research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(3-amino­pyrazole-κN1)bis­­(3-amino­pyrazole-κN2)bis­­(nitrato-κO)copper(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64/13, Kyiv 01601, Ukraine, bInnovation Development Center ABN, Pirogov St. 2/37, 01030 Kyiv, Ukraine, cBakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, Avtozavodskaya St. 2, Kyiv 04074, Ukraine, and dDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Ave. 31, Kyiv 03680, Ukraine
*Correspondence e-mail: olesia.kucheriv@univ.kiev.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 September 2023; accepted 23 October 2023; online 31 October 2023)

In the crystal structure of the title compound, [Cu(NO3)2(C3H5N3)4], the CuII atom is situated on an inversion center (Wyckoff position 2c of space group P21/n) and shows an octa­hedral [N4O2] coordination environment. The axial positions are occupied by O atoms of nitrate anions, while the equatorial positions are taken up by the N atoms of four 3-amino­pyrazole ligands. As a result of the tautomerism of the latter, two coordinate with the N1-atom of 3-amino­pyrazole while the other two with the N2-atom. The presence of pyrrole-like N—H groups and amine substituents as donor groups leads to numerous intra- and inter­molecular hydrogen-bonding inter­actions, which were qu­anti­fied by Hirshfeld surface analysis.

1. Chemical context

Supra­molecular chemistry includes an extensive domain of pyrazole complexes, the main feature of which revolves around the formation of intra- and inter­molecular hydrogen bonds (Pérez & Riera, 2009[Pérez, J. & Riera, L. (2009). Eur. J. Inorg. Chem. pp. 4913-4925.]). Pyrazole is a heterocyclic compound that contains two types of N atoms. One of the N atoms is termed pyridine-like because it donates one p-electron to the aromatic ring while its lone pair of electrons is non-conjugated. The other N atom is described as acidic pyrrole-like as it contributes two p-electrons of the lone pair to the aromatic ring, which consequently is distributed around the ring (Reedijk, 1987[Reedijk, J. (1987). Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty. Oxford: Pergamon Press.]).

The presence of both pyridine-like and pyrrole-like N atoms makes a pyrazole mol­ecule both basic and acidic. With respect to the Brønsted–Lowry theory, this ligand is amphiprotic. Pyrazolate anions, which are the deprotonated form of pyrazole, form an individual class of ligands which, in contrast to pyrazole itself, can act as bridging. Apart from its ability to donate or accept a proton, an important feature of pyrazole is its tendency to from extensive networks of hydrogen bonds, in particular due to the simultaneous presence of a hydrogen-donating N—H group and a hydrogen-accepting pyridine-like N atom. The existence of these two groups allows the formation of inter­molecular N—H⋯N contacts and makes pyrazole an important mol­ecule for supra­molecular chemistry. In addition, numerous examples of practical applications have been offered for pyrazole-containing coordination compounds. For example, copper(II) complexes with pyrazole-containing ligands have been shown to exhibit catalytic (Gamez et al., 2001[Gamez, P., von Harras, J., Roubeau, O., Driessen, W. L. & Reedijk, J. (2001). Inorg. Chim. Acta, 324, 27-34.]; Titi et al., 2023[Titi, A., Zaidi, K., Alzahrani, A. Y. A., El Kodadi, M., Yousfi, E. B., Moliterni, A., Hammouti, B., Touzani, R. & Abboud, M. (2023). Catalysts 13, 162.]), anti­bacterial (Zaimović et al., 2022[Zaimović, M. Š., Kosović Perutović, M., Jelušić, G., Radović, A. & Jaćimović, Ž. (2022). Front. Pharmacol. 13. https://doi. org/10.3389/fphar. 2022.921157.]), anti­fungal (Titi et al., 2023[Titi, A., Zaidi, K., Alzahrani, A. Y. A., El Kodadi, M., Yousfi, E. B., Moliterni, A., Hammouti, B., Touzani, R. & Abboud, M. (2023). Catalysts 13, 162.]) and anti­tumor (Ruan et al., 2012[Ruan, B.-F., Liang, Y.-K., Liu, W.-D., Wu, J.-Y. & Tian, Y.-P. (2012). J. Coord. Chem. 65, 2127-2134.]) activities.

Here we describe the crystal structure of a new copper(II) complex with 3-amino­pyrazole as a ligand, namely [Cu(C3H5N3)4(NO3)2].

[Scheme 1]

2. Structural commentary

The title compound is a mol­ecular coordination compound, where the central CuII atom is situated at an inversion center (Wyckoff position 2c of space group P21/n) with an octa­hedral [N4O2] coordination environment. The axial positions are occupied by two oxygen atoms from nitrato ligands [Cu1—O2 = 2.5544 (19) Å, which is a typical value observed in Cu—(nitrato) complexes] and the equatorial positions are occupied by four pyridine-like nitro­gen atoms of 3-amino­pyrazole (Fig. 1[link]). Two of the four 3-amino­pyrazole ligands coordinate with the N1 atom [Cu1—N4 = 1.975 (2) Å] while the other two coordinate with the N2 atom [Cu1—N1 = 2.0331 (17) Å]. The different type of N-coordination in the title compound is an illustrative example of tautomerism in 3-amino­pyrazole. This effect leads to the formation of more complex and diverse frameworks and expands the potential number of possible coordination compounds that can be formed in comparison with only one type of ligand. The notable difference in the Cu—O and Cu—N bond lengths leads to an elongation of the coordination octa­hedron, which is associated with the Jahn–Teller effect that is commonly observed for CuII complexes. The length distortion parameter ζ = |(Cu – Li) – <Cu – L>| (where L = ligand) for this structure is 1.468 Å. The deviation from an ideal octa­hedron for twelve cis-L—Cu—L angles can be described by the octa­hedral distortion parameter Σ = |90° – αi| = 17.33°. Pyrazole rings with the same type of coordination are located in one plane, while the angle between pyrazole rings with different types of coordination is 98.67 (11)°. The angle between the CuN4 and (N4/N5/C4–C6) planes is 16.9 (1)° while between the CuN4 and (N1/N2/C1–C3) planes, the corresponding angle is 101.48 (10)°. Intra­molecular hydrogen bonds stabilize the mol­ecular structure and include N—H⋯O contacts between 3-amino­pyrazole mol­ecules and the O atoms of the nitrato ligand as well as N—H⋯N contacts between the pyrrole-like N atom of one of the organic ligands and the amino group of another 3-amino­pyrazole ligand (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3 0.96 (4) 2.71 (3) 3.495 (3) 139 (3)
N3—H3A⋯O2 0.96 (4) 1.92 (4) 2.849 (3) 162 (3)
N3—H3B⋯O3i 0.96 (4) 2.20 (4) 3.085 (3) 153 (3)
N6—H6A⋯O3ii 0.87 (4) 2.83 (3) 3.480 (3) 132 (3)
N6—H6A⋯O1ii 0.87 (4) 2.22 (4) 2.999 (3) 149 (3)
N6—H6B⋯O3iii 0.88 (4) 2.14 (4) 3.019 (3) 176 (3)
N2—H2⋯N7iv 0.82 (4) 2.60 (4) 3.378 (3) 159 (3)
N2—H2⋯O1iv 0.82 (4) 2.10 (4) 2.908 (3) 171 (4)
N2—H2⋯O2iv 0.82 (4) 2.40 (4) 2.999 (3) 131 (3)
N5—H5⋯O1ii 0.80 (4) 2.47 (4) 3.093 (3) 136 (3)
N5—H5⋯N3iv 0.80 (4) 2.82 (4) 3.462 (3) 139 (3)
C6—H6⋯N6v 0.87 (4) 2.70 (4) 3.438 (3) 143 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y, -z+1]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Intra­molecular N—H⋯O hydrogen bonds are shown as red dotted lines and N—H⋯N hydrogen bonds as blue dotted lines. Non-labeled atoms are generated by inversion symmetry [symmetry code: (i) 1 − x, −y, 1 − z].

3. Supra­molecular features

Mol­ecules of the title coordination compound inter­act with each other through a set of inter­molecular inter­actions, creating a supra­molecular tri-periodic network (Fig. 2[link]). Inter­molecular hydrogen bonds include N—H⋯O contacts between 3-amino­pyrazole ligands and nitrate anions of a neighboring complex, as well as weak C—H⋯N contacts (Fig. 2[link]). Numerical data of these hydrogen-bonding inter­actions is collated in Table 1[link].

[Figure 2]
Figure 2
Supra­molecular packing of the title compound showing the extended network of weak inter­actions: N—H⋯O contacts are shown as red dashed lines and C—H⋯N contacts as blue dashed lines. N—H⋯N contacts and H atoms not involved in hydrogen bonding are omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale. The associated two-dimensional fingerprint plots were also generated. The Hirshfeld surface of the title compound demonstrates the presence of strong inter­molecular N—H⋯O hydrogen bonds between coordinating nitrate anions and neighboring 3-amino­pyrazole mol­ecules, as shown in Fig. 3[link]a in red. Fig. 3[link]b additionally demonstrates the presence of much weaker C—H⋯N contacts. Fingerprint plots are given for contacts with the highest contribution to the structure (Fig. 3[link]cf). The most important contributions for the crystal packing are from O⋯H (32.6%), C⋯H (14.1%) and N⋯H (12.9%) contacts. H⋯H inter­actions are not shown. The de and di values presented on the axes of the fingerprint plots are the distances to the closest external and inter­nal atoms from a selected point to the Hirshfeld surface. It is worth noting that the fingerprint plots highlight the most frequently occurring weak inter­actions within the structure, whereas the graphical depiction of the surface emphasizes the strongest inter­actions.

[Figure 3]
Figure 3
(a), (b) Hirshfeld surface of the title compound plotted over dnorm. Neighboring mol­ecules creating contacts with the surface are shown as `balls and sticks'; the regions with the strongest inter­molecular inter­actions are plotted in red. (c) Hirshfeld surface fingerprint plots of the title compound showing the contribution of all inter­actions (100%) and those delineated into (d) O⋯H, (e) N⋯H, and (f) C⋯H inter­actions.

5. Database survey

According to a search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are only two records of copper(II) complexes containing 3-amino­pyrazole as a ligand: TIXDAH (Świtlicka-Olszewska et al., 2014[Świtlicka-Olszewska, A., Machura, B., Mroziński, J., Kalińska, B., Kruszynski, R. & Penkala, M. (2014). New J. Chem. 38, 1611-1626.]) and QIJSAF (Wang et al., 2014[Wang, Y.-F., Li, Z., Sun, Y.-C. & Zhao, J.-S. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 277-281.]). TIXDAH is [Cu(C2O4)(3-amino­pyrazole)2]·3H2O, in which CuII has a square-pyramidal [N3O2] coordination environment. The basal positions are occupied by the O atoms of a bidentate oxalate anion and two ring N atoms of two amino­pyrazole ligands, and the apical positions by the N atom of the amino group of another amino­pyrazole ligand. Similar to the title compound, the amino­pyrazole mol­ecules display different types of coordination – with N1 or N2 atoms. QIJSAF is [Cu(3-amino­pyrazole)(2,6-pyridinedi­carboxyl­ato)(H2O)]·H2O, in which CuII has a distorted octa­hedral [N2O4] environment. The equatorial positions are occupied by one N2-coordinating 3-amino­pyrazole and a tridentate 2,6-pyridinedi­carboxyl­ate ligand while the axial positions are taken up by one water mol­ecule and one carboxyl­ate O atom of another ligand.

6. Synthesis and crystallization

20 mg (0.1 mmol) of Cu(NO3)2 in 200 µl of water were mixed with 42 mg (0.5 mmol) of 3-amino­pyrazole in 200 µl of water. The obtained solution was left to evaporate in air. Within 24 h, blue crystals were collected from the reaction mixture and kept in the mother solution prior to the X-ray measurement.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were found from a difference-Fourier map and refined isotropically with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(NO3)2(C3H5N3)4]
Mr 519.96
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 8.83222 (18), 9.9714 (2), 12.1043 (2)
β (°) 97.6408 (19)
V3) 1056.55 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.05
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.631, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6493, 2023, 1903
Rint 0.025
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.11
No. of reflections 2023
No. of parameters 181
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.45, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

bis(3-aminopyrazole-κN1)bis(3-aminoyrazole-\ κN2)bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C3H5N3)4]F(000) = 534
Mr = 519.96Dx = 1.634 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.83222 (18) ÅCell parameters from 4669 reflections
b = 9.9714 (2) Åθ = 5.0–75.6°
c = 12.1043 (2) ŵ = 2.05 mm1
β = 97.6408 (19)°T = 200 K
V = 1056.55 (4) Å3Prism, clear light blue
Z = 20.10 × 0.10 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2023 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1903 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 76.0°, θmin = 5.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1211
Tmin = 0.631, Tmax = 1.000l = 1414
6493 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Only H-atom coordinates refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.4789P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2023 reflectionsΔρmax = 0.45 e Å3
181 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.0000000.5000000.03217 (18)
N50.4258 (2)0.05809 (18)0.72784 (15)0.0330 (4)
N40.3930 (2)0.01620 (18)0.63262 (17)0.0353 (4)
O30.7519 (2)0.40655 (17)0.58858 (17)0.0561 (5)
N70.7646 (2)0.28338 (19)0.59003 (16)0.0417 (5)
O10.8905 (2)0.2305 (2)0.6228 (2)0.0625 (5)
C10.3111 (3)0.2405 (2)0.38736 (18)0.0359 (5)
N10.3312 (2)0.11018 (18)0.41243 (15)0.0354 (4)
O20.6506 (3)0.2110 (2)0.5642 (2)0.0702 (7)
N60.3538 (3)0.0813 (2)0.90865 (17)0.0442 (5)
N20.1924 (2)0.0519 (2)0.38069 (19)0.0469 (5)
C40.3441 (3)0.0178 (2)0.80771 (19)0.0341 (5)
C50.2547 (3)0.0873 (3)0.7639 (2)0.0488 (6)
C60.2881 (3)0.1034 (3)0.6570 (2)0.0498 (6)
C20.1602 (3)0.2639 (3)0.3389 (2)0.0443 (5)
C30.0907 (3)0.1423 (3)0.3363 (2)0.0516 (6)
N30.4272 (3)0.3290 (2)0.4016 (2)0.0530 (5)
H3A0.499 (4)0.306 (4)0.465 (3)0.064*
H3B0.400 (4)0.422 (4)0.393 (3)0.064*
H6A0.434 (4)0.132 (4)0.927 (3)0.064*
H6B0.323 (4)0.034 (4)0.962 (3)0.064*
H20.177 (4)0.029 (4)0.385 (3)0.064*
H50.488 (4)0.116 (4)0.731 (3)0.064*
H30.016 (4)0.117 (3)0.296 (3)0.064*
H60.254 (4)0.165 (4)0.609 (3)0.064*
H2A0.123 (4)0.346 (4)0.307 (3)0.064*
H5A0.190 (4)0.135 (4)0.798 (3)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0362 (3)0.0295 (3)0.0316 (3)0.01035 (15)0.00732 (19)0.00466 (15)
N50.0352 (9)0.0324 (9)0.0321 (9)0.0042 (7)0.0069 (7)0.0022 (7)
N40.0377 (9)0.0340 (9)0.0347 (9)0.0083 (7)0.0068 (8)0.0038 (7)
O30.0711 (12)0.0293 (8)0.0706 (12)0.0027 (8)0.0197 (10)0.0045 (8)
N70.0518 (12)0.0323 (10)0.0403 (10)0.0068 (8)0.0041 (8)0.0013 (7)
O10.0491 (10)0.0432 (10)0.0939 (15)0.0020 (8)0.0044 (10)0.0070 (10)
C10.0423 (11)0.0329 (10)0.0338 (10)0.0117 (9)0.0103 (8)0.0042 (8)
N10.0383 (9)0.0335 (9)0.0344 (9)0.0104 (7)0.0049 (7)0.0037 (7)
O20.0666 (13)0.0423 (10)0.0904 (16)0.0113 (9)0.0318 (11)0.0032 (10)
N60.0498 (11)0.0483 (11)0.0363 (10)0.0020 (9)0.0126 (8)0.0018 (9)
N20.0469 (11)0.0328 (10)0.0576 (12)0.0049 (8)0.0053 (9)0.0004 (9)
C40.0344 (11)0.0327 (10)0.0362 (11)0.0059 (8)0.0080 (9)0.0030 (8)
C50.0554 (14)0.0444 (13)0.0514 (14)0.0156 (11)0.0244 (11)0.0008 (11)
C60.0563 (15)0.0474 (13)0.0488 (13)0.0231 (12)0.0190 (11)0.0106 (11)
C20.0482 (13)0.0395 (12)0.0437 (12)0.0166 (10)0.0001 (10)0.0048 (10)
C30.0455 (14)0.0462 (14)0.0579 (15)0.0099 (11)0.0121 (12)0.0018 (11)
N30.0438 (12)0.0467 (12)0.0680 (15)0.0033 (9)0.0055 (10)0.0122 (10)
Geometric parameters (Å, º) top
Cu1—N41.9748 (19)N6—C41.369 (3)
Cu1—N4i1.9748 (19)N6—H6A0.87 (4)
Cu1—N12.0331 (17)N6—H6B0.88 (4)
Cu1—N1i2.0332 (17)N2—C31.334 (3)
N5—N41.368 (3)N2—H20.82 (4)
N5—C41.343 (3)C4—C51.375 (3)
N5—H50.80 (4)C5—C61.375 (4)
N4—C61.332 (3)C5—H5A0.88 (3)
O3—N71.233 (3)C6—H60.87 (4)
N7—O11.247 (3)C2—C31.358 (4)
N7—O21.245 (3)C2—H2A0.94 (4)
C1—N11.340 (3)C3—H31.03 (3)
C1—C21.403 (3)N3—H3A0.96 (4)
C1—N31.347 (3)N3—H3B0.96 (4)
N1—N21.364 (3)
N4—Cu1—N4i180.0H6A—N6—H6B116 (3)
N4—Cu1—N1i91.01 (7)N1—N2—H2123 (3)
N4—Cu1—N188.99 (7)C3—N2—N1111.0 (2)
N4i—Cu1—N191.00 (7)C3—N2—H2126 (3)
N4i—Cu1—N1i89.00 (7)N5—C4—N6121.9 (2)
N1—Cu1—N1i180.0N5—C4—C5106.7 (2)
N4—N5—H5120 (2)N6—C4—C5131.4 (2)
C4—N5—N4111.75 (18)C4—C5—H5A127 (2)
C4—N5—H5128 (2)C6—C5—C4105.5 (2)
N5—N4—Cu1124.74 (14)C6—C5—H5A127 (2)
C6—N4—Cu1130.97 (17)N4—C6—C5112.0 (2)
C6—N4—N5104.04 (19)N4—C6—H6120 (2)
O3—N7—O1120.1 (2)C5—C6—H6128 (2)
O3—N7—O2120.3 (2)C1—C2—H2A125 (2)
O2—N7—O1119.5 (2)C3—C2—C1105.2 (2)
N1—C1—C2110.2 (2)C3—C2—H2A129 (2)
N1—C1—N3122.1 (2)N2—C3—C2108.4 (2)
N3—C1—C2127.5 (2)N2—C3—H3123 (2)
C1—N1—Cu1135.03 (16)C2—C3—H3127.7 (19)
C1—N1—N2105.19 (18)C1—N3—H3A111 (2)
N2—N1—Cu1119.06 (14)C1—N3—H3B116 (2)
C4—N6—H6A117 (2)H3A—N3—H3B117 (3)
C4—N6—H6B115 (2)
Cu1—N4—C6—C5173.70 (19)N6—C4—C5—C6176.8 (3)
Cu1—N1—N2—C3172.49 (18)C4—N5—N4—Cu1174.56 (15)
N5—N4—C6—C50.5 (3)C4—N5—N4—C60.1 (3)
N5—C4—C5—C60.6 (3)C4—C5—C6—N40.7 (3)
N4—N5—C4—N6177.4 (2)C2—C1—N1—Cu1170.29 (17)
N4—N5—C4—C50.3 (3)C2—C1—N1—N20.6 (2)
C1—N1—N2—C30.8 (3)N3—C1—N1—Cu114.0 (3)
C1—C2—C3—N20.3 (3)N3—C1—N1—N2176.3 (2)
N1—C1—C2—C30.2 (3)N3—C1—C2—C3175.6 (3)
N1—N2—C3—C20.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O30.96 (4)2.71 (3)3.495 (3)139 (3)
N3—H3A···O20.96 (4)1.92 (4)2.849 (3)162 (3)
N3—H3B···O3ii0.96 (4)2.20 (4)3.085 (3)153 (3)
N6—H6A···O3iii0.87 (4)2.83 (3)3.480 (3)132 (3)
N6—H6A···O1iii0.87 (4)2.22 (4)2.999 (3)149 (3)
N6—H6B···O3iv0.88 (4)2.14 (4)3.019 (3)176 (3)
N2—H2···N7i0.82 (4)2.60 (4)3.378 (3)159 (3)
N2—H2···O1i0.82 (4)2.10 (4)2.908 (3)171 (4)
N2—H2···O2i0.82 (4)2.40 (4)2.999 (3)131 (3)
N5—H5···O1iii0.80 (4)2.47 (4)3.093 (3)136 (3)
N5—H5···N3i0.80 (4)2.82 (4)3.462 (3)139 (3)
C6—H6···N6v0.87 (4)2.70 (4)3.438 (3)143 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to the Ministry of Education and Science of Ukraine for financial support.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-03; grant No. 22BF037-09).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGamez, P., von Harras, J., Roubeau, O., Driessen, W. L. & Reedijk, J. (2001). Inorg. Chim. Acta, 324, 27–34.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPérez, J. & Riera, L. (2009). Eur. J. Inorg. Chem. pp. 4913–4925.  Google Scholar
First citationReedijk, J. (1987). Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty. Oxford: Pergamon Press.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRuan, B.-F., Liang, Y.-K., Liu, W.-D., Wu, J.-Y. & Tian, Y.-P. (2012). J. Coord. Chem. 65, 2127–2134.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwitlicka-Olszewska, A., Machura, B., Mroziński, J., Kalińska, B., Kruszynski, R. & Penkala, M. (2014). New J. Chem. 38, 1611–1626.  Google Scholar
First citationTiti, A., Zaidi, K., Alzahrani, A. Y. A., El Kodadi, M., Yousfi, E. B., Moliterni, A., Hammouti, B., Touzani, R. & Abboud, M. (2023). Catalysts 13, 162.  CrossRef Google Scholar
First citationWang, Y.-F., Li, Z., Sun, Y.-C. & Zhao, J.-S. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 277–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaimović, M. Š., Kosović Perutović, M., Jelušić, G., Radović, A. & Jaćimović, Ž. (2022). Front. Pharmacol. 13. https://doi. org/10.3389/fphar. 2022.921157.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds