research communications
Synthesis and tert-butyldimethylsilyl)-3,6-dihydro-1λ4,2λ4-azaborinine
of 2-(anthracen-9-yl)-1-(aUniversity of Bremen, Institute for Organic and Analytical Chemistry, 28359 Bremen, Germany, bUniversity of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany, cUniversity of Bremen, Institute for Physical and Theoretical Chemistry, 28359 Bremen, Germany, dUniversity of Bremen, Institute for Inorganic Chemistry and Crystallography, 28359 Bremen, Germany, and eBremen Center for Computational Materials Science, 28359 Bremen, Germany
*Correspondence e-mail: staubitz@uni-bremen.de
The title compound, C24H30BNSi (I), is an asymmetric 1,2,3,6-tetrahydro-1,2-azaborinine consisting of a BN-substituted cyclohexadiene analog with a B-anthracenyl substituent. A ring-closing metathesis with subsequent substitution of the obtained BCl 1,2-azaborinine using anthracenyl lithium yielded the title compound I. The (Z = 8) belongs to the orthorhombic Pbca and shows an elongated N—C bond compared to previously reported BN-1,4-cyclohexadiene [Abbey et al. (2008) J. Am. Chem. Soc. 130, 7250–7252]. The primarily contributing surface interactions are H⋯H and C⋯H/H⋯C (as elucidated by Hirshfeld surface analysis) which are dominated by Moreover, the non-aromatic BN heterocycle and the protecting group exhibit intra- and intermolecular C—H⋯π interactions, respectively, with the anthracenyl substituent.
Keywords: crystal structure; 1,2-azaborinine; boron–nitrogen bond; boron–nitrogen heterocycle; ring-closing metathesis; BN cyclohexene.
CCDC reference: 2297014
1. Chemical context
The formal replacement of a C–C bond with a B–N motif (BN isosterism) in six-membered rings changes their reactivity, as well as the dipole moments and electronic and optical properties (Bélanger-Chabot et al., 2017; Campbell et al., 2012; Appiarius et al., 2023). This allows for potential applications in functionalized polymers (Thiedemann et al., 2017), hydrogen-storage materials (Campbell et al., 2010), pharmacology (Boknevitz et al., 2019) or optoelectronics (Appiarius et al., 2021; Hoffmann et al., 2021a,b).
Being the formal BN analogs of 1,4-cyclohexadiene, 1,2,3,6-tetrahydro-1,2-azaborinines were reported to be intermediates for the synthesis of aromatic 1,2-azaborinines (Ashe & Fang, 2000; Marwitz et al., 2009). A B-Cl 1,2,3,6-tetrahydro-1,2-azaborinine was aromatized under inert conditions, followed by subsequent substitution of the boron atom to obtain an air-stable derivative. The approach of this work presents an alternative: initial replacement of the highly reactive BCl bond by substitution with polycyclic anthracenyl lithium yields an air-stable product early on. Therefore, the respective B-anthracenyl heterocycle (I) was synthesized giving access to the 1,2,3,6-tetrahydro-1,2-azaborinines with lower of the C4 backbone.
2. Structural commentary
The title compound I is an example of a 1,2,3,6-tetrahydro-1,2-azaborinine with substituted boron and nitrogen atoms, crystallizing in the centrosymmetric orthorhombic Pbca (Fig. 1). Its (Z = 8 with Z′ = 1) consists of one molecule. In contrast to the planar ring of the parent 1,4-cyclohexadienes (Jeffrey et al., 1988), the BN-containing ring resembles a flat boat conformer. The C1—B1—N1—C4 unit is not perfectly planar [torsion angle = 10.55 (17)°] and the dihedral angle between the double-bond analog B1—N1 and the C2—C3 bond is 5.04 (11)°. Moreover, the almost perpendicular dihedral twist angle between the planar anthracenyl rings [plane of carbons C11–C24] and the B1—N1 unit is 97.96 (13)° [anthracenyl plane to B1—N1 bond angle].
According to an investigation of the B—N bond lengths in BNC4 rings ranging from benzene to cyclohexane analogs of B-NPh2, N-tert-butyl 1,2,3,6-tetrahydro-1,2-azaborinines (Abbey et al., 2008), the comparison of the closely related title compound I with the reported 1,4-cyclohexadiene analog showed comparable heterocyclic bond lengths. In the title compound I, the C2—C3 bond length [1.3276 (19) Å] resembles the bond in 1,4-cyclohexadienes [1.318 (2) Å] and their 1,2-azaborinine analog [1.319 (2) Å] more closely than that in the benzene analog (Jeffrey et al., 1988). Comparison of the title compound I with the benzene analog and three additional 1,2-azaborinine examples (Rudebusch et al., 2013; Liu et al., 2021; Pan et al., 2008) showed shorter B1—N1 [1.4052 (17)] and C2—C3 [1.3276 (19) Å] bond lengths. As a result of weaker bond-length compensation effects, the remaining bonds within the ring are elongated by between 0.11 and 0.15 Å.
3. Supramolecular features and computational analysis
Analysis of the crystal packing exhibits zigzag layers of the title compound I in the c-axis direction (Fig. 2). The tert-butyl moieties of the protecting groups are paired in groups of two along the ac plane (Fig. 2a). The anthracenyl substituents are aligned in a zigzag manner [plane normal to plane normal angle of 52.936 (18)°], leading to a centroid–centroid distance for the anthracenyl substituents of 6.4604 (8) Å for in-plane orientation and 8.7850 (6) Å within the pattern (Fig. 2b). Therefore, no π-stacking is evident, given the positioning of the anthracenyl substituents in an antiplanar arrangement.
The C5—H5A group exhibits intramolecular C—H⋯π interactions with the anthracene ring [see Fig. 3 (labels A–C) and Table 1 for details; Spek, 2020). Moreover, interactions of the C2—H2 and the C4—H4B groups with the C12–C17 ring [Fig. 3 (label D), Table 1] are observed. Additional theoretical analysis (Becke, 1993; Epifanovsky et al., 2021; Francl et al., 1982; Glendening et al., 2001; Hariharan & Pople, 1973; Hehre et al., 1972; Stephens et al., 1994) matching the obtained crystal bond lengths revealed no aromatic character of the BN heterocycle of the title compound I. Instead, the free electron pair of nitrogen shows a significant donation to boron, and the C2—C3 bond exhibits no significant interactions with surrounding atoms (see supporting information). In particular, the C1—B1—N1—C4 motif shows a significant electron deficiency through low bond orders. While the B1—N1 and N1—C4 bonds have bond orders of 0.73 and 0.77, respectively, a value of 0.67 is obtained for the elongated B1—C1 bond.
4. Hirshfeld analysis
For the analysis of the intermolecular interactions, Hirshfeld surface (HS) calculations (Spackman & Jayatilaka, 2009) were performed and plotted over the dnorm in the range between −1.0432 and +2.0960 a.u. using CrystalExplorer 21.5 (Spackman et al., 2021) (Fig. 4).
Minor interactions were found for C14—H14, C16—H16, C21—H21, and C23—H23, as well as the two silyl methyl groups (C5 and C6).
The generation of 2D fingerprint plots (McKinnon et al., 2007) was performed using CrystalExplorer 21.5, investigating all specific intermolecular contacts (Fig. 5).
In the crystal packing, the H⋯H interactions are predominating and contribute to 77.0% of the overall close atom contacts (Entry 1, Table 2). C⋯C interactions contribute 0.1% (Entry 2, Table 2), while C⋯H/H⋯C contacts account for 22.8% (Entry 3, Table 2), indicating no additional interactions involving the heteroatoms.
|
5. Database Survey
A search of the Cambridge Structural Database (WebCSD version 1.9.32; update 27.06.2023; Groom et al., 2016) revealed no reports of BN-containing 1,4-cyclohexadiene structures with B-anthracenyl substituents. However, a search for the of 1,2,3,6-tetrahydro-1,2-azaborinines produced nine results with the B-NPh2, N-tert-butyl 1,2,3,6-tetrahydro-1,2-azaborinine derivative (CSD refcode: EFUPIF; Abbey et al., 2008) as the only monocyclic example. Of the 13 substructures with N—Si substitutions, eight examples with a similar protection group were found, but none of these examples had the C4 of the title compound I.
6. Synthesis and Crystallization
The precursor, 2-chloro-1-methyl-1,2,3,6-tetrahydro-1,2-azaborine, was synthesized according to the literature (Appiarius et al., 2021).
Under a nitrogen atmosphere, 9-bromoanthracene (4.68 g, 18.2 mmol) was dissolved in n-pentane (20 mL) and cooled to 273 K. A solution of n-butyllithium (1.1 eq., 8.0 mL, 20 mmol, 2.5 M in hexanes) was added over the course of 5 min. The solution was allowed to warm to 292 K and was stirred for 19 h. The mixture was then kept at 269 K for 48 h for subsequent precipitation. In a nitrogen-filled glovebox, the solution was filtered through a frit (pore size 3), and the solid was washed with n-pentane (50 mL) until no color was observed in the filtrate. It was then transferred to a flask and dried in vacuo (200 mbar). The product was obtained as a yellow powder (3.32 g, 18.0 mmol, 99%, purity: 70%). The purity was determined after a literature-reported procedure (Lin & Paquette, 1994).
Under a nitrogen atmosphere, the B-Cl 1,2-azaborinine (101 mg, 436 µmol) was dissolved in THF (5 mL) and cooled to 195 K. The lithium reagent (1.10 eq., 126 mg, 479 µmol, purity 70%) was dissolved in THF (5 mL) and added while maintaining the temperature at 195 K. The solution was allowed to warm to 292 K while it was stirred for 2 h. The reaction mixture was quenched with water (2 mL) and extracted with chloroform (3 × 20 mL). The combined organic layers were washed with brine (2 × 20 mL) and dried over MgSO4. Subsequently to filtration, the solvent was removed in vacuo (200 mbar) to obtain the crude product. Purification by (n-pentane, Rf = 0.60) gave the title compound I as colorless crystals (129 mg, 350 µmol, 80%). The title compound was crystallized from a n-pentane/acetonitrile mixture by slow evaporation at 273 K. It was stored under non-inert conditions for at least 4–6 weeks (stored at 265 K) without decomposition. The numbering scheme for interpretation of spectroscopic data is given in Fig. 6.
1H NMR [600 MHz, CDCl3,δ (ppm)]: 8.30 (s, 1H, H-12), 7.96 (ddd, 3J = 8.4 Hz, 4J = 1.4, 0.7 Hz, 2H, H-10), 7.80 (dd, 3J = 8.5 Hz, 4J = 1.3, 0.7 Hz, 2H, H-7), 7.41 (ddd, 3J = 8.4, 6.5 Hz, 4J = 1.3 Hz, 2H, H-9), 7.36 (ddd, 3J = 8.5, 6.5 Hz, 4J = 1.4 Hz, 2H, H-8), 6.13–6.07 (m, 1H, H-2), 6.03–5.97 (m, 1H, H-1), 4.00–3.95 (m, 2H, H-4), 1.92–1.86 (m, 2H, H-3), 0.84 (s, 9H, H-15), −0.57 (s, 6H, H-13).
13C{1H} NMR [151 MHz, CDCl3, δ (ppm)]: 132.2 (C-6), 131.2 (C-11), 129.3 (C-7), 128.7 (C-10), 127.8 (C-2), 126.1 (C-1), 125.2 (C-12), 124.8 (C-9), 124.2 (C-8), 45.6 (C-4), 28.0 (C-15), 19.2 (C-14), 3.8 (C-13).
11B{1H} NMR [160 MHz, CDCl3, δ (ppm)]: 50.6.
29Si{1H} NMR [119 MHz, CDCl3, δ (ppm)]: 15.9.
IR [ATR, ν (cm−1)]: 3048 (w), 3024 (w), 2925 (m), 2854 (m), 2359 (w), 1621 (w), 1463 (w), 1442 (m), 1414 (m), 1378 (m), 1295 (m), 1272 (m), 1251 (m), 1123 (m), 1079 (m), 1044 (m), 961 (m), 947 (w), 829 (m), 842 (s), 776 (s), 731 (s), 679 (s).
HRMS (ESI positive, m/z): calculated for C24H3111BN28Si 372.23133 [M + H]+; found 372.23167 [M + H]+.
M.p. [DSC, Onset, (K)]: 374.
7. Refinement
Crystal data, data collection and structure . Using a riding model with bond lengths of 0.95 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), the hydrogen atoms were positioned geometrically. Isotropic displacement parameters (Uiso) of these H atoms were fixed to 1.2 (CH and CH2) or 1.5 (CH3) times the values of the parent carbon atoms. The idealized methyl groups were refined as rotating groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2297014
https://doi.org/10.1107/S2056989023008381/vm2290sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023008381/vm2290Isup3.hkl
Experimental Data, NMR Spectra, Platon Output, Output from Computational Geometry Optimization. DOI: https://doi.org/10.1107/S2056989023008381/vm2290sup4.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989023008381/vm2290Isup4.cml
Data collection: PHOTON (Bruker, 2019); cell
SAINT V8.40A (Bruker, 2019); data reduction: SAINT V8.40A (Bruker, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009) ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, (2010).C24H30BNSi | Dx = 1.162 Mg m−3 |
Mr = 371.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9845 reflections |
a = 13.3292 (6) Å | θ = 2.5–30.5° |
b = 11.1365 (5) Å | µ = 0.12 mm−1 |
c = 28.5973 (12) Å | T = 100 K |
V = 4245.0 (3) Å3 | Block, colourless |
Z = 8 | 0.28 × 0.22 × 0.2 mm |
F(000) = 1600 |
Bruker Photon 100 diffractometer | 5264 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4416 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.049 |
Detector resolution: 7.9 pixels mm-1 | θmax = 28.3°, θmin = 2.5° |
ω and φ scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.707, Tmax = 0.746 | l = −38→38 |
67479 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0421P)2 + 2.6379P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5264 reflections | Δρmax = 0.37 e Å−3 |
249 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.64414 (3) | 0.53526 (3) | 0.67676 (2) | 0.01305 (9) | |
N1 | 0.59622 (8) | 0.46229 (9) | 0.62665 (4) | 0.0121 (2) | |
C11 | 0.52126 (9) | 0.64751 (11) | 0.58088 (4) | 0.0119 (2) | |
C19 | 0.41726 (10) | 0.83144 (12) | 0.58633 (5) | 0.0149 (3) | |
C12 | 0.59392 (9) | 0.71475 (11) | 0.55610 (4) | 0.0126 (2) | |
C24 | 0.43227 (9) | 0.70565 (11) | 0.59506 (4) | 0.0130 (2) | |
C17 | 0.57825 (10) | 0.84029 (12) | 0.54660 (5) | 0.0146 (3) | |
C18 | 0.49112 (10) | 0.89607 (12) | 0.56257 (5) | 0.0168 (3) | |
H18 | 0.481850 | 0.979511 | 0.557198 | 0.020* | |
C13 | 0.68530 (10) | 0.66195 (12) | 0.53987 (4) | 0.0153 (3) | |
H13 | 0.698476 | 0.579903 | 0.546572 | 0.018* | |
C16 | 0.65239 (10) | 0.90463 (12) | 0.52065 (5) | 0.0180 (3) | |
H16 | 0.642415 | 0.987500 | 0.514292 | 0.022* | |
C23 | 0.35484 (10) | 0.64256 (12) | 0.61956 (5) | 0.0166 (3) | |
H23 | 0.363308 | 0.559548 | 0.626116 | 0.020* | |
C14 | 0.75406 (10) | 0.72648 (12) | 0.51500 (5) | 0.0182 (3) | |
H14 | 0.813807 | 0.688816 | 0.504372 | 0.022* | |
C2 | 0.48012 (10) | 0.29143 (12) | 0.57271 (5) | 0.0184 (3) | |
H2 | 0.429913 | 0.239109 | 0.560836 | 0.022* | |
C1 | 0.48884 (10) | 0.41613 (12) | 0.55382 (5) | 0.0164 (3) | |
H1A | 0.421131 | 0.445468 | 0.545345 | 0.020* | |
H1B | 0.529719 | 0.414180 | 0.524923 | 0.020* | |
C3 | 0.54188 (11) | 0.25311 (12) | 0.60593 (5) | 0.0186 (3) | |
H3 | 0.534485 | 0.173818 | 0.617685 | 0.022* | |
C15 | 0.73675 (11) | 0.84979 (13) | 0.50489 (5) | 0.0195 (3) | |
H15 | 0.784345 | 0.893832 | 0.487081 | 0.023* | |
C20 | 0.32658 (11) | 0.88722 (13) | 0.60194 (5) | 0.0200 (3) | |
H20 | 0.316206 | 0.970332 | 0.596236 | 0.024* | |
C7 | 0.58707 (11) | 0.46528 (13) | 0.73184 (5) | 0.0208 (3) | |
C5 | 0.61517 (11) | 0.69869 (12) | 0.67683 (5) | 0.0194 (3) | |
H5A | 0.639979 | 0.735062 | 0.647849 | 0.029* | |
H5B | 0.647856 | 0.736898 | 0.703685 | 0.029* | |
H5C | 0.542432 | 0.710205 | 0.679006 | 0.029* | |
C4 | 0.62300 (10) | 0.33186 (11) | 0.62535 (5) | 0.0155 (3) | |
H4A | 0.638945 | 0.304962 | 0.657494 | 0.019* | |
H4B | 0.684208 | 0.321657 | 0.606145 | 0.019* | |
C22 | 0.26936 (10) | 0.69877 (14) | 0.63369 (5) | 0.0207 (3) | |
H22 | 0.218894 | 0.654525 | 0.649613 | 0.025* | |
C21 | 0.25508 (11) | 0.82314 (14) | 0.62480 (5) | 0.0221 (3) | |
H21 | 0.195274 | 0.861639 | 0.634892 | 0.027* | |
C6 | 0.78352 (10) | 0.52013 (13) | 0.67616 (6) | 0.0236 (3) | |
H6A | 0.801667 | 0.434860 | 0.675946 | 0.035* | |
H6B | 0.811589 | 0.558499 | 0.704089 | 0.035* | |
H6C | 0.810525 | 0.559100 | 0.648130 | 0.035* | |
C8 | 0.47669 (12) | 0.43301 (16) | 0.72304 (6) | 0.0311 (4) | |
H8A | 0.440495 | 0.504437 | 0.712272 | 0.047* | |
H8B | 0.446415 | 0.403817 | 0.752130 | 0.047* | |
H8C | 0.472708 | 0.370187 | 0.699121 | 0.047* | |
B1 | 0.53820 (10) | 0.50755 (13) | 0.58960 (5) | 0.0119 (3) | |
C9 | 0.64271 (14) | 0.35359 (15) | 0.74992 (6) | 0.0345 (4) | |
H9A | 0.635604 | 0.288080 | 0.727276 | 0.052* | |
H9B | 0.614021 | 0.328939 | 0.779975 | 0.052* | |
H9C | 0.713960 | 0.372554 | 0.754027 | 0.052* | |
C10 | 0.59141 (18) | 0.55923 (17) | 0.77124 (6) | 0.0448 (5) | |
H10A | 0.660967 | 0.585254 | 0.775764 | 0.067* | |
H10B | 0.566082 | 0.523710 | 0.800285 | 0.067* | |
H10C | 0.549936 | 0.628553 | 0.762762 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.01541 (18) | 0.01078 (17) | 0.01295 (17) | −0.00045 (13) | −0.00323 (13) | −0.00092 (13) |
N1 | 0.0150 (5) | 0.0087 (5) | 0.0127 (5) | 0.0004 (4) | −0.0005 (4) | −0.0003 (4) |
C11 | 0.0138 (6) | 0.0115 (6) | 0.0105 (6) | −0.0009 (5) | −0.0033 (4) | −0.0001 (5) |
C19 | 0.0156 (6) | 0.0136 (6) | 0.0154 (6) | 0.0021 (5) | −0.0050 (5) | −0.0010 (5) |
C12 | 0.0149 (6) | 0.0115 (6) | 0.0114 (6) | −0.0008 (5) | −0.0037 (5) | 0.0004 (5) |
C24 | 0.0136 (6) | 0.0130 (6) | 0.0126 (6) | 0.0001 (5) | −0.0036 (5) | −0.0005 (5) |
C17 | 0.0173 (6) | 0.0122 (6) | 0.0144 (6) | −0.0028 (5) | −0.0054 (5) | 0.0009 (5) |
C18 | 0.0204 (7) | 0.0112 (6) | 0.0187 (7) | 0.0011 (5) | −0.0055 (5) | 0.0009 (5) |
C13 | 0.0177 (6) | 0.0132 (6) | 0.0150 (6) | −0.0005 (5) | −0.0005 (5) | −0.0012 (5) |
C16 | 0.0212 (7) | 0.0133 (6) | 0.0193 (7) | −0.0048 (5) | −0.0053 (5) | 0.0046 (5) |
C23 | 0.0177 (6) | 0.0159 (6) | 0.0162 (6) | −0.0014 (5) | −0.0013 (5) | 0.0008 (5) |
C14 | 0.0180 (6) | 0.0195 (7) | 0.0171 (6) | −0.0019 (5) | 0.0020 (5) | −0.0027 (5) |
C2 | 0.0200 (7) | 0.0127 (6) | 0.0224 (7) | −0.0042 (5) | −0.0023 (5) | −0.0027 (5) |
C1 | 0.0204 (7) | 0.0136 (6) | 0.0152 (6) | −0.0005 (5) | −0.0034 (5) | 0.0009 (5) |
C3 | 0.0249 (7) | 0.0088 (6) | 0.0221 (7) | −0.0019 (5) | −0.0014 (5) | 0.0007 (5) |
C15 | 0.0210 (7) | 0.0210 (7) | 0.0164 (6) | −0.0092 (6) | 0.0001 (5) | 0.0030 (5) |
C20 | 0.0209 (7) | 0.0173 (7) | 0.0219 (7) | 0.0061 (5) | −0.0035 (5) | −0.0020 (5) |
C7 | 0.0302 (8) | 0.0196 (7) | 0.0125 (6) | 0.0011 (6) | 0.0000 (5) | 0.0005 (5) |
C5 | 0.0262 (7) | 0.0131 (6) | 0.0190 (7) | −0.0001 (5) | −0.0063 (6) | −0.0036 (5) |
C4 | 0.0204 (7) | 0.0097 (6) | 0.0164 (6) | 0.0031 (5) | −0.0047 (5) | −0.0009 (5) |
C22 | 0.0160 (7) | 0.0259 (7) | 0.0202 (7) | −0.0021 (6) | 0.0014 (5) | −0.0003 (6) |
C21 | 0.0168 (7) | 0.0256 (7) | 0.0238 (7) | 0.0059 (6) | 0.0002 (6) | −0.0042 (6) |
C6 | 0.0174 (7) | 0.0185 (7) | 0.0349 (8) | −0.0013 (5) | −0.0076 (6) | 0.0005 (6) |
C8 | 0.0264 (8) | 0.0412 (10) | 0.0256 (8) | −0.0016 (7) | 0.0092 (6) | 0.0085 (7) |
B1 | 0.0116 (6) | 0.0116 (6) | 0.0124 (6) | −0.0003 (5) | 0.0016 (5) | 0.0005 (5) |
C9 | 0.0447 (10) | 0.0350 (9) | 0.0238 (8) | 0.0081 (8) | 0.0028 (7) | 0.0144 (7) |
C10 | 0.0817 (15) | 0.0363 (10) | 0.0165 (8) | −0.0084 (10) | 0.0059 (9) | −0.0064 (7) |
Si1—N1 | 1.7669 (11) | C1—H1B | 0.9900 |
Si1—C7 | 1.9148 (14) | C1—B1 | 1.5863 (19) |
Si1—C5 | 1.8606 (14) | C3—H3 | 0.9500 |
Si1—C6 | 1.8655 (15) | C3—C4 | 1.4988 (18) |
N1—C4 | 1.4963 (16) | C15—H15 | 0.9500 |
N1—B1 | 1.4052 (17) | C20—H20 | 0.9500 |
C11—C12 | 1.4144 (17) | C20—C21 | 1.358 (2) |
C11—C24 | 1.4108 (18) | C7—C8 | 1.535 (2) |
C11—B1 | 1.5946 (18) | C7—C9 | 1.538 (2) |
C19—C24 | 1.4370 (18) | C7—C10 | 1.539 (2) |
C19—C18 | 1.3960 (19) | C5—H5A | 0.9800 |
C19—C20 | 1.4304 (19) | C5—H5B | 0.9800 |
C12—C17 | 1.4395 (18) | C5—H5C | 0.9800 |
C12—C13 | 1.4300 (18) | C4—H4A | 0.9900 |
C24—C23 | 1.4318 (18) | C4—H4B | 0.9900 |
C17—C18 | 1.3940 (19) | C22—H22 | 0.9500 |
C17—C16 | 1.4286 (19) | C22—C21 | 1.421 (2) |
C18—H18 | 0.9500 | C21—H21 | 0.9500 |
C13—H13 | 0.9500 | C6—H6A | 0.9800 |
C13—C14 | 1.3646 (19) | C6—H6B | 0.9800 |
C16—H16 | 0.9500 | C6—H6C | 0.9800 |
C16—C15 | 1.357 (2) | C8—H8A | 0.9800 |
C23—H23 | 0.9500 | C8—H8B | 0.9800 |
C23—C22 | 1.3613 (19) | C8—H8C | 0.9800 |
C14—H14 | 0.9500 | C9—H9A | 0.9800 |
C14—C15 | 1.422 (2) | C9—H9B | 0.9800 |
C2—H2 | 0.9500 | C9—H9C | 0.9800 |
C2—C1 | 1.4947 (18) | C10—H10A | 0.9800 |
C2—C3 | 1.3276 (19) | C10—H10B | 0.9800 |
C1—H1A | 0.9900 | C10—H10C | 0.9800 |
N1—Si1—C7 | 109.65 (6) | C19—C20—H20 | 119.5 |
N1—Si1—C5 | 112.07 (6) | C21—C20—C19 | 121.00 (13) |
N1—Si1—C6 | 108.12 (6) | C21—C20—H20 | 119.5 |
C5—Si1—C7 | 108.35 (7) | C8—C7—Si1 | 109.95 (10) |
C5—Si1—C6 | 107.16 (7) | C8—C7—C9 | 109.14 (13) |
C6—Si1—C7 | 111.50 (7) | C8—C7—C10 | 108.36 (14) |
C4—N1—Si1 | 112.36 (8) | C9—C7—Si1 | 114.47 (11) |
B1—N1—Si1 | 130.21 (9) | C9—C7—C10 | 106.60 (14) |
B1—N1—C4 | 117.43 (10) | C10—C7—Si1 | 108.10 (11) |
C12—C11—B1 | 119.92 (11) | Si1—C5—H5A | 109.5 |
C24—C11—C12 | 118.47 (11) | Si1—C5—H5B | 109.5 |
C24—C11—B1 | 121.51 (11) | Si1—C5—H5C | 109.5 |
C18—C19—C24 | 119.27 (12) | H5A—C5—H5B | 109.5 |
C18—C19—C20 | 121.60 (12) | H5A—C5—H5C | 109.5 |
C20—C19—C24 | 119.13 (12) | H5B—C5—H5C | 109.5 |
C11—C12—C17 | 120.62 (12) | N1—C4—C3 | 113.90 (11) |
C11—C12—C13 | 121.88 (11) | N1—C4—H4A | 108.8 |
C13—C12—C17 | 117.49 (12) | N1—C4—H4B | 108.8 |
C11—C24—C19 | 120.97 (12) | C3—C4—H4A | 108.8 |
C11—C24—C23 | 121.44 (12) | C3—C4—H4B | 108.8 |
C23—C24—C19 | 117.58 (12) | H4A—C4—H4B | 107.7 |
C18—C17—C12 | 119.46 (12) | C23—C22—H22 | 119.8 |
C18—C17—C16 | 121.54 (12) | C23—C22—C21 | 120.48 (13) |
C16—C17—C12 | 119.00 (12) | C21—C22—H22 | 119.8 |
C19—C18—H18 | 119.4 | C20—C21—C22 | 120.28 (13) |
C17—C18—C19 | 121.15 (12) | C20—C21—H21 | 119.9 |
C17—C18—H18 | 119.4 | C22—C21—H21 | 119.9 |
C12—C13—H13 | 119.2 | Si1—C6—H6A | 109.5 |
C14—C13—C12 | 121.65 (12) | Si1—C6—H6B | 109.5 |
C14—C13—H13 | 119.2 | Si1—C6—H6C | 109.5 |
C17—C16—H16 | 119.3 | H6A—C6—H6B | 109.5 |
C15—C16—C17 | 121.34 (12) | H6A—C6—H6C | 109.5 |
C15—C16—H16 | 119.3 | H6B—C6—H6C | 109.5 |
C24—C23—H23 | 119.2 | C7—C8—H8A | 109.5 |
C22—C23—C24 | 121.53 (13) | C7—C8—H8B | 109.5 |
C22—C23—H23 | 119.2 | C7—C8—H8C | 109.5 |
C13—C14—H14 | 119.8 | H8A—C8—H8B | 109.5 |
C13—C14—C15 | 120.36 (13) | H8A—C8—H8C | 109.5 |
C15—C14—H14 | 119.8 | H8B—C8—H8C | 109.5 |
C1—C2—H2 | 119.7 | N1—B1—C11 | 123.12 (11) |
C3—C2—H2 | 119.7 | N1—B1—C1 | 118.97 (11) |
C3—C2—C1 | 120.60 (12) | C1—B1—C11 | 117.89 (11) |
C2—C1—H1A | 108.9 | C7—C9—H9A | 109.5 |
C2—C1—H1B | 108.9 | C7—C9—H9B | 109.5 |
C2—C1—B1 | 113.30 (11) | C7—C9—H9C | 109.5 |
H1A—C1—H1B | 107.7 | H9A—C9—H9B | 109.5 |
B1—C1—H1A | 108.9 | H9A—C9—H9C | 109.5 |
B1—C1—H1B | 108.9 | H9B—C9—H9C | 109.5 |
C2—C3—H3 | 119.2 | C7—C10—H10A | 109.5 |
C2—C3—C4 | 121.63 (12) | C7—C10—H10B | 109.5 |
C4—C3—H3 | 119.2 | C7—C10—H10C | 109.5 |
C16—C15—C14 | 120.11 (13) | H10A—C10—H10B | 109.5 |
C16—C15—H15 | 119.9 | H10A—C10—H10C | 109.5 |
C14—C15—H15 | 119.9 | H10B—C10—H10C | 109.5 |
Si1—N1—C4—C3 | 143.11 (10) | C18—C17—C16—C15 | −179.54 (13) |
Si1—N1—B1—C11 | 12.58 (19) | C13—C12—C17—C18 | −178.75 (12) |
Si1—N1—B1—C1 | −168.86 (9) | C13—C12—C17—C16 | 1.69 (18) |
C11—C12—C17—C18 | 0.84 (18) | C13—C14—C15—C16 | 1.1 (2) |
C11—C12—C17—C16 | −178.72 (12) | C16—C17—C18—C19 | 177.47 (12) |
C11—C12—C13—C14 | 178.38 (12) | C23—C22—C21—C20 | 0.2 (2) |
C11—C24—C23—C22 | 179.33 (13) | C2—C1—B1—N1 | 20.11 (17) |
C19—C24—C23—C22 | 0.77 (19) | C2—C1—B1—C11 | −161.25 (12) |
C19—C20—C21—C22 | 0.1 (2) | C2—C3—C4—N1 | 32.76 (19) |
C12—C11—C24—C19 | −2.54 (18) | C1—C2—C3—C4 | −0.7 (2) |
C12—C11—C24—C23 | 178.94 (12) | C3—C2—C1—B1 | −25.46 (19) |
C12—C11—B1—N1 | 83.53 (16) | C20—C19—C24—C11 | −179.05 (12) |
C12—C11—B1—C1 | −95.05 (14) | C20—C19—C24—C23 | −0.48 (18) |
C12—C17—C18—C19 | −2.07 (19) | C20—C19—C18—C17 | −178.58 (13) |
C12—C17—C16—C15 | 0.0 (2) | C7—Si1—N1—C4 | −62.08 (10) |
C12—C13—C14—C15 | 0.7 (2) | C7—Si1—N1—B1 | 117.35 (12) |
C24—C11—C12—C17 | 1.44 (18) | C5—Si1—N1—C4 | 177.55 (9) |
C24—C11—C12—C13 | −178.99 (11) | C5—Si1—N1—B1 | −3.01 (14) |
C24—C11—B1—N1 | −100.06 (15) | C4—N1—B1—C11 | −168.01 (11) |
C24—C11—B1—C1 | 81.36 (15) | C4—N1—B1—C1 | 10.55 (17) |
C24—C19—C18—C17 | 0.99 (19) | C6—Si1—N1—C4 | 59.67 (10) |
C24—C19—C20—C21 | 0.1 (2) | C6—Si1—N1—B1 | −120.89 (12) |
C24—C23—C22—C21 | −0.6 (2) | B1—N1—C4—C3 | −36.40 (16) |
C17—C12—C13—C14 | −2.04 (19) | B1—C11—C12—C17 | 177.96 (11) |
C17—C16—C15—C14 | −1.4 (2) | B1—C11—C12—C13 | −2.47 (18) |
C18—C19—C24—C11 | 1.37 (19) | B1—C11—C24—C19 | −179.00 (11) |
C18—C19—C24—C23 | 179.94 (12) | B1—C11—C24—C23 | 2.49 (18) |
C18—C19—C20—C21 | 179.65 (13) |
Cg2, Cg5, Cg7 and Cg3 are the centroids of rings C11–C12/C17–C19/C24, C11–C18, C11–C24 and C12–C17, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···Cg2 | 0.98 | 2.86 | 3.4529 (15) | 120 |
C5—H5A···Cg5 | 0.98 | 2.91 | 3.7305 (15) | 142 |
C5—H5A···Cg7 | 0.98 | 2.88 | 3.4772 (15) | 120 |
C2—H2···Cg3i | 0.95 | 2.92 | 3.6380 (15) | 133 |
C4—H4B···Cg3ii | 0.99 | 2.97 | 3.9373 (15) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, z. |
Entry | Contact | Percentage contribution |
1 | all···all | 100 |
2 | H···H | 77 |
3 | C···C | 0.1 |
4 | C···H/H···C | 22.8 |
5 | B···all/all···B | 0 |
6 | N···all/all···N | 0 |
7 | Si···all/all···Si | 0 |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. STA1195/2-1 to A. Staubitz); Deutsche Forschungsgemeinschaft (grant No. STA1526/3-1 to T. Neudecker).
References
Abbey, E. R., Zakharov, L. N. & Liu, S.-Y. (2008). J. Am. Chem. Soc. 130, 7250–7252. Web of Science CSD CrossRef PubMed CAS Google Scholar
Appiarius, Y. & Staubitz, A. (2023). Chem. Unserer Zeit, 57, 180–190. Web of Science CrossRef CAS Google Scholar
Appiarius, Y., Stauch, T., Lork, E., Rusch, P., Bigall, N. C. & Staubitz, A. (2021). Org. Chem. Front. 8, 10–17. Web of Science CSD CrossRef CAS Google Scholar
Ashe, A. J. & Fang, X. (2000). Org. Lett. 2, 2089–2091. Web of Science CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bélanger-Chabot, G., Braunschweig, H. & Roy, D. K. (2017). Eur. J. Inorg. Chem. pp. 4353–4368. Google Scholar
Boknevitz, K., Italia, J. S., Li, B., Chatterjee, A. & Liu, S.-Y. (2019). Chem. Sci. 10, 4994–4998. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2019). PHOTON and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, P. G., Marwitz, A. J. & Liu, S. Y. (2012). Angew. Chem. Int. Ed. 51, 6074–6092. Web of Science CrossRef CAS Google Scholar
Campbell, P. G., Zakharov, L. N., Grant, D. J., Dixon, D. A. & Liu, S.-Y. (2010). J. Am. Chem. Soc. 132, 3289–3291. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Epifanovsky, E., Gilbert, A. T. B., Feng, X., Lee, J., Mao, Y., Mardirossian, N., et al. (2021). J. Chem. Phys. 155, 084801. Web of Science CrossRef PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. & Pople, J. A. (1982). J. Chem. Phys. 77, 3654–3665. CrossRef CAS Web of Science Google Scholar
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. & Weinhold, F. (2001). NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hariharan, P. C. & Pople, J. A. (1973). Theor. Chim. Acta, 28, 213–222. CrossRef CAS Web of Science Google Scholar
Hehre, W. J., Ditchfield, R. & Pople, J. A. (1972). J. Chem. Phys. 56, 2257–2261. CrossRef CAS Web of Science Google Scholar
Hoffmann, J., Geffroy, B., Jaques, E., Hissler, M. & Staubitz, A. (2021a). J. Mater. Chem. C. 9, 14720–14729. Web of Science CrossRef CAS Google Scholar
Hoffmann, J., Jacquemin, D., Hissler, M. & Staubitz, A. (2021b). J. Mater. Chem. C. 9, 13926–13934. Web of Science CrossRef CAS Google Scholar
Jeffrey, G. A., Buschmann, J., Lehmann, C. W. & Luger, P. (1988). J. Am. Chem. Soc. 110, 7218–7219. CSD CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lin, H.-S. & Paquette, L. A. (1994). Synth. Commun. 24, 2503–2506. CrossRef CAS Web of Science Google Scholar
Liu, Y., Puig de la Bellacasa, R., Li, B., Cuenca, A. B. & Liu, S.-Y. (2021). J. Am. Chem. Soc. 143, 14059–14064. Web of Science CSD CrossRef CAS PubMed Google Scholar
Marwitz, A. J., Matus, M. H., Zakharov, L. N., Dixon, D. A. & Liu, S.-Y. (2009). Angew. Chem. Int. Ed. 48, 973–977. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Pan, J., Kampf, J. W. & Ashe, A. J. (2008). Organometallics, 27, 1345–1347. Web of Science CSD CrossRef CAS Google Scholar
Rudebusch, G. E., Zakharov, L. N. & Liu, S.-Y. (2013). Angew. Chem. Int. Ed. 52, 9316–9319. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. (1994). J. Phys. Chem. 98, 11623–11627. CrossRef CAS Web of Science Google Scholar
Thiedemann, B., Gliese, P. J., Hoffmann, J., Lawrence, P. G., Sönnichsen, F. D. & Staubitz, A. (2017). Chem. Commun. 53, 7258–7261. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.