research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(3-carb­­oxy-1-methyl­pyrid­inium) octa­bromide

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64/13, Kyiv 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
*Correspondence e-mail: valerii_sirenko@knu.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 September 2023; accepted 26 September 2023; online 3 October 2023)

The crystal structure of the title salt, bis­(3-carb­oxy-1-methyl­pyridinium) octa­bromide, 2C7H8NO2+·Br82−, consists of 3-carb­oxy-1-methyl­pyridinium (N-methyl­nicotinic acid) cations, which are stacked between relatively rare [Br8]2– anions. The polybromide [Br8]2– anion has point group symmetry [\overline{1}] and can be described as being composed of two [Br3] anions connected with a Br2 mol­ecule in a Z-shaped manner. Contacts between neighboring octa­bromide anions ensure the creation of pseudo-polymeric chains propagating along [111]. The organic cations are located between anionic chains and are connected to each other through O—H⋯O hydrogen bonds and to the [Br8]2– anions through π⋯Br inter­actions that induce the creation of a supra­molecular tri-periodic network. In addition, the presence of weak C—H⋯Br contacts leads to the creation of layers, which align parallel to (11[\overline{2}]).

1. Chemical context

Polyhalide anions have been the subject of extensive studies within the past century, whereby polyiodides offer the greatest diversity of known compounds among all polyhalide anions. The first triiodide-containing crystal structure, (NH4)[I3], was determined and characterized by Mooney in 1935 (Mooney, 1935[Mooney, R. C. L. (1935). Z. Kristallogr. 90, 143-150.]). The known anions range from the smallest possible unit, [I3], through multiple discrete species of the types [I2n+1], [I2n+2]2–, [I2n+3]3– and other types from [I3] to [I29]3– (Svensson & Kloo, 2003[Svensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649-1684.]) to infinite polymeric structures (Madhu et al., 2016[Madhu, S., Evans, H. A., Doan-Nguyen, V. V. T., Labram, J. G., Wu, G., Chabinyc, M. L., Seshadri, R. & Wudl, F. (2016). Angew. Chem. Int. Ed. 55, 8032-8035.]). A significantly smaller number of polyhalide anions is known for lighter halogens. This fact is mostly associated with the higher volatility of bromine, chlorine and fluorine in comparison with iodine, and thus their tendency to loss of halogen. However, several polybromide mono- ([Br3], [Br5], [Br7], [Br9], [Br11]) and dianions ([Br4]2–, [Br6]2–, [Br8]2–, [Br10]2–) are also known so far (Sonnenberg et al., 2020[Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464-5493.]).

One of the most common applications of polybromide anions is in halogenation reactions. They are typically accessible in stable solid bulk form or as liquids with no measurable vapor pressure, depending on the organic cation. Thus, they can be handled much more easily then elemental liquid bromine (Sonnenberg et al., 2020[Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464-5493.]). Polybromides, for example [HMIM][Br9] where HMIM = 1-hexyl-3-methyl­imidazolium, have also been shown to form room-temperature ionic liquids, which can potentially be applied as a liquid electrode (Haller et al., 2013[Haller, H., Hog, M., Scholz, F., Scherer, H., Krossing, I. & Riedel, S. (2013). Z. Naturforsch. Teil B, 68, 1103-1107.]). Moreover, the use of the tribromide anion in the [Br3]/Br redox pair as a mediator in dye-sensitized solar cells has been reported to be an efficient alternative to the frequently used [I3]/I system (Kakiage et al., 2013[Kakiage, K., Tokutome, T., Iwamoto, S., Kyomen, T. & Hanaya, M. (2013). Chem. Commun. 49, 179-180.]). Polybromides have also been applied in zinc/bromine redox-flow batteries (Naresh et al., 2022[Naresh, R. P., Surendran, A., Ragupathy, P. & Dixon, D. (2022). J. Energy Storage 52, 104913.]).

[Scheme 1]

In the present communication, we report a new polybromide compound containing a Z-shaped octa­bromide anion, 2(C7H8NO2)+ [Br8]2–, and report its synthesis, crystal structure and Hirshfeld surface analysis.

2. Structural commentary

The crystal structure of the title compound consists of 3-carb­oxy-1-methyl­pyridinium (or N-methyl­nicotinic acid) cations separated by [Br8]2– anions (Fig. 1[link]). The polybromide [Br8]2– anion can be described as two [Br3] moieties connected to a central Br2 mol­ecule in a Z-shaped manner (Fig. 2[link]). The title salt has point group symmetry [\overline{1}], with the inversion center located at the midpoint of the central Br2 mol­ecule. The Br—Br distance in the latter is 2.4002 (15) Å, which is slightly higher than 2.308 Å observed in [(Bz)(Ph)3P]+2[Br8]2– where (Bz)(Ph)3P+ = benzyl­tri­phenyl­phospho­nium (Wolff et al., 2011[Wolff, M., Okrut, A. & Feldmann, C. (2011). Inorg. Chem. 50, 11683-11694.]) and 2.354 Å in [Q+]2[Br8]2– where Q+ = quinuclidinium (Robertson et al., 1997[Robertson, K. N., Bakshi, P. K., Cameron, T. S. & Knop, O. (1997). Z. Anorg. Allge Chem. 623, 104-114.]). The Br1—Br2—Br3 distances in the [Br3] moiety of the title compound are 2.4095 (7) Å and 2.7303 (7) Å (Fig. 2[link]). For comparison, while in [Q+]2[Br8]2− these values are similar (2.432 and 2.663 Å), in [(Bz)(Ph)3P]+2[Br8]2− these bond lengths are rather equalized (2.518 and 2.498 Å). The angle between the [Br3] and Br2 fragment in the title compound is 90.37 (2)°, which lies in the range between 80° and 112° observed for the [Br8]2– anions in other octa­bromide compounds listed in the Database survey. The [Br8]2– anion in the title compound is planar with the mean deviation from the best plane through the eight atoms of 0.013 Å.

[Figure 1]
Figure 1
A fragment of the crystal structure of title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x, −y, -z.]
[Figure 2]
Figure 2
A fragment of the title compound showing the Z-shaped octa­bromide anion; numbers are bond lengths (in Å).

3. Supra­molecular features

The Br1⋯Br1(−x + 1, −y + 1, −z + 1) distance between neighboring [Br8]2– anions is 3.1813 (12) Å, which is smaller than the sum of van der Waal radii of 3.7 Å. This inter­action contributes to the formation of infinite supra­molecular chains propagating along [111] (Fig. 3[link]). The organic cations are located between anionic chains and are connected with [Br8]2– through π⋯Br inter­actions [with a centroid⋯Br distance of 3.5577 (18) Å] into a supra­molecular tri-periodic framework (Fig. 4[link]). Neighboring cations of N-methyl­nicotinic acid are hydrogen-bonded with each other (Fig. 3[link], Table 1[link]). In addition, the organic cations show weak C—H⋯Br contacts with the polybromide anions (Table 1[link]) that lead to the creation of layers extending parallel to (11[\overline{2}]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.80 (7) 1.89 (7) 2.668 (5) 164 (7)
C1—H1A⋯Br3ii 0.93 2.96 3.838 (5) 158
C5—H5⋯Br4iii 0.93 2.99 3.881 (5) 160
C7—H7A⋯Br3ii 0.96 2.92 3.857 (6) 166
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) x+1, y, z; (iii) [-x, -y+1, -z].
[Figure 3]
Figure 3
The crystal structure of the title compound in a view along the b axis showing infinite chains of anions. Hydrogen bonds between organic cations are shown as black dashed lines. Br⋯Br contacts between [Br8]2– anions are shown as red dashed lines.
[Figure 4]
Figure 4
The π⋯anion inter­actions in the title compound.

4. Hirshfeld surface analysis

Hirshfeld surface analysis and two-dimensional fingerprint plots of the title compound were generated using Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The graphical representation of the Hirshfeld surface of the 3-carb­oxy-1-methyl­pyridinium cation reveals the presence of a rather strong O—H⋯O hydrogen bond with a neighboring organic cation, as shown in bright red (dnorm plot, Fig. 5[link]a), and the presence of weak C—H⋯Br contacts between the organic cation and the octa­bromide anion (dnorm plot, Fig. 5[link]b-d) as well as π⋯Br inter­actions between the 3-carb­oxy-1-methyl­pyridinium and the fragment of polybromide anions located above the aromatic ring (shape-index plot, Fig. 5[link]e). The contributions of selected weak inter­actions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots in Fig. 6[link]. The strongest contribution is from Br⋯H inter­actions (38.2%) with the next major contributions from O⋯H (20.4%) and Br⋯C (13.0%).

[Figure 5]
Figure 5
Hirshfeld surface of the 3-carb­oxy-1-methyl­pyridinium cation plotted over dnorm (ad) or shape index (e). The neighboring atoms are shown in ball-and-stick mode for clarity. The surface regions with the strongest inter­molecular inter­actions are shown in red.
[Figure 6]
Figure 6
Hirshfeld surface fingerprint plot for 3-carb­oxy-1-methyl­pyridinium showing overall (100%), Br⋯H, O⋯H and Br⋯C contributions. The de and di values are the distances to the closest external and inter­nal atoms, respectively, from a given point to the Hirshfeld surface.

The graphical representation of the Hirshfeld surface of the octa­bromide anion is given in Fig. 7[link] (dnorm plot). The most prominent inter­action is observed with a neighboring [Br8]2– anion and is shown in red. Observed contacts with the organic cation are significantly weaker and are shown in colors from light pink to white. The fingerprint plots for the octa­bromide anion are given in Fig. 8[link]. Here the highest contributions are observed for Br⋯H (70.0%) and Br⋯C (15.3%) contacts. Other types of inter­action make significantly smaller contribution to the crystal packing, viz. Br⋯O (7.7%), Br⋯Br (4.9%) and Br⋯N (2.2%).

[Figure 7]
Figure 7
Hirshfeld surface of the octa­bromide anion plotted over dnorm. The surface regions with the strongest inter­molecular inter­actions are shown in red.
[Figure 8]
Figure 8
Hirshfeld surface fingerprint plot for octa­bromide anion showing overall (100%), Br⋯H, Br⋯C, Br⋯O, Br⋯Br and Br⋯N contributions.

5. Database survey

A search of the tribromide moiety in the Cambridge Crystal Database (CSD version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 327 crystal structures, while only 28 of them containing four Br atoms connected in a row. The closest analogues to the title compound containing Z-shaped octa­bromide anions were found to be REKBAK (Robertson et al., 1997[Robertson, K. N., Bakshi, P. K., Cameron, T. S. & Knop, O. (1997). Z. Anorg. Allge Chem. 623, 104-114.]), ICOVUS (Fromm et al., 2006[Fromm, K. M., Bergougnant, R. D. & Robin, A. Y. (2006). Z. Anorg. Allg. Chem. 632, 828-836.]), RAQGIB (Wolff et al., 2011[Wolff, M., Okrut, A. & Feldmann, C. (2011). Inorg. Chem. 50, 11683-11694.]) and PAQSAE (Sonnenberg et al., 2017[Sonnenberg, K., Pröhm, P., Steinhauer, S., Wiesner, A., Müller, C. & Riedel, S. (2017). Z. Anorg. Allge Chem. 643, 101-105.]).

6. Synthesis and crystallization

0.5 mmol of N-methyl­nicotinamide was mixed with 2 ml of HBr (48%wt) and left to evaporate. After three days, red crystals appeared in the mixture. They were separated and kept in the mother solution prior to the diffraction measurement.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Aromatic H atoms were positioned geometrically and refined with riding coordinates [Uiso(H) = 1.2Ueq(C)]. Methyl H atoms were positioned geometrically and were allowed to ride on C atoms and rotate around the N—C bond [Uiso(H) = 1.5Ueq(C)]. The H atom of the carboxyl group was found from a difference-Fourier map and was refined with a fixed distance of d(O—H) = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula 2C7H8NO2+·Br82−
Mr 915.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.8537 (5), 7.0873 (6), 14.5145 (6)
α, β, γ (°) 95.746 (5), 91.156 (4), 115.002 (7)
V3) 634.23 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 12.67
Crystal size (mm) 0.17 × 0.11 × 0.06
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.458, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 9457, 3008, 1848
Rint 0.048
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.075, 1.02
No. of reflections 3008
No. of parameters 132
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.38, −1.32
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis(3-carboxy-1-methylpyridinium) octabromide top
Crystal data top
2C7H8NO2+·Br82Z = 1
Mr = 915.52F(000) = 424.594
Triclinic, P1Dx = 2.397 Mg m3
a = 6.8537 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0873 (6) ÅCell parameters from 2335 reflections
c = 14.5145 (6) Åθ = 3.2–23.7°
α = 95.746 (5)°µ = 12.67 mm1
β = 91.156 (4)°T = 293 K
γ = 115.002 (7)°Block, light red
V = 634.23 (8) Å30.17 × 0.11 × 0.06 mm
Data collection top
Xcalibur, Eos
diffractometer
1848 reflections with I 2u(I)
Detector resolution: 16.1593 pixels mm-1Rint = 0.048
ω scansθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 89
Tmin = 0.458, Tmax = 1.000k = 99
9457 measured reflectionsl = 1919
3008 independent reflections
Refinement top
Refinement on F213 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0186P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.02Δρmax = 1.38 e Å3
3008 reflectionsΔρmin = 1.32 e Å3
132 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0112 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.06745 (8)0.45917 (8)0.30515 (3)0.05120 (19)
Br30.18168 (9)0.43980 (10)0.15210 (3)0.0628 (2)
Br10.29688 (10)0.47662 (9)0.43679 (4)0.0673 (2)
Br40.04755 (10)0.12253 (10)0.04613 (3)0.0781 (3)
O10.9137 (6)0.8874 (6)0.3821 (2)0.0564 (10)
O20.7895 (5)1.0613 (5)0.4839 (2)0.0540 (10)
N10.4595 (6)0.8218 (6)0.1811 (2)0.0420 (10)
C20.6297 (7)0.9597 (7)0.3314 (3)0.0348 (12)
C60.7873 (8)0.9736 (8)0.4062 (3)0.0430 (13)
C10.6035 (7)0.8341 (7)0.2488 (3)0.0423 (13)
H1a0.6851 (7)0.7580 (7)0.2398 (3)0.0507 (15)*
C40.3646 (8)1.0582 (8)0.2730 (3)0.0477 (13)
H40.2828 (8)1.1345 (8)0.2802 (3)0.0572 (16)*
C50.3421 (8)0.9306 (8)0.1928 (3)0.0497 (14)
H50.2430 (8)0.9193 (8)0.1454 (3)0.0597 (17)*
C30.5093 (8)1.0726 (8)0.3430 (3)0.0444 (13)
H30.5259 (8)1.1585 (8)0.3981 (3)0.0533 (16)*
C70.4279 (8)0.6816 (8)0.0942 (3)0.0660 (17)
H7a0.508 (4)0.600 (4)0.1002 (9)0.099 (3)*
H7b0.2774 (10)0.589 (4)0.0823 (13)0.099 (3)*
H7c0.477 (5)0.7640 (9)0.0437 (5)0.099 (3)*
H10.992 (7)0.879 (9)0.426 (3)0.099 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0515 (4)0.0417 (3)0.0592 (3)0.0185 (3)0.0015 (2)0.0076 (2)
Br30.0686 (4)0.0771 (5)0.0512 (3)0.0412 (3)0.0081 (3)0.0013 (3)
Br10.0787 (5)0.0529 (4)0.0661 (4)0.0265 (3)0.0223 (3)0.0019 (3)
Br40.0779 (5)0.0717 (5)0.0592 (4)0.0069 (4)0.0200 (3)0.0140 (3)
O10.057 (3)0.077 (3)0.047 (2)0.042 (2)0.0104 (17)0.0010 (19)
O20.057 (2)0.072 (3)0.0359 (18)0.036 (2)0.0069 (15)0.0123 (17)
N10.039 (3)0.046 (3)0.036 (2)0.015 (2)0.0041 (18)0.0001 (19)
C20.029 (3)0.040 (3)0.032 (2)0.012 (2)0.0030 (19)0.006 (2)
C60.038 (3)0.045 (3)0.049 (3)0.021 (3)0.002 (2)0.005 (3)
C10.035 (3)0.045 (3)0.043 (3)0.014 (2)0.002 (2)0.004 (2)
C40.049 (3)0.053 (3)0.051 (3)0.032 (3)0.002 (2)0.004 (3)
C50.045 (3)0.063 (4)0.041 (3)0.024 (3)0.007 (2)0.009 (3)
C30.048 (3)0.044 (3)0.039 (3)0.019 (3)0.001 (2)0.002 (2)
C70.074 (4)0.078 (4)0.041 (3)0.034 (3)0.018 (3)0.020 (3)
Geometric parameters (Å, º) top
Br2—Br32.7307 (7)C2—C11.380 (6)
Br2—Br12.4095 (7)C2—C31.373 (6)
Br3—Br43.0625 (10)C1—H1a0.9300
Br1—Br1i3.1813 (12)C4—H40.9300
Br4—Br4ii2.4002 (15)C4—C51.365 (6)
O1—C61.290 (6)C4—C31.370 (6)
O1—H10.845 (19)C5—H50.9300
O2—C61.228 (5)C3—H30.9300
N1—C11.348 (5)C7—H7a0.9600
N1—C51.332 (6)C7—H7b0.9600
N1—C71.476 (5)C7—H7c0.9600
C2—C61.483 (6)
Br1—Br2—Br3178.04 (3)H1a—C1—C2120.0 (3)
Br4—Br3—Br290.37 (2)C5—C4—H4120.4 (3)
Br1i—Br1—Br2162.42 (4)C3—C4—H4120.4 (3)
Br4ii—Br4—Br3176.22 (3)C3—C4—C5119.2 (5)
H1—O1—C6116 (4)C4—C5—N1121.2 (4)
C5—N1—C1120.7 (4)H5—C5—N1119.4 (3)
C7—N1—C1119.4 (4)H5—C5—C4119.4 (3)
C7—N1—C5119.8 (4)C4—C3—C2119.8 (4)
C1—C2—C6120.3 (5)H3—C3—C2120.1 (3)
C3—C2—C6120.6 (4)H3—C3—C4120.1 (3)
C3—C2—C1119.2 (4)H7a—C7—N1109.5
O2—C6—O1125.2 (4)H7b—C7—N1109.5
C2—C6—O1114.6 (4)H7b—C7—H7a109.5
C2—C6—O2120.1 (5)H7c—C7—N1109.5
C2—C1—N1120.0 (5)H7c—C7—H7a109.5
H1a—C1—N1120.0 (3)H7c—C7—H7b109.5
O1—C6—C2—C19.9 (5)N1—C1—C2—C6179.8 (4)
O1—C6—C2—C3169.6 (4)N1—C1—C2—C30.6 (5)
O2—C6—C2—C1169.9 (4)N1—C5—C4—C30.7 (6)
O2—C6—C2—C310.6 (5)C2—C3—C4—C50.3 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.80 (7)1.89 (7)2.668 (5)164 (7)
C1—H1A···Br3iv0.932.963.838 (5)158
C5—H5···Br4v0.932.993.881 (5)160
C7—H7A···Br3iv0.962.923.857 (6)166
Symmetry codes: (iii) x+2, y+2, z+1; (iv) x+1, y, z; (v) x, y+1, z.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine with grant for perspective development of a scientific direction `Mathematical Sciences and Natural Sciences' at Taras Shevchenko National University of Kyiv, No. 21BNN-06.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFromm, K. M., Bergougnant, R. D. & Robin, A. Y. (2006). Z. Anorg. Allg. Chem. 632, 828–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaller, H., Hog, M., Scholz, F., Scherer, H., Krossing, I. & Riedel, S. (2013). Z. Naturforsch. Teil B, 68, 1103–1107.  Web of Science CSD CrossRef CAS Google Scholar
First citationKakiage, K., Tokutome, T., Iwamoto, S., Kyomen, T. & Hanaya, M. (2013). Chem. Commun. 49, 179–180.  Web of Science CrossRef CAS Google Scholar
First citationMadhu, S., Evans, H. A., Doan–Nguyen, V. V. T., Labram, J. G., Wu, G., Chabinyc, M. L., Seshadri, R. & Wudl, F. (2016). Angew. Chem. Int. Ed. 55, 8032–8035.  Web of Science CSD CrossRef CAS Google Scholar
First citationMooney, R. C. L. (1935). Z. Kristallogr. 90, 143–150.  CrossRef CAS Google Scholar
First citationNaresh, R. P., Surendran, A., Ragupathy, P. & Dixon, D. (2022). J. Energy Storage 52, 104913.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRobertson, K. N., Bakshi, P. K., Cameron, T. S. & Knop, O. (1997). Z. Anorg. Allge Chem. 623, 104–114.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464–5493.  Web of Science CSD CrossRef CAS Google Scholar
First citationSonnenberg, K., Pröhm, P., Steinhauer, S., Wiesner, A., Müller, C. & Riedel, S. (2017). Z. Anorg. Allge Chem. 643, 101–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649–1684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWolff, M., Okrut, A. & Feldmann, C. (2011). Inorg. Chem. 50, 11683–11694.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds