. 4353-4368.]; Campbell et al., 2012[Campbell, P. G., Marwitz, A. J. & Liu, S. Y. (2012). Angew. Chem. Int. Ed. 51, 6074-6092.]; Appiarius et al., 2023[Appiarius, Y. & Staubitz, A. (2023). Chem. Unserer Zeit, 57, 180-190.]). This allows for potential applications in functionalized polymers (Thiedemann et al., 2017[Thiedemann, B., Gliese, P. J., Hoffmann, J., Lawrence, P. G., Sönnichsen, F. D. & Staubitz, A. (2017). Chem. Commun. 53, 7258-7261.]), hydrogen-storage materials (Campbell et al., 2010[Campbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289-3291.]), pharmacology (Boknevitz et al., 2019[Boknevitz, K., Italia, J. S., Li, B., Chatterjee, A. & Liu, S.-Y. (2019). Chem. Sci. 10, 4994-4998.]) or optoelectronics (Appiarius et al., 2021[Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10-17.]; Hoffmann et al., 2021a[Hoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021a). J. Mater. Chem. C. 9, 14720-14729.],b[Hoffmann, J., Jacquemin, D., Hissler, M. & Staubitz, A. (2021b). J. Mater. Chem. C. 9, 13926-13934.]).

[Scheme 1]

Being the formal BN analogs of 1,4-cyclo­hexa­diene, 1,2,3,6-tetra­hydro-1,2-aza­borinines were reported to be inter­mediates for the synthesis of aromatic 1,2-aza­borinines (Ashe & Fang, 2000[Ashe, A. J. & Fang, X. (2000). Org. Lett. 2, 2089-2091.]; Marwitz et al., 2009[Marwitz, A. J., Matus, M. H., Zakharov, L. N., Dixon, D. A. & Liu, S.-Y. (2009). Angew. Chem. Int. Ed. 48, 973-977.]). A B-Cl 1,2,3,6-tetra­hydro-1,2-aza­borinine was aromatized under inert cond­itions, followed by subsequent substitution of the boron atom to obtain an air-stable derivative. The approach of this work presents an alternative: initial replacement of the highly reactive BCl bond by substitution with polycyclic anthracenyl lithium yields an air-stable product early on. Therefore, the respective B-anthracenyl heterocycle (I) was synthesized giving access to the 1,2,3,6-tetra­hydro-1,2-aza­borinines with lower oxidation state of the C4 backbone.

2. Structural commentary

The title compound I is an example of a 1,2,3,6-tetra­hydro-1,2-aza­borinine with substituted boron and nitro­gen atoms, crystallizing in the centrosymmetric ortho­rhom­bic space group, Pbca (Fig. 1[link]). Its asymmetric unit (Z = 8 with Z′ = 1) consists of one mol­ecule. In contrast to the planar ring of the parent 1,4-cyclo­hexa­dienes (Jeffrey et al., 1988[Jeffrey, G. A., Buschmann, J., Lehmann, C. W. & Luger, P. (1988). J. Am. Chem. Soc. 110, 7218-7219.]), the BN-containing ring resembles a flat boat conformer. The C1—B1—N1—C4 unit is not perfectly planar [torsion angle = 10.55 (17)°] and the dihedral angle between the double-bond analog B1—N1 and the C2—C3 bond is 5.04 (11)°. Moreover, the almost perpendicular dihedral twist angle between the planar anthracenyl rings [plane of carbons C11–C24] and the B1—N1 unit is 97.96 (13)° [anthracenyl plane to B1—N1 bond angle].

[Figure 1]
Figure 1
Crystal structure of the title compound I with atom labeling with displacement ellipsoids drawn at the 60% probability level.

According to an investigation of the B—N bond lengths in BNC4 rings ranging from benzene to cyclo­hexane analogs of B-NPh2, N-tert-butyl 1,2,3,6-tetra­hydro-1,2-aza­borinines (Abbey et al., 2008[Abbey, E. R., Zakharov, L. N. & Liu, S.-Y. (2008). J. Am. Chem. Soc. 130, 7250-7252.]), the comparison of the closely related title compound I with the reported 1,4-cyclo­hexa­diene analog showed comparable heterocyclic bond lengths. In the title compound I, the C2—C3 bond length [1.3276 (19) Å] resembles the bond in 1,4-cyclo­hexa­dienes [1.318 (2) Å] and their 1,2-aza­borinine analog [1.319 (2) Å] more closely than that in the benzene analog (Jeffrey et al., 1988[Jeffrey, G. A., Buschmann, J., Lehmann, C. W. & Luger, P. (1988). J. Am. Chem. Soc. 110, 7218-7219.]). Comparison of the title compound I with the benzene analog and three additional 1,2-aza­borinine examples (Rudebusch et al., 2013[Rudebusch, G. E., Zakharov, L. N. & Liu, S.-Y. (2013). Angew. Chem. Int. Ed. 52, 9316-9319.]; Liu et al., 2021[Liu, Y., Puig de la Bellacasa, R., Li, B., Cuenca, A. B. & Liu, S.-Y. (2021). J. Am. Chem. Soc. 143, 14059-14064.]; Pan et al., 2008[Pan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345-1347.]) showed shorter B1—N1 [1.4052 (17)] and C2—C3 [1.3276 (19) Å] bond lengths. As a result of weaker bond-length compensation effects, the remaining bonds within the ring are elongated by between 0.11 and 0.15 Å.

3. Supra­molecular features and computational analysis

Analysis of the crystal packing exhibits zigzag layers of the title compound I in the c-axis direction (Fig. 2[link]). The tert-butyl moieties of the protecting groups are paired in groups of two along the ac plane (Fig. 2[link]a). The anthracenyl substituents are aligned in a zigzag manner [plane normal to plane normal angle of 52.936 (18)°], leading to a centroid–centroid distance for the anthracenyl substituents of 6.4604 (8) Å for in-plane orientation and 8.7850 (6) Å within the pattern (Fig. 2[link]b). Therefore, no π-stacking is evident, given the positioning of the anthracenyl substituents in an anti­planar arrangement.

[Figure 2]
Figure 2
The crystal packing of the title compound I viewed along the a- (a) and b-axes (b). The unit cell is outlined in black.

The C5—H5A group exhibits intra­molecular C—H⋯π inter­actions with the anthracene ring [see Fig. 3[link] (labels A–C) and Table 1[link] for details; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Moreover, inter­actions of the C2—H2 and the C4—H4B groups with the C12–C17 ring [Fig. 3[link] (label D), Table 1[link]] are observed. Additional theoretical analysis (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Epifanovsky et al., 2021[Epifanovsky, E., Gilbert, A. T. B., Feng, X., Lee, J., Mao, Y., Mardirossian, N., et al. (2021). J. Chem. Phys. 155, 084801.]; Francl et al., 1982[Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. & Pople, J. A. (1982). J. Chem. Phys. 77, 3654-3665.]; Glendening et al., 2001[Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. & Weinhold, F. (2001). NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA.]; Hariharan & Pople, 1973[Hariharan, P. C. & Pople, J. A. (1973). Theor. Chim. Acta, 28, 213-222.]; Hehre et al., 1972[Hehre, W. J., Ditchfield, R. & Pople, J. A. (1972). J. Chem. Phys. 56, 2257-2261.]; Stephens et al., 1994[Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. (1994). J. Phys. Chem. 98, 11623-11627.]) matching the obtained crystal bond lengths revealed no aromatic character of the BN heterocycle of the title compound I. Instead, the free electron pair of nitro­gen shows a significant donation to boron, and the C2—C3 bond exhibits no significant inter­actions with surrounding atoms (see supporting information). In particular, the C1—B1—N1—C4 motif shows a significant electron deficiency through low bond orders. While the B1—N1 and N1—C4 bonds have bond orders of 0.73 and 0.77, respectively, a value of 0.67 is obtained for the elongated B1—C1 bond.

Table 1
Geometry of C—H⋯π interactions (Å, °)

Cg2, Cg5, Cg7 and Cg3 are the centroids of rings C11–C12/C17–C19/C24, C11–C18, C11–C24 and C12–C17, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg2 0.98 2.86 3.4529 (15) 120
C5—H5ACg5 0.98 2.91 3.7305 (15) 142
C5—H5ACg7 0.98 2.88 3.4772 (15) 120
C2—H2⋯Cg3i 0.95 2.92 3.6380 (15) 133
C4—H4BCg3ii 0.99 2.97 3.9373 (15) 167
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Inter- and intra­molecular C—H⋯π inter­actions in the title compound I with atom labeling between the respective centers of gravity (labels A–D).

4. Hirshfeld analysis

For the analysis of the inter­molecular inter­actions, Hirshfeld surface (HS) calculations (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were performed and plotted over the dnorm in the range between −1.0432 and +2.0960 a.u. using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) (Fig. 4[link]).

[Figure 4]
Figure 4
Two views of the three-dimensional Hirshfeld surface mapped over dnorm.

Minor inter­actions were found for C14—H14, C16—H16, C21—H21, and C23—H23, as well as the two silyl methyl groups (C5 and C6).

The generation of 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) was performed using CrystalExplorer 21.5, investigating all specific inter­molecular contacts (Fig. 5[link]).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots of title compound I with the respective H⋯H, C⋯C, C⋯H/H⋯C, B⋯all/all⋯B, N⋯all/all⋯N, and Si⋯all/all⋯Si inter­actions (di and de are the closest inter­nal and external distances in Å on the Hirshfeld surface).

In the crystal packing, the H⋯H inter­actions are predominating and contribute to 77.0% of the overall close atom contacts (Entry 1, Table 2[link]). C⋯C inter­actions contribute 0.1% (Entry 2, Table 2[link]), while C⋯H/H⋯C contacts account for 22.8% (Entry 3, Table 2[link]), indicating no additional inter­actions involving the heteroatoms.

Table 2
Inter­atomic contacts with the title mol­ecule I as percentage contributions to the Hirshfeld surface

Entry Contact Percentage contribution
1 all⋯all 100
2 H⋯H 77
3 C⋯C 0.1
4 C⋯H/H⋯C 22.8
5 B⋯all/all⋯B 0
6 N⋯all/all⋯N 0
7 Si⋯all/all⋯Si 0

5. Database Survey

A search of the Cambridge Structural Database (WebCSD version 1.9.32; update 27.06.2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no reports of BN-containing 1,4-cyclo­hexa­diene structures with B-anthracenyl substituents. However, a search for the substructure of 1,2,3,6-tetra­hydro-1,2-aza­borinines produced nine results with the B-NPh2, N-tert-butyl 1,2,3,6-tetra­hydro-1,2-aza­borinine derivative (CSD refcode: EFUPIF; Abbey et al., 2008[Abbey, E. R., Zakharov, L. N. & Liu, S.-Y. (2008). J. Am. Chem. Soc. 130, 7250-7252.]) as the only monocyclic example. Of the 13 substructures with N—Si substitutions, eight examples with a similar protection group were found, but none of these examples had the C4 oxidation state of the title compound I.

6. Synthesis and Crystallization

The precursor, 2-chloro-1-methyl-1,2,3,6-tetra­hydro-1,2-aza­borine, was synthesized according to the literature (Appiarius et al., 2021[Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10-17.]).

Under a nitro­gen atmosphere, 9-bromo­anthracene (4.68 g, 18.2 mmol) was dissolved in n-pentane (20 mL) and cooled to 273 K. A solution of n-butyl­lithium (1.1 eq., 8.0 mL, 20 mmol, 2.5 M in hexa­nes) was added over the course of 5 min. The solution was allowed to warm to 292 K and was stirred for 19 h. The mixture was then kept at 269 K for 48 h for subsequent precipitation. In a nitro­gen-filled glovebox, the solution was filtered through a frit (pore size 3), and the solid was washed with n-pentane (50 mL) until no color was observed in the filtrate. It was then transferred to a flask and dried in vacuo (200 mbar). The product was obtained as a yellow powder (3.32 g, 18.0 mmol, 99%, purity: 70%). The purity was determined after a literature-reported procedure (Lin & Paquette, 1994[Lin, H.-S. & Paquette, L. A. (1994). Synth. Commun. 24, 2503-2506.]).

Under a nitro­gen atmosphere, the B-Cl 1,2-aza­borinine (101 mg, 436 µmol) was dissolved in THF (5 mL) and cooled to 195 K. The lithium reagent (1.10 eq., 126 mg, 479 µmol, purity 70%) was dissolved in THF (5 mL) and added while maintaining the temperature at 195 K. The solution was allowed to warm to 292 K while it was stirred for 2 h. The reaction mixture was quenched with water (2 mL) and extracted with chloro­form (3 × 20 mL). The combined organic layers were washed with brine (2 × 20 mL) and dried over MgSO4. Subsequently to filtration, the solvent was removed in vacuo (200 mbar) to obtain the crude product. Purification by column chromatography (n-pentane, Rf = 0.60) gave the title compound I as colorless crystals (129 mg, 350 µmol, 80%). The title compound was crystallized from a n-penta­ne/aceto­nitrile mixture by slow evaporation at 273 K. It was stored under non-inert conditions for at least 4–6 weeks (stored at 265 K) without decomposition. The numbering scheme for inter­pretation of spectroscopic data is given in Fig. 6[link].

[Figure 6]
Figure 6
Numbering scheme of the title compound I used for inter­pretation of spectroscopic data.

1H NMR [600 MHz, CDCl3,δ (ppm)]: 8.30 (s, 1H, H-12), 7.96 (ddd, 3J = 8.4 Hz, 4J = 1.4, 0.7 Hz, 2H, H-10), 7.80 (dd, 3J = 8.5 Hz, 4J = 1.3, 0.7 Hz, 2H, H-7), 7.41 (ddd, 3J = 8.4, 6.5 Hz, 4J = 1.3 Hz, 2H, H-9), 7.36 (ddd, 3J = 8.5, 6.5 Hz, 4J = 1.4 Hz, 2H, H-8), 6.13–6.07 (m, 1H, H-2), 6.03–5.97 (m, 1H, H-1), 4.00–3.95 (m, 2H, H-4), 1.92–1.86 (m, 2H, H-3), 0.84 (s, 9H, H-15), −0.57 (s, 6H, H-13).

13C{1H} NMR [151 MHz, CDCl3, δ (ppm)]: 132.2 (C-6), 131.2 (C-11), 129.3 (C-7), 128.7 (C-10), 127.8 (C-2), 126.1 (C-1), 125.2 (C-12), 124.8 (C-9), 124.2 (C-8), 45.6 (C-4), 28.0 (C-15), 19.2 (C-14), 3.8 (C-13).

11B{1H} NMR [160 MHz, CDCl3, δ (ppm)]: 50.6.

29Si{1H} NMR [119 MHz, CDCl3, δ (ppm)]: 15.9.

IR [ATR, ν (cm−1)]: 3048 (w), 3024 (w), 2925 (m), 2854 (m), 2359 (w), 1621 (w), 1463 (w), 1442 (m), 1414 (m), 1378 (m), 1295 (m), 1272 (m), 1251 (m), 1123 (m), 1079 (m), 1044 (m), 961 (m), 947 (w), 829 (m), 842 (s), 776 (s), 731 (s), 679 (s).

HRMS (ESI positive, m/z): calculated for C24H3111BN28Si 372.23133 [M + H]+; found 372.23167 [M + H]+.

M.p. [DSC, Onset, (K)]: 374.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Using a riding model with bond lengths of 0.95 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), the hydrogen atoms were positioned geometrically. Isotropic displacement parameters (Uiso) of these H atoms were fixed to 1.2 (CH and CH2) or 1.5 (CH3) times the values of the parent carbon atoms. The idealized methyl groups were refined as rotating groups.

Table 3
Experimental details

Crystal data
Chemical formula C24H30BNSi
Mr 371.39
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 13.3292 (6), 11.1365 (5), 28.5973 (12)
V3) 4245.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.28 × 0.22 × 0.2
 
Data collection
Diffractometer Bruker Photon 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.707, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 67479, 5264, 4416
Rint 0.049
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.07
No. of reflections 5264
No. of parameters 249
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29
Computer programs: PHOTON and SAINT (Bruker, 2019[Bruker (2019). PHOTON and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PHOTON (Bruker, 2019); cell refinement: SAINT V8.40A (Bruker, 2019); data reduction: SAINT V8.40A (Bruker, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009) ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, (2010).

2-(Anthracen-9-yl)-1-(tert-butyldimethylsilyl)-3,6-dihydro-1λ4,2λ4-azaborinine top
Crystal data top
C24H30BNSiDx = 1.162 Mg m3
Mr = 371.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9845 reflections
a = 13.3292 (6) Åθ = 2.5–30.5°
b = 11.1365 (5) ŵ = 0.12 mm1
c = 28.5973 (12) ÅT = 100 K
V = 4245.0 (3) Å3Block, colourless
Z = 80.28 × 0.22 × 0.2 mm
F(000) = 1600
Data collection top
Bruker Photon 100
diffractometer
5264 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4416 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.049
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω and φ scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.707, Tmax = 0.746l = 3838
67479 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0421P)2 + 2.6379P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5264 reflectionsΔρmax = 0.37 e Å3
249 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.64414 (3)0.53526 (3)0.67676 (2)0.01305 (9)
N10.59622 (8)0.46229 (9)0.62665 (4)0.0121 (2)
C110.52126 (9)0.64751 (11)0.58088 (4)0.0119 (2)
C190.41726 (10)0.83144 (12)0.58633 (5)0.0149 (3)
C120.59392 (9)0.71475 (11)0.55610 (4)0.0126 (2)
C240.43227 (9)0.70565 (11)0.59506 (4)0.0130 (2)
C170.57825 (10)0.84029 (12)0.54660 (5)0.0146 (3)
C180.49112 (10)0.89607 (12)0.56257 (5)0.0168 (3)
H180.4818500.9795110.5571980.020*
C130.68530 (10)0.66195 (12)0.53987 (4)0.0153 (3)
H130.6984760.5799030.5465720.018*
C160.65239 (10)0.90463 (12)0.52065 (5)0.0180 (3)
H160.6424150.9875000.5142920.022*
C230.35484 (10)0.64256 (12)0.61956 (5)0.0166 (3)
H230.3633080.5595480.6261160.020*
C140.75406 (10)0.72648 (12)0.51500 (5)0.0182 (3)
H140.8138070.6888160.5043720.022*
C20.48012 (10)0.29143 (12)0.57271 (5)0.0184 (3)
H20.4299130.2391090.5608360.022*
C10.48884 (10)0.41613 (12)0.55382 (5)0.0164 (3)
H1A0.4211310.4454680.5453450.020*
H1B0.5297190.4141800.5249230.020*
C30.54188 (11)0.25311 (12)0.60593 (5)0.0186 (3)
H30.5344850.1738180.6176850.022*
C150.73675 (11)0.84979 (13)0.50489 (5)0.0195 (3)
H150.7843450.8938320.4870810.023*
C200.32658 (11)0.88722 (13)0.60194 (5)0.0200 (3)
H200.3162060.9703320.5962360.024*
C70.58707 (11)0.46528 (13)0.73184 (5)0.0208 (3)
C50.61517 (11)0.69869 (12)0.67683 (5)0.0194 (3)
H5A0.6399790.7350620.6478490.029*
H5B0.6478560.7368980.7036850.029*
H5C0.5424320.7102050.6790060.029*
C40.62300 (10)0.33186 (11)0.62535 (5)0.0155 (3)
H4A0.6389450.3049620.6574940.019*
H4B0.6842080.3216570.6061450.019*
C220.26936 (10)0.69877 (14)0.63369 (5)0.0207 (3)
H220.2188940.6545250.6496130.025*
C210.25508 (11)0.82314 (14)0.62480 (5)0.0221 (3)
H210.1952740.8616390.6348920.027*
C60.78352 (10)0.52013 (13)0.67616 (6)0.0236 (3)
H6A0.8016670.4348600.6759460.035*
H6B0.8115890.5584990.7040890.035*
H6C0.8105250.5591000.6481300.035*
C80.47669 (12)0.43301 (16)0.72304 (6)0.0311 (4)
H8A0.4404950.5044370.7122720.047*
H8B0.4464150.4038170.7521300.047*
H8C0.4727080.3701870.6991210.047*
B10.53820 (10)0.50755 (13)0.58960 (5)0.0119 (3)
C90.64271 (14)0.35359 (15)0.74992 (6)0.0345 (4)
H9A0.6356040.2880800.7272760.052*
H9B0.6140210.3289390.7799750.052*
H9C0.7139600.3725540.7540270.052*
C100.59141 (18)0.55923 (17)0.77124 (6)0.0448 (5)
H10A0.6609670.5852540.7757640.067*
H10B0.5660820.5237100.8002850.067*
H10C0.5499360.6285530.7627620.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01541 (18)0.01078 (17)0.01295 (17)0.00045 (13)0.00323 (13)0.00092 (13)
N10.0150 (5)0.0087 (5)0.0127 (5)0.0004 (4)0.0005 (4)0.0003 (4)
C110.0138 (6)0.0115 (6)0.0105 (6)0.0009 (5)0.0033 (4)0.0001 (5)
C190.0156 (6)0.0136 (6)0.0154 (6)0.0021 (5)0.0050 (5)0.0010 (5)
C120.0149 (6)0.0115 (6)0.0114 (6)0.0008 (5)0.0037 (5)0.0004 (5)
C240.0136 (6)0.0130 (6)0.0126 (6)0.0001 (5)0.0036 (5)0.0005 (5)
C170.0173 (6)0.0122 (6)0.0144 (6)0.0028 (5)0.0054 (5)0.0009 (5)
C180.0204 (7)0.0112 (6)0.0187 (7)0.0011 (5)0.0055 (5)0.0009 (5)
C130.0177 (6)0.0132 (6)0.0150 (6)0.0005 (5)0.0005 (5)0.0012 (5)
C160.0212 (7)0.0133 (6)0.0193 (7)0.0048 (5)0.0053 (5)0.0046 (5)
C230.0177 (6)0.0159 (6)0.0162 (6)0.0014 (5)0.0013 (5)0.0008 (5)
C140.0180 (6)0.0195 (7)0.0171 (6)0.0019 (5)0.0020 (5)0.0027 (5)
C20.0200 (7)0.0127 (6)0.0224 (7)0.0042 (5)0.0023 (5)0.0027 (5)
C10.0204 (7)0.0136 (6)0.0152 (6)0.0005 (5)0.0034 (5)0.0009 (5)
C30.0249 (7)0.0088 (6)0.0221 (7)0.0019 (5)0.0014 (5)0.0007 (5)
C150.0210 (7)0.0210 (7)0.0164 (6)0.0092 (6)0.0001 (5)0.0030 (5)
C200.0209 (7)0.0173 (7)0.0219 (7)0.0061 (5)0.0035 (5)0.0020 (5)
C70.0302 (8)0.0196 (7)0.0125 (6)0.0011 (6)0.0000 (5)0.0005 (5)
C50.0262 (7)0.0131 (6)0.0190 (7)0.0001 (5)0.0063 (6)0.0036 (5)
C40.0204 (7)0.0097 (6)0.0164 (6)0.0031 (5)0.0047 (5)0.0009 (5)
C220.0160 (7)0.0259 (7)0.0202 (7)0.0021 (6)0.0014 (5)0.0003 (6)
C210.0168 (7)0.0256 (7)0.0238 (7)0.0059 (6)0.0002 (6)0.0042 (6)
C60.0174 (7)0.0185 (7)0.0349 (8)0.0013 (5)0.0076 (6)0.0005 (6)
C80.0264 (8)0.0412 (10)0.0256 (8)0.0016 (7)0.0092 (6)0.0085 (7)
B10.0116 (6)0.0116 (6)0.0124 (6)0.0003 (5)0.0016 (5)0.0005 (5)
C90.0447 (10)0.0350 (9)0.0238 (8)0.0081 (8)0.0028 (7)0.0144 (7)
C100.0817 (15)0.0363 (10)0.0165 (8)0.0084 (10)0.0059 (9)0.0064 (7)
Geometric parameters (Å, º) top
Si1—N11.7669 (11)C1—H1B0.9900
Si1—C71.9148 (14)C1—B11.5863 (19)
Si1—C51.8606 (14)C3—H30.9500
Si1—C61.8655 (15)C3—C41.4988 (18)
N1—C41.4963 (16)C15—H150.9500
N1—B11.4052 (17)C20—H200.9500
C11—C121.4144 (17)C20—C211.358 (2)
C11—C241.4108 (18)C7—C81.535 (2)
C11—B11.5946 (18)C7—C91.538 (2)
C19—C241.4370 (18)C7—C101.539 (2)
C19—C181.3960 (19)C5—H5A0.9800
C19—C201.4304 (19)C5—H5B0.9800
C12—C171.4395 (18)C5—H5C0.9800
C12—C131.4300 (18)C4—H4A0.9900
C24—C231.4318 (18)C4—H4B0.9900
C17—C181.3940 (19)C22—H220.9500
C17—C161.4286 (19)C22—C211.421 (2)
C18—H180.9500C21—H210.9500
C13—H130.9500C6—H6A0.9800
C13—C141.3646 (19)C6—H6B0.9800
C16—H160.9500C6—H6C0.9800
C16—C151.357 (2)C8—H8A0.9800
C23—H230.9500C8—H8B0.9800
C23—C221.3613 (19)C8—H8C0.9800
C14—H140.9500C9—H9A0.9800
C14—C151.422 (2)C9—H9B0.9800
C2—H20.9500C9—H9C0.9800
C2—C11.4947 (18)C10—H10A0.9800
C2—C31.3276 (19)C10—H10B0.9800
C1—H1A0.9900C10—H10C0.9800
N1—Si1—C7109.65 (6)C19—C20—H20119.5
N1—Si1—C5112.07 (6)C21—C20—C19121.00 (13)
N1—Si1—C6108.12 (6)C21—C20—H20119.5
C5—Si1—C7108.35 (7)C8—C7—Si1109.95 (10)
C5—Si1—C6107.16 (7)C8—C7—C9109.14 (13)
C6—Si1—C7111.50 (7)C8—C7—C10108.36 (14)
C4—N1—Si1112.36 (8)C9—C7—Si1114.47 (11)
B1—N1—Si1130.21 (9)C9—C7—C10106.60 (14)
B1—N1—C4117.43 (10)C10—C7—Si1108.10 (11)
C12—C11—B1119.92 (11)Si1—C5—H5A109.5
C24—C11—C12118.47 (11)Si1—C5—H5B109.5
C24—C11—B1121.51 (11)Si1—C5—H5C109.5
C18—C19—C24119.27 (12)H5A—C5—H5B109.5
C18—C19—C20121.60 (12)H5A—C5—H5C109.5
C20—C19—C24119.13 (12)H5B—C5—H5C109.5
C11—C12—C17120.62 (12)N1—C4—C3113.90 (11)
C11—C12—C13121.88 (11)N1—C4—H4A108.8
C13—C12—C17117.49 (12)N1—C4—H4B108.8
C11—C24—C19120.97 (12)C3—C4—H4A108.8
C11—C24—C23121.44 (12)C3—C4—H4B108.8
C23—C24—C19117.58 (12)H4A—C4—H4B107.7
C18—C17—C12119.46 (12)C23—C22—H22119.8
C18—C17—C16121.54 (12)C23—C22—C21120.48 (13)
C16—C17—C12119.00 (12)C21—C22—H22119.8
C19—C18—H18119.4C20—C21—C22120.28 (13)
C17—C18—C19121.15 (12)C20—C21—H21119.9
C17—C18—H18119.4C22—C21—H21119.9
C12—C13—H13119.2Si1—C6—H6A109.5
C14—C13—C12121.65 (12)Si1—C6—H6B109.5
C14—C13—H13119.2Si1—C6—H6C109.5
C17—C16—H16119.3H6A—C6—H6B109.5
C15—C16—C17121.34 (12)H6A—C6—H6C109.5
C15—C16—H16119.3H6B—C6—H6C109.5
C24—C23—H23119.2C7—C8—H8A109.5
C22—C23—C24121.53 (13)C7—C8—H8B109.5
C22—C23—H23119.2C7—C8—H8C109.5
C13—C14—H14119.8H8A—C8—H8B109.5
C13—C14—C15120.36 (13)H8A—C8—H8C109.5
C15—C14—H14119.8H8B—C8—H8C109.5
C1—C2—H2119.7N1—B1—C11123.12 (11)
C3—C2—H2119.7N1—B1—C1118.97 (11)
C3—C2—C1120.60 (12)C1—B1—C11117.89 (11)
C2—C1—H1A108.9C7—C9—H9A109.5
C2—C1—H1B108.9C7—C9—H9B109.5
C2—C1—B1113.30 (11)C7—C9—H9C109.5
H1A—C1—H1B107.7H9A—C9—H9B109.5
B1—C1—H1A108.9H9A—C9—H9C109.5
B1—C1—H1B108.9H9B—C9—H9C109.5
C2—C3—H3119.2C7—C10—H10A109.5
C2—C3—C4121.63 (12)C7—C10—H10B109.5
C4—C3—H3119.2C7—C10—H10C109.5
C16—C15—C14120.11 (13)H10A—C10—H10B109.5
C16—C15—H15119.9H10A—C10—H10C109.5
C14—C15—H15119.9H10B—C10—H10C109.5
Si1—N1—C4—C3143.11 (10)C18—C17—C16—C15179.54 (13)
Si1—N1—B1—C1112.58 (19)C13—C12—C17—C18178.75 (12)
Si1—N1—B1—C1168.86 (9)C13—C12—C17—C161.69 (18)
C11—C12—C17—C180.84 (18)C13—C14—C15—C161.1 (2)
C11—C12—C17—C16178.72 (12)C16—C17—C18—C19177.47 (12)
C11—C12—C13—C14178.38 (12)C23—C22—C21—C200.2 (2)
C11—C24—C23—C22179.33 (13)C2—C1—B1—N120.11 (17)
C19—C24—C23—C220.77 (19)C2—C1—B1—C11161.25 (12)
C19—C20—C21—C220.1 (2)C2—C3—C4—N132.76 (19)
C12—C11—C24—C192.54 (18)C1—C2—C3—C40.7 (2)
C12—C11—C24—C23178.94 (12)C3—C2—C1—B125.46 (19)
C12—C11—B1—N183.53 (16)C20—C19—C24—C11179.05 (12)
C12—C11—B1—C195.05 (14)C20—C19—C24—C230.48 (18)
C12—C17—C18—C192.07 (19)C20—C19—C18—C17178.58 (13)
C12—C17—C16—C150.0 (2)C7—Si1—N1—C462.08 (10)
C12—C13—C14—C150.7 (2)C7—Si1—N1—B1117.35 (12)
C24—C11—C12—C171.44 (18)C5—Si1—N1—C4177.55 (9)
C24—C11—C12—C13178.99 (11)C5—Si1—N1—B13.01 (14)
C24—C11—B1—N1100.06 (15)C4—N1—B1—C11168.01 (11)
C24—C11—B1—C181.36 (15)C4—N1—B1—C110.55 (17)
C24—C19—C18—C170.99 (19)C6—Si1—N1—C459.67 (10)
C24—C19—C20—C210.1 (2)C6—Si1—N1—B1120.89 (12)
C24—C23—C22—C210.6 (2)B1—N1—C4—C336.40 (16)
C17—C12—C13—C142.04 (19)B1—C11—C12—C17177.96 (11)
C17—C16—C15—C141.4 (2)B1—C11—C12—C132.47 (18)
C18—C19—C24—C111.37 (19)B1—C11—C24—C19179.00 (11)
C18—C19—C24—C23179.94 (12)B1—C11—C24—C232.49 (18)
C18—C19—C20—C21179.65 (13)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg5, Cg7 and Cg3 are the centroids of rings C11–C12/C17–C19/C24, C11–C18, C11–C24 and C12–C17, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg20.982.863.4529 (15)120
C5—H5A···Cg50.982.913.7305 (15)142
C5—H5A···Cg70.982.883.4772 (15)120
C2—H2···Cg3i0.952.923.6380 (15)133
C4—H4B···Cg3ii0.992.973.9373 (15)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z.
Interatomic contacts with the title molecule I as percentage contributions to the Hirshfeld surface. top
EntryContactPercentage contribution
1all···all100
2H···H77
3C···C0.1
4C···H/H···C22.8
5B···all/all···B0
6N···all/all···N0
7Si···all/all···Si0
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. STA1195/2-1 to A. Staubitz); Deutsche Forschungsgemeinschaft (grant No. STA1526/3-1 to T. Neudecker).

References

First citationAbbey, E. R., Zakharov, L. N. & Liu, S.-Y. (2008). J. Am. Chem. Soc. 130, 7250–7252.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAppiarius, Y. & Staubitz, A. (2023). Chem. Unserer Zeit, 57, 180–190.  Web of Science CrossRef CAS Google Scholar
First citationAppiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationAshe, A. J. & Fang, X. (2000). Org. Lett. 2, 2089–2091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBélanger-Chabot, G., Braunschweig, H. & Roy, D. K. (2017). Eur. J. Inorg. Chem. pp. 4353–4368.  Google Scholar
First citationBoknevitz, K., Italia, J. S., Li, B., Chatterjee, A. & Liu, S.-Y. (2019). Chem. Sci. 10, 4994–4998.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2019). PHOTON and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, P. G., Marwitz, A. J. & Liu, S. Y. (2012). Angew. Chem. Int. Ed. 51, 6074–6092.  Web of Science CrossRef CAS Google Scholar
First citationCampbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289–3291.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEpifanovsky, E., Gilbert, A. T. B., Feng, X., Lee, J., Mao, Y., Mardirossian, N., et al. (2021). J. Chem. Phys. 155, 084801.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrancl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. & Pople, J. A. (1982). J. Chem. Phys. 77, 3654–3665.  CrossRef CAS Web of Science Google Scholar
First citationGlendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. & Weinhold, F. (2001). NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHariharan, P. C. & Pople, J. A. (1973). Theor. Chim. Acta, 28, 213–222.  CrossRef CAS Web of Science Google Scholar
First citationHehre, W. J., Ditchfield, R. & Pople, J. A. (1972). J. Chem. Phys. 56, 2257–2261.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021a). J. Mater. Chem. C. 9, 14720–14729.  Web of Science CrossRef CAS Google Scholar
First citationHoffmann, J., Jacquemin, D., Hissler, M. & Staubitz, A. (2021b). J. Mater. Chem. C. 9, 13926–13934.  Web of Science CrossRef CAS Google Scholar
First citationJeffrey, G. A., Buschmann, J., Lehmann, C. W. & Luger, P. (1988). J. Am. Chem. Soc. 110, 7218–7219.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLin, H.-S. & Paquette, L. A. (1994). Synth. Commun. 24, 2503–2506.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Y., Puig de la Bellacasa, R., Li, B., Cuenca, A. B. & Liu, S.-Y. (2021). J. Am. Chem. Soc. 143, 14059–14064.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMarwitz, A. J., Matus, M. H., Zakharov, L. N., Dixon, D. A. & Liu, S.-Y. (2009). Angew. Chem. Int. Ed. 48, 973–977.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345–1347.  Web of Science CSD CrossRef CAS Google Scholar
First citationRudebusch, G. E., Zakharov, L. N. & Liu, S.-Y. (2013). Angew. Chem. Int. Ed. 52, 9316–9319.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. (1994). J. Phys. Chem. 98, 11623–11627.  CrossRef CAS Web of Science Google Scholar
First citationThiedemann, B., Gliese, P. J., Hoffmann, J., Lawrence, P. G., Sönnichsen, F. D. & Staubitz, A. (2017). Chem. Commun. 53, 7258–7261.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds