research communications
H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide
Hirshfeld surface and crystal void analysis, intermolecular interaction energies, DFT calculations and energy frameworks of 2aLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco, bUniversity of Lille, CNRS, UAR 3290, MSAP, Miniaturization for Synthesis, Analysis and Proteomics, F-59000 Lille, France, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dLaboratory of Applied Organic Chemistry, Faculty of Science and Technology, University of Sidi Mohamed Ben Abdellah BP 2202, Fez, Morocco, eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and fLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ezaddine.irrou@edu.uiz.ac.ma
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
In the title molecule, C8H7NO3S, the nitrogen atom has a planar environment, and the thiazine ring exhibits a screw-boat conformation. In the crystal, corrugated layers of molecules parallel to the ab plane are formed by N—H⋯O and C—H⋯O hydrogen bonds together with C—H⋯π(ring) and S=O⋯π(ring) interactions. The layers are connected by additional C—H⋯O hydrogen bonds and π-stacking interactions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (49.4%), H⋯H (23.0%) and H⋯C/C⋯H (14.1%) interactions. The volume of the crystal voids and the percentage of free space were calculated as 75.4 Å3 and 9.3%. Density functional theory (DFT) computations revealed N—H⋯O and C—H⋯O hydrogen-bonding energies of 43.3, 34.7 and 34.4 kJ mol−1, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the electrostatic energy contribution. Moreover, the DFT-optimized structure at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: Crystal structure; hydrogen bond; C—H⋯π(ring) interaction; π-stacking; sulfone; crystal structure.
CCDC reference: 2298958
1. Chemical context
Numerous et al., 2011; Sebbar et al., 2020a; Fringuelli et al., 2005). In this respect, 1,4-benzothiazine derivatives possess various pharmacological properties and have therapeutic applications such as antifungal (Kamila et al., 2006), anti-inflammatory (Gowda et al., 2011), antagonistic (Corelli et al., 1997), anti-tumour (Abbas & Farghaly, 2010), antioxidant (Bakavoli et al., 2008), antipyretic (Warren & Knaus, 1987), antihypertensive (Fringuelli et al., 2005) or antibacterial effects (Sebbar et al., 2016, 2020a).
containing sulfur and nitrogen have been extensively studied because of their various biological applications (GowdaContinuing our research on the development of new 1,4-benzothiazine derivatives with potential pharmacological applications, we carried out the oxidation of 3,4-dihydro-2H-1,4-benzothiazin-3-one by potassium permanganate in order to obtain 2H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide (I) with good yield. We report herein the molecular and of this compound, as well as Hirshfeld surface analysis and DFT-computational studies carried out at the B3LYP/6–31 G(d,p) and B3LYP/6–311 G(d,p) levels.
2. Structural commentary
A puckering analysis (Cremer & Pople, 1975) of the thiazine ring (C1, C6, N1, C7, C8, S1) gave the parameters Q = 0.5138 (6) Å, θ = 60.49 (7)° and φ = 326.72 (8)°. The distorted screw-boat conformation places O2 in an axial position and O3 in a pseudo-equatorial position (Fig. 1). The angles about N1 sum up to 360° within experimental error, indicating involvement of the lone pair in the C–N bond. This is reflected in the N1—C7 and N1—C6 distances of 1.3661 (9) and 1.4043 (9) Å, respectively.
3. Supramolecular features
In the crystal, N1—H1⋯O3 hydrogen bonds (Table 1) form chains of molecules extending parallel to the a axis. These chains are connected into corrugated layers parallel to the ab plane by C8—H8B⋯O2 hydrogen bonds together with C8—H8A⋯Cg2 and S1=O2⋯Cg2i interactions [O2⋯Cg2 = 3.6233 (7) Å, S1⋯Cg2 = 4.1655 (5) Å, S1=O2⋯Cg2i = 101.77 (3)°; symmetry code: (i) −x + , y + , −z + ; Fig. 2]. The layers are connected by C5—H5⋯O1 hydrogen bonds (Table 1) and slipped π–π stacking interactions between inversion-related C1–C6 rings [Cg2⋯Cg2(1 −x, 1 −y, 1 −z) = 3.7353 (5) Å, slippage = 1.55 Å] into a tri-periodic network structure (Fig. 3).
4. Hirshfeld surface analysis
To visualize the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out with Crystal Explorer (Spackman et al., 2021). In the HS plotted over dnorm in the range −0.4976 to 1.2253 a.u. (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) in the range −0.05 to 0.05 a.u., as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles. Fig. 6 clearly suggests that there are π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, C⋯O/O⋯C,C⋯C, H⋯N/N⋯H, O⋯O and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯O/O⋯H, contributing 49.4% to the overall crystal packing, which is reflected in Fig. 7b, where the symmetric pair of spikes is observed with the tips at de + di = 1.98 Å. The H⋯H contacts contribute 23.0% to the overall crystal packing, which is reflected in Fig. 7c as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.13 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 7d, make a 14.1% contribution to the HS and viewed with the tips at de + di = 2.59 Å. The wing pair of C⋯O/O⋯C contacts (Fig. 7e) with 4.9% contribution to the HS is viewed at de + di = 3.30 Å. The C⋯C contacts (Fig. 7f) appearing as a bullet-shaped distribution of points make a contribution of 3.7% to the HS with the tip at de = di = 1.70 Å. The spikes of H⋯N/N⋯H contacts (Fig. 7g) with 3.2% contribution to the HS are viewed at de + di = 2.75 Å. Finally, the O⋯O (Fig. 7h) and C⋯N/N⋯C (Fig. 7i) contacts contribute 1.3% and 0.4%, respectively, to the HS. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯O/O⋯H, H⋯H and H⋯C/C⋯H interactions in Fig. 8a–c, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015).
The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the molecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole where the void surface meets the boundary of the and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9a,b) and the percentage of free space in the are calculated as 75.4 Å3 and 9.3%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.
(Turner5. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CEB3LYP/631G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be [−18.5 (Eele), −5.2 (Epol), −41.4 (Edis), 26.2 (Erep) and −43.3 (Etot)] for N1—H1⋯O3, [−22.4 (Eele), −4.8 (Epol), −28.3 (Edis), 27.9 (Erep) and −34.7 (Etot)] for C8—H8B⋯O2 and [−20.6 (Eele), −5.8 (Epol), −24.6 (Edis), 21.2 (Erep) and −34.4 (Etot)] for C5—H5⋯O1.
Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (shown in Fig. 10), Edis and Etot. The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the electrostatic energy contribution in the of (I).
6. DFT calculations
The optimized structure of (I) was computed in the gas phase using density functional theory (DFT) with the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993), employing the GAUSSIAN 09 software (Frisch et al., 2009). The theoretical and experimental results exhibit a good agreement, as summarized in Table 2.
|
The highest-occupied molecular orbital (HOMO), functioning as an EHOMO and ELUMO, (χ), hardness (η), (μ), (ω) and softness (σ) are compiled in Table 3. Both η and σ are essential for assessing reactivity and stability. The electron transition from HOMO to LUMO energy levels is depicted in Fig. 11. Notably, both HOMO and LUMO are localized within the plane spanning the entire 2H-benzo[b][1,4]thiazin-3(4H)-one 1,1-dioxide ring. The energy band gap [ΔE = ELUMO − EHOMO] for the molecule is 11.7261 eV, and the energies of the frontier molecular orbitals, EHOMO and ELUMO, are −9.6740 eV and 2.0522 eV, respectively.
and the lowest-unoccupied molecular orbital (LUMO), acting as an serve as vital parameters in quantum chemistry. A small energy gap signifies high molecular polarizability and enhanced chemical reactivity. The DFT calculations provided crucial insights into the reactivity and site selectivity of the molecular framework. Parameters such as
|
7. Database survey
A search in the Cambridge Structural Database (CSD, updated March 2023; Groom et al., 2016) for compounds containing the fragment II (R1 = Ph or 2-ClC6H4, R2 = C; Fig. 12), gave 14 hits. With R1 = Ph, and with R2 = CH2COOCH2CH3 (IIa; Sebbar et al., 2020b), CH2COOH (IIb; Sebbar et al., 2016), CH2C≡CH (IIc; Sebbar et al., 2014) and C5H8NO2 (IId; Sebbar et al., 2016) (Fig. 12) are matching candidates. Other examples with R1 = 4-FC6H4 and R2 = CH2C≡CH (Hni et al., 2019) and R1 = 2-ClC6H4, R2 = CH2C≡CH (Sebbar et al., 2017) are also known.
8. Synthesis and crystallization
3,4-Dihydro-2H-1,4-benzothiazin-3-one (1.2 mmol) was dissolved in 3 ml of acetic acid and added dropwise into a solution of potassium permanganate (1.81 mmol) in 6 ml of water. After stirring for one h at room temperature, a solution of sodium thiosulfate pentahydrate (20%wt) was added to react with excessive potassium permanganate. The precipitate obtained was filtered and recrystallized from ethanol to yield single-crystals suitable for X-ray structure analysis..
9. Refinement
Crystal data, data collection and structure . H-atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. Two reflections affected by the beamstop were omitted from the final refinement.
details are summarized in Table 4Supporting information
CCDC reference: 2298958
https://doi.org/10.1107/S205698902300868X/wm5698sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902300868X/wm5698Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300868X/wm5698Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698902300868X/wm5698Isup4.cml
C8H7NO3S | F(000) = 408 |
Mr = 197.21 | Dx = 1.606 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2179 (6) Å | Cell parameters from 9215 reflections |
b = 9.5043 (8) Å | θ = 2.9–36.4° |
c = 11.9945 (9) Å | µ = 0.37 mm−1 |
β = 97.584 (2)° | T = 125 K |
V = 815.64 (11) Å3 | Prism, colourless |
Z = 4 | 0.39 × 0.21 × 0.16 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 3957 independent reflections |
Radiation source: fine-focus sealed tube | 3739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 36.4°, θmin = 3.6° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.91, Tmax = 0.94 | l = −19→20 |
47688 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: mixed |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2724P] where P = (Fo2 + 2Fc2)/3 |
3957 reflections | (Δ/σ)max = 0.001 |
122 parameters | Δρmax = 0.52 e Å−3 |
1 restraint | Δρmin = −0.36 e Å−3 |
Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.16068 (2) | 0.52143 (2) | 0.71754 (2) | 0.01099 (4) | |
O1 | 0.61228 (8) | 0.59530 (6) | 0.90859 (5) | 0.01991 (10) | |
O2 | 0.16268 (8) | 0.66721 (6) | 0.68352 (5) | 0.01797 (10) | |
O3 | −0.01882 (7) | 0.45794 (7) | 0.72667 (5) | 0.01832 (10) | |
N1 | 0.57806 (8) | 0.47975 (6) | 0.74211 (5) | 0.01411 (10) | |
H1 | 0.7001 (12) | 0.4900 (15) | 0.7398 (13) | 0.027 (3)* | |
C1 | 0.27959 (8) | 0.42044 (6) | 0.62800 (5) | 0.01059 (9) | |
C2 | 0.17997 (9) | 0.35615 (7) | 0.53412 (5) | 0.01342 (10) | |
H2 | 0.047397 | 0.361237 | 0.521776 | 0.016* | |
C3 | 0.27651 (11) | 0.28460 (7) | 0.45882 (6) | 0.01663 (11) | |
H3 | 0.210847 | 0.242727 | 0.393292 | 0.020* | |
C4 | 0.47092 (11) | 0.27481 (8) | 0.48036 (6) | 0.01841 (12) | |
H4 | 0.536825 | 0.224837 | 0.429380 | 0.022* | |
C5 | 0.56985 (10) | 0.33681 (8) | 0.57499 (6) | 0.01630 (11) | |
H5 | 0.701938 | 0.327605 | 0.588942 | 0.020* | |
C6 | 0.47486 (8) | 0.41274 (7) | 0.64966 (5) | 0.01164 (10) | |
C7 | 0.51172 (9) | 0.53288 (7) | 0.83499 (5) | 0.01315 (10) | |
C8 | 0.30863 (9) | 0.50214 (7) | 0.84603 (5) | 0.01299 (10) | |
H8A | 0.266578 | 0.566751 | 0.902374 | 0.016* | |
H8B | 0.298167 | 0.404753 | 0.873825 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00776 (7) | 0.01295 (7) | 0.01219 (7) | 0.00109 (4) | 0.00109 (4) | −0.00153 (4) |
O1 | 0.0173 (2) | 0.0236 (3) | 0.0174 (2) | −0.00682 (19) | −0.00298 (17) | −0.00209 (18) |
O2 | 0.0205 (2) | 0.0129 (2) | 0.0200 (2) | 0.00460 (17) | 0.00061 (18) | 0.00015 (16) |
O3 | 0.00783 (18) | 0.0262 (3) | 0.0214 (2) | −0.00199 (17) | 0.00373 (16) | −0.00439 (19) |
N1 | 0.0078 (2) | 0.0195 (2) | 0.0149 (2) | −0.00112 (17) | 0.00092 (16) | 0.00008 (18) |
C1 | 0.0092 (2) | 0.0114 (2) | 0.0113 (2) | 0.00061 (16) | 0.00190 (16) | −0.00003 (16) |
C2 | 0.0138 (2) | 0.0137 (2) | 0.0125 (2) | −0.00096 (19) | 0.00073 (18) | −0.00101 (18) |
C3 | 0.0212 (3) | 0.0150 (3) | 0.0140 (2) | −0.0010 (2) | 0.0038 (2) | −0.00282 (19) |
C4 | 0.0218 (3) | 0.0166 (3) | 0.0184 (3) | 0.0025 (2) | 0.0088 (2) | −0.0024 (2) |
C5 | 0.0133 (2) | 0.0177 (3) | 0.0190 (3) | 0.0033 (2) | 0.0064 (2) | 0.0004 (2) |
C6 | 0.0093 (2) | 0.0130 (2) | 0.0130 (2) | 0.00103 (17) | 0.00242 (17) | 0.00133 (17) |
C7 | 0.0114 (2) | 0.0143 (2) | 0.0133 (2) | −0.00146 (18) | −0.00035 (18) | 0.00154 (18) |
C8 | 0.0115 (2) | 0.0162 (2) | 0.0113 (2) | −0.00114 (19) | 0.00154 (18) | −0.00122 (18) |
S1—O2 | 1.4450 (6) | C2—H2 | 0.9500 |
S1—O3 | 1.4464 (6) | C3—C4 | 1.3960 (11) |
S1—C1 | 1.7478 (6) | C3—H3 | 0.9500 |
S1—C8 | 1.7649 (7) | C4—C5 | 1.3898 (11) |
O1—C7 | 1.2203 (8) | C4—H4 | 0.9500 |
N1—C7 | 1.3661 (9) | C5—C6 | 1.3982 (9) |
N1—C6 | 1.4043 (9) | C5—H5 | 0.9500 |
N1—H1 | 0.890 (8) | C7—C8 | 1.5175 (9) |
C1—C2 | 1.3945 (9) | C8—H8A | 0.9900 |
C1—C6 | 1.4010 (9) | C8—H8B | 0.9900 |
C2—C3 | 1.3892 (10) | ||
O2—S1—O3 | 117.64 (4) | C5—C4—C3 | 121.22 (6) |
O2—S1—C1 | 109.21 (3) | C5—C4—H4 | 119.4 |
O3—S1—C1 | 109.56 (3) | C3—C4—H4 | 119.4 |
O2—S1—C8 | 108.59 (3) | C4—C5—C6 | 119.96 (6) |
O3—S1—C8 | 109.59 (3) | C4—C5—H5 | 120.0 |
C1—S1—C8 | 100.95 (3) | C6—C5—H5 | 120.0 |
C7—N1—C6 | 127.24 (6) | C5—C6—C1 | 118.33 (6) |
C7—N1—H1 | 116.1 (10) | C5—C6—N1 | 119.08 (6) |
C6—N1—H1 | 116.7 (10) | C1—C6—N1 | 122.58 (6) |
C2—C1—C6 | 121.72 (6) | O1—C7—N1 | 122.05 (6) |
C2—C1—S1 | 119.61 (5) | O1—C7—C8 | 121.31 (6) |
C6—C1—S1 | 118.58 (5) | N1—C7—C8 | 116.53 (6) |
C3—C2—C1 | 119.34 (6) | C7—C8—S1 | 112.57 (4) |
C3—C2—H2 | 120.3 | C7—C8—H8A | 109.1 |
C1—C2—H2 | 120.3 | S1—C8—H8A | 109.1 |
C2—C3—C4 | 119.38 (6) | C7—C8—H8B | 109.1 |
C2—C3—H3 | 120.3 | S1—C8—H8B | 109.1 |
C4—C3—H3 | 120.3 | H8A—C8—H8B | 107.8 |
O2—S1—C1—C2 | −93.69 (6) | C2—C1—C6—C5 | −0.74 (9) |
O3—S1—C1—C2 | 36.48 (6) | S1—C1—C6—C5 | −177.28 (5) |
C8—S1—C1—C2 | 152.03 (5) | C2—C1—C6—N1 | 178.32 (6) |
O2—S1—C1—C6 | 82.92 (6) | S1—C1—C6—N1 | 1.78 (8) |
O3—S1—C1—C6 | −146.91 (5) | C7—N1—C6—C5 | −165.40 (7) |
C8—S1—C1—C6 | −31.36 (6) | C7—N1—C6—C1 | 15.55 (10) |
C6—C1—C2—C3 | −1.16 (10) | C6—N1—C7—O1 | −176.50 (7) |
S1—C1—C2—C3 | 175.34 (5) | C6—N1—C7—C8 | 7.37 (10) |
C1—C2—C3—C4 | 1.92 (10) | O1—C7—C8—S1 | 141.26 (6) |
C2—C3—C4—C5 | −0.81 (11) | N1—C7—C8—S1 | −42.58 (7) |
C3—C4—C5—C6 | −1.12 (11) | O2—S1—C8—C7 | −64.45 (5) |
C4—C5—C6—C1 | 1.86 (10) | O3—S1—C8—C7 | 165.81 (5) |
C4—C5—C6—N1 | −177.23 (6) | C1—S1—C8—C7 | 50.29 (5) |
Cg2 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.89 (1) | 2.08 (1) | 2.9472 (8) | 165 (1) |
C5—H5···O1ii | 0.95 | 2.58 | 3.2330 (9) | 126 |
C8—H8A···Cg2iii | 0.99 | 2.93 | 3.7933 (8) | 146 |
C8—H8B···O2iv | 0.99 | 2.39 | 3.2126 (9) | 140 |
Symmetry codes: (i) x+1, y, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1/2, y−1/2, −z+3/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
S1—O2 | 1.4450 (6) | 1.50996 |
S1—O3 | 1.4464 (6) | 1.59088 |
S1—C1 | 1.7478 (6) | 1.78874 |
S1—C8 | 1.7649 (7) | 1.80529 |
O1—C7 | 1.2203 (8) | 1.21656 |
N1—C7 | 1.3661 (9) | 1.37417 |
N1—C6 | 1.4043 (9) | 1.39867 |
O2—S1—O3 | 117.64 (4) | 118.09813 |
O2—S1—C1 | 109.21 (3) | 109.40063 |
O3—S1—C1 | 109.56 (3) | 109.84640 |
O2—S1—C8 | 108.59 (3) | 109.10007 |
O3—S1—C8 | 109.59 (3) | 109.62080 |
C1—S1—C8 | 100.95 (3) | 99.96775 |
C7—N1—C6 | 127.24 (6) | 127.88849 |
C7—N1—H1 | 116.1 (10) | 115.98354 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | -26615,8936 |
EHOMO (eV) | -9.6740 |
ELUMO (eV) | 2.0522 |
Gap, ΔE (eV) | 11.7261 |
Dipole moment, µ (Debye) | 7.583751 |
Ionization potential, I (eV) | 9.6740 |
Electron affinity, A | 2.0522 |
Electronegativity, χ | -3.8109 |
Hardness, η | -5.8631 |
Electrophilicity index, ω | -1.2385 |
Softness σ, | -0.1706 |
Fraction of electron transferred, ΔN | -0.9219 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abbas, E. M. & Farghaly, T. A. (2010). Monatsh. Chem. 141, 661–667. CrossRef CAS Google Scholar
Bakavoli, M., Sadeghian, H., Tabatabaei, Z., Rezaei, E., Rahimizadeh, M. & Nikpour, M. (2008). J. Mol. Model. 14, 471–478. CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Corelli, F., Manetti, F., Tafi, A., Campiani, G., Nacci, V. & Botta, M. (1997). J. Med. Chem. 40, 125–131. CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fringuelli, R., Milanese, L. & Schiaffella, F. (2005). Mini Rev. Med. Chem. 5, 1061–1073. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US Google Scholar
Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Kamila, S., Koh, B., Zhang, H. & Biehl, E. R. (2006). Arkivoc, 2, 1–14. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Sebbar, G., Mohamed, E., Hökelek, T., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Belkadi, B. (2020a). Acta Cryst. E76, 629–636. CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889. Google Scholar
Sebbar, N. K., Labd, T. M., Ellouz, M., Essassi, E. M., Zerzouf, A., Karrouchi, K., Ouzidan, Y., Mennane, Z. & Mague, J. T. (2020b). Iran. J. Chem. Chem. Eng. 39, 53–67. Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.