research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of di­aqua­bis­­(o-phenyl­enedi­amine-κ2N,N′)nickel(II) naphthalene-1,5-di­sulfonate

crossmark logo

aTermez State University, "Barkamol avlod", at street, 43., Termez city, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 October 2023; accepted 25 October 2023; online 26 October 2023)

The reaction of o-phenyl­enedi­amine (OPD), sodium naphthalene1,5-di­sulfonate (Na2NDS) and nickel sulfate in an ethanol–water mixture yielded the title compound, [Ni(OPD)2(H2O)2]·NDS or [Ni(C6H8N2)2(H2O)2](C10H6O6S2). This salt consists of a complex [Ni(OPD)2(H2O)2]2+ cation with two bidentate OPD ligands and trans aqua ligands, and a non-coordinating NDS2– anion, which is the double-deprotonated form of H2NDS. The NiII atom is situated at a center of inversion and exhibits a slightly tetra­gonally distorted {O2N4} octa­hedral coordination environment, with four shorter equatorial Ni—N bonds [2.0775 (17) and 2.0924 (18) Å] and a longer axial Ni—O bond [2.1381 (17) Å]. The OPD ligand is located about an inversion center and is nearly coplanar with the NiN4 plane [dihedral angle 0.95 (9)°]. In the crystal, the cations and anions are connected by charge-assisted inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding inter­actions into the tri-periodic network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), O⋯H/H⋯O (34.3%), C⋯H/H⋯C (14.8%) C⋯C (6.5%) (involving the cations) and O⋯H/H⋯O (50%), H⋯H (25%), C⋯H/H⋯C (15.3%), C⋯C (8.2%) (involving the anions) inter­actions.

1. Chemical context

o-Phenyl­enedi­amine (OPD) condenses with ketones and aldehydes to a variety of useful products. Its reactions with carb­oxy­lic acids and their derivatives produce the important class of benzimidazoles (Vishvanath & Ketan, 2014[Vishvanath, D. P. & Ketan, P. P. (2014). Int. J. ChemTech Res. 8, 457-465.]; Aniket et al., 2015[Aniket, P., Shantanu, D. S., Anagha, O. B. & Ajinkya, P. S. (2015). Int. J. ChemTech Res. 8, 496-500.]; Pardeshi & Thore, 2015[Pardeshi, S. D. & Thore, S. N. (2015). Int. J. Chem. Phys. 4, 300-307.]). Hence, OPD is commonly used in various industrial processes, including the production of dyes, polymers and the synthesis of fungicides, corrosion inhibitors, pigments, and pharmaceuticals (Abdullah et al., 2019[Abdullah, Kh., Hussien, N., Salam, A., Kareem, A., Rahman, A. & Mourad, S. (2019). Biochem. Cell. Arch. 19, 1705-1711.]; Sagasser et al., 2019[Sagasser, J., Ma, B. N., Baecker, D., Salcher, S., Hermann, M., Lamprecht, J., Angerer, S., Obexer, P., Kircher, B. & Gust, R. (2019). J. Med. Chem. 62, 8053-8061.]; Pisarevskaya et al., 2020[Pisarevskaya, E. Y., Kolesnichenko, I. I., Averin, A. A., Gorbunov, A. M. & Efimov, O. N. (2020). Synth. Met. 270, 116596.]; Jadoun et al., 2021[Jadoun, S., Riaz, U., Yáñez, J. & Pal Singh Chauhan, N. (2021). Eur. Polym. J. 156, 110600.]). It also exhibits electrical conductivity and is used in the production of conductive materials, such as sensors and batteries (Sayyah et al., 2009[Sayyah, S. M., El-Deeb, M. M., Kamal, S. M. & Azooz, R. (2009). J. Appl. Polym. Sci. 112, 3695-3706.]; Bottari et al., 2020[Bottari, F., Moro, G., Sleegers, N., Florea, A., Cowen, T., Piletsky, S., van Nuijs, A. L. N. & De Wael, K. (2020). Electroanalysis, 32, 135-141.]). OPD is also a versatile ligand in coordination chemistry. It forms complexes with different metal ions, such as lanthanides (Koroteev et al., 2020[Koroteev, P. S., Ilyukhin, A. B., Babeshkin, K. A. & Efimov, N. N. (2020). J. Mol. Struct. 1207, 127800.]), zinc (González Guillen et al., 2018[González Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029-5037.]; Zick & Geiger, 2016[Zick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037-1042.]), cobalt (Ngopoh et al., 2015[Ngopoh, F. A. I., Lachkar, M., Đorđević, T., Lengauer, C. L. & El Bali, B. (2015). J. Chem. Crystallogr. 45, 369-375.]; Konieczny et al., 2019[Konieczny, P., González-Guillén, A. B., Luberda-Durnaś, K., Čižmár, E., Pełka, R., Oszajca, M. & Łasocha, W. (2019). Dalton Trans. 48, 7560-7570.]), copper (Djebli et al., 2012[Djebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411-m1412.]; Chakraborty et al., 2014[Chakraborty, P., Jana, A. & Mohanta, S. (2014). Polyhedron, 77, 39-46.]), cadmium (González Guillen et al., 2018[González Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029-5037.]) or nickel (Sabbani & Das, 2009[Sabbani, S. & Das, S. K. (2009). Inorg. Chem. Commun. 12, 364-367.]; Lu et al., 2009[Lu, X., Wang, Z. & Liu, M. (2009). Chin. J. Chem. 27, 221-226.]; Willett et al., 2012[Willett, R. D., Gómez-García, C. J., Twamley, B., Gómez-Coca, S. & Ruiz, E. (2012). Inorg. Chem. 51, 5487-5493.]; Adhikari et al., 2021[Adhikari, S., Bhattacharjee, T., Bhattacharjee, S., Daniliuc, C. G., Frontera, A., Lopato, E. M. & Bernhard, S. (2021). Dalton Trans. 50, 5632-5643.]).

Compounds comprising 1,5-naphthalene­disulfonic acid (H2NDS) or its deprotonated form (sulfonates) are of inter­est in supra­molecular chemistry (Shi et al., 2014[Shi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570-6580.]; Xu et al., 2019[Xu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81-93.]; Chen et al., 2020[Chen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491.]), because the sulfonate group can accept up to six hydrogen bonds (Chen et al., 2020[Chen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491.]; Oh et al., 2020[Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027-7033.]; Chen et al., 2022[Chen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602.]). H2NDS can react with organic compounds under formation of organic cations and the NDS2– anion, or with metal compounds either under formation of non-coordinating NDS2– anions, or with NDS2– as a ligand (Huo et al., 2005[Huo, L.-H., Gao, S., Xu, S.-X. & Zhao, H. (2005). Acta Cryst. E61, m449-m450.]; Kokunov et al., 2015[Kokunov, Yu. V., Kovalev, V. V., Gorbunova, Yu. E. & Kozyukhin, S. A. (2015). Russ. J. Inorg. Chem. 60, 151-156.]). As a ligand, NDS2– can bind in a bridging mode (Lian & Qu, 2013[Lian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482-484.]; Das et al., 2015[Das, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132-4141.]; Tai et al., 2015[Tai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339-4347.]).

[Scheme 1]

In this work, we focus on the synthesis, crystal structure, and Hirshfeld surface analysis of a nickel(II) complex, [Ni(OPD)2(H2O)2]·NDS, where the NDS2– anion is not part of the metal coordination sphere.

2. Structural commentary

The structures of the mol­ecular entities of the title compound are shown in Fig. 1[link]. This salt consists of an NiII-centered complex cation with two bidentate OPD ligands and trans-aligned aqua ligands, as well as of a non-coordinating NDS2– anion, which is the double-deprotonated form of H2NDS. The NiII atom is situated at a crystallographic inversion center (Wyckoff letter d of space group P21/n) and exhibits a slightly tetra­gonally distorted {O2N4} octa­hedral coordination environment, with two pairs of shorter equatorial Ni—N bonds [2.0775 (17) and 2.0924 (18) Å] and a pair of longer axial Ni—O bonds [2.1381 (17) Å]. The OPD ligand, likewise located over a crystallographic inversion center at the middle of the central C11—C11(−x + 1, −y + 2, −z + 1) bond, is almost coplanar with the NiN4 plane, with a dihedral angle of 0.95 (9)°. The deviation of the ideal octa­hedral coordination sphere around nickel might be explained as follows: The inflexible nature of the OPDA ring system with an N⋯N distance between the amino groups of 2.770 (2) Å determines the N2—Ni1—N1 and N2—Ni1—N1(−x + 2, −y + 1, −z + 1) bite angles of 83.26 (7) and 96.74 (7) °, respectively.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z.]

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the complex Ni(OPD)2(H2O)2]2+ cation and the NDS2– anion are associated via charge-assisted inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]). Each [Ni(OPD)2(H2O)2]2+ cation forms N—H⋯O and O—H⋯O hydrogen bonds with six neighboring organic anions whereby the two aqua and two OPD ligands act solely as hydrogen-bonding donor groups (Fig. 2[link]). All six acceptor oxygen atoms of the SO3 groups of the NDS2− anions participate as double acceptor atoms (Fig. 3[link]). Hydrogen bonds N1—H1B⋯O2iii, N2—H2A⋯O1 and O1W–H1WB⋯O1 lead to the formation of supra­molecular zigzag chains parallel to [100]. These chains are further connected by N1—H1A⋯O2ii and N1—H1B⋯O2iii hydrogen bonds, resulting in sheets parallel to (110). Additionally, cations and neighboring dianions are linked through O1W—H1WA⋯O3iv and N2—H2B⋯O3i hydrogen bonds. The mol­ecules stack along [001], thereby forming a consolidated tri-periodic supra­molecular network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 (1) 2.48 (2) 3.268 (3) 148 (3)
N1—H1B⋯O2ii 0.89 (1) 2.18 (1) 3.066 (3) 175 (3)
N2—H2A⋯O1 0.88 (1) 2.10 (1) 2.941 (2) 160 (3)
N2—H2B⋯O3iii 0.89 (1) 2.06 (1) 2.908 (3) 158 (2)
O1W—H1WA⋯O3iv 0.85 (1) 2.12 (2) 2.876 (3) 148 (3)
O1W—H1WB⋯O1 0.85 (1) 2.04 (2) 2.803 (2) 150 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, -y+1, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Formation of hydrogen bonds (dashed lines) between the [Ni(OPD)2(H2O)2]2+ cation with six neighboring anions. Symmetry codes refer to Table 1[link].
[Figure 3]
Figure 3
Formation of hydrogen bonds (dashed lines) between the NDS2– anion with six neighboring cations. Symmetry codes refer to Table 1[link].
[Figure 4]
Figure 4
The crystal packing of the title salt in a view along [010] based on the formation of O—H⋯O and N—H⋯O hydrogen bonds (dashed blue lines). The coordination sphere around NiII is given in the polyhedral representation.

The supra­molecular inter­actions discussed above were qu­anti­tatively investigated and visualized using Hirshfeld surface analysis performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.5408 (red) to 1.4249 (blue) a.u.. Visualizations were performed using a red–white–blue color scheme, where red highlights contacts shorter than the sum of the van der Waals (vdW) radii, white contacts around vdW separations, and blue contacts longer than the sum of the vdW radii. It should be noted that the Hirshfeld surfaces and fingerprint plots were calculated separately for the [Ni(OPD)2(H2O)2]2+ cation and the NDS2– dianion. The dnorm surface has twelve bright-red spots on the Hirshfeld surface for the cation and anion each (Fig. 5[link]), resulting from the two O—H⋯O and four N—H⋯O inter­molecular hydrogen bonds, as discussed above (Fig. 5[link]; the number is doubled due to inversion symmetry for both entities). The classical O—H⋯O and N—H⋯O hydrogen bonds correspond to H⋯H and H⋯O contacts in the two-dimensional fingerprint plots (with contributions of 44.1 and 50% to the Hirshfeld surface for the [Ni(OPD)2(H2O)2]2+ cation and NDS2– anion, respectively; Fig. 6[link]b and 6f). O⋯H/H⋯O and C⋯H/H⋯C, inter­actions in the cation, and H⋯H and C⋯H/H⋯C inter­actions in the dianion follow with contributions of 34.3, 14.8, 25 and 15.3%, respectively (Fig. 6[link]c,d,g,h). Other minor contributions are from C⋯C (6.5%) and C⋯O (0.3%) contacts in the cation, and from C⋯C (8.2%), C⋯O (0.3%), O⋯O (0.1%) and S⋯H (0.1%) contacts in the dianion. The O⋯H/H⋯O contacts are visible as a spike with a sharp tip on the side of the corresponding two-dimensional fingerprint plot, which is indicative of strong inter­molecular inter­actions between atoms. On the other hand, the C⋯H/H⋯C contacts form less pronounced spikes, suggesting that these inter­actions are much weaker.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface for the [Ni(OPD)2(H2O)2]2+ cation and the NDS2– dianion plotted over dnorm. Parts (a) and (b) show the front and back sides, respectively, of the [Ni(OPD)2(H2O)2]2+ dication. Parts (c) and (d) show the front and back sides, respectively, of the NDS2– dianion.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the [Ni(OPD)2(H2O)2]2+ cation [parts (a), (b), (c) and (d)] and the NDS2−dianion [parts (e), (f), (g) and (h)]. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

4. Database survey

In a search of the Cambridge Structural Database (CSD, version 2022.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), a total of 207 compounds containing the o-phenyl­enedi­amine moiety were identified. Out of these, 129 compounds were metal complexes, while 78 compounds were organic salts. One organic salt comprising protonated o-phenyl­enedi­amine and 1,5-naphthalene­disulfonate has been studied (CSD refcode PEFYOQ; Deng et al., 2012[Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2012). Cryst. Growth Des. 12, 3342-3355.]). When searching with 1,5-naphthalene­disulfonic acid as the search criterion, 90 metal complexes and 170 organic salt compounds were found. In the majority of metal complexes, 1,5-naphthalene­disulfonic acid was found in its dianionic form and was not part of the coordination sphere. However, in ten cases a bridging mode for the 1,5-naphthalene­disulfonate anion was found. Only one compound was identified where the 1,5-naphthalene­disulfonate anion coordinates to a transition-metal cation (copper) in a monodentate manner (XABPEW; Chen et al., 2002[Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Chin. J. Inorg. Chem. 18, 659-664.]).

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The ligand OPDA (0.216 g, 2 mmol) was dissolved in 10 ml of a 1:1 v/v ethanol/water mixture. This solution was then added to a solution containing nickel(II) sulfate hepta­hydrate (0.281 g, 1 mmol) and disodium naphthalene-1,5-di­sulfonate (0.332 g, 1 mmol) in 10 ml of the same mixed ethanol/water solvent. The resulting mixture was heated under reflux and stirred for 40 min. After 5 d of slow solvent evaporation at room temperature, a light-green crystalline product was obtained with a yield of 65% (based on Ni). Elemental analysis calculated (%) for C22H26N4NiO8S2: C 44.24, H 4.39, N 9.38; found: C 44.18, H 4.34, N 9.31.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions and refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å for aromatic H atoms. Hydrogen atoms of the amino groups and of the water mol­ecule were located using a difference-Fourier map and refined with bond-length restraints of 0.89 (1) and 0.85 (1) Å, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C6H8N2)2(H2O)2](C10H6O6S2)
Mr 597.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 563
a, b, c (Å) 12.7613 (3), 7.7054 (1), 13.4641 (3)
β (°) 111.554 (2)
V3) 1231.36 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.22
Crystal size (mm) 0.22 × 0.18 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.573, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11384, 2380, 2152
Rint 0.038
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections 2380
No. of parameters 194
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Diaquabis(o-phenylenediamine-κ2N,N')nickel(II) naphthalene-1,5-disulfonate top
Crystal data top
[Ni(C6H8N2)2(H2O)2](C10H6O6S2)F(000) = 620
Mr = 597.30Dx = 1.611 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 12.7613 (3) ÅCell parameters from 6737 reflections
b = 7.7054 (1) Åθ = 4.1–71.0°
c = 13.4641 (3) ŵ = 3.22 mm1
β = 111.554 (2)°T = 563 K
V = 1231.36 (5) Å3Block, light green
Z = 20.22 × 0.18 × 0.14 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2380 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2152 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 71.3°, θmin = 4.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 99
Tmin = 0.573, Tmax = 1.000l = 1416
11384 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.048P)2 + 0.8302P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.50 e Å3
2380 reflectionsΔρmin = 0.49 e Å3
194 parametersExtinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0006 (2)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000000.5000000.5000000.02713 (17)
S10.69836 (5)0.87424 (8)0.39745 (4)0.03779 (18)
O1W0.83329 (14)0.4677 (2)0.38469 (14)0.0412 (4)
O10.73435 (15)0.7254 (2)0.46852 (14)0.0488 (5)
N10.99045 (16)0.2387 (2)0.53808 (16)0.0330 (4)
O30.62288 (17)0.8217 (3)0.29283 (14)0.0574 (5)
N20.93181 (15)0.5408 (2)0.61643 (14)0.0298 (4)
O20.79217 (17)0.9758 (3)0.39332 (19)0.0636 (6)
C110.47191 (16)1.0579 (3)0.52339 (16)0.0276 (4)
C60.91414 (17)0.3765 (3)0.66003 (16)0.0297 (4)
C10.94563 (18)0.2253 (3)0.62287 (17)0.0319 (5)
C70.62041 (18)1.0098 (3)0.45202 (17)0.0313 (5)
C100.50918 (19)1.2316 (3)0.54324 (18)0.0350 (5)
H100.4738111.3068410.5750330.042*
C50.86718 (19)0.3671 (3)0.73833 (18)0.0381 (5)
H50.8461300.4682020.7638620.046*
C80.65220 (18)1.1796 (3)0.47028 (19)0.0385 (5)
H80.7110681.2214550.4519950.046*
C90.5960 (2)1.2909 (3)0.5166 (2)0.0405 (5)
H90.6182501.4063180.5293120.049*
C20.9316 (2)0.0661 (3)0.6643 (2)0.0446 (6)
H20.9539800.0350500.6399810.054*
C40.8518 (2)0.2078 (4)0.7781 (2)0.0474 (6)
H40.8193330.2018340.8296040.057*
C30.8845 (2)0.0572 (4)0.7417 (2)0.0510 (6)
H30.8748880.0497820.7691790.061*
H2A0.8674 (14)0.596 (3)0.585 (2)0.049 (8)*
H2B0.9775 (17)0.607 (3)0.6689 (15)0.038 (7)*
H1A0.946 (2)0.188 (4)0.4786 (15)0.062 (9)*
H1B1.0556 (14)0.182 (3)0.561 (2)0.052 (8)*
H1WA0.822 (3)0.447 (5)0.3199 (11)0.072 (11)*
H1WB0.787 (2)0.546 (4)0.386 (3)0.085 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0287 (3)0.0260 (3)0.0306 (3)0.00340 (18)0.0155 (2)0.00141 (19)
S10.0365 (3)0.0456 (3)0.0367 (3)0.0168 (2)0.0198 (2)0.0050 (2)
O1W0.0343 (9)0.0495 (10)0.0395 (9)0.0062 (7)0.0133 (7)0.0073 (8)
O10.0481 (10)0.0549 (11)0.0464 (10)0.0299 (8)0.0208 (8)0.0131 (8)
N10.0353 (10)0.0280 (9)0.0418 (11)0.0046 (8)0.0212 (9)0.0015 (8)
O30.0633 (12)0.0736 (14)0.0348 (9)0.0262 (10)0.0175 (9)0.0035 (9)
N20.0291 (9)0.0302 (9)0.0316 (9)0.0041 (7)0.0131 (8)0.0002 (7)
O20.0550 (12)0.0644 (13)0.0938 (17)0.0090 (10)0.0538 (12)0.0030 (11)
C110.0259 (9)0.0302 (10)0.0258 (9)0.0070 (8)0.0085 (8)0.0004 (8)
C60.0246 (10)0.0356 (11)0.0280 (10)0.0001 (8)0.0088 (8)0.0024 (8)
C10.0294 (10)0.0331 (11)0.0347 (11)0.0014 (8)0.0135 (9)0.0040 (9)
C70.0279 (10)0.0368 (11)0.0300 (10)0.0089 (8)0.0117 (9)0.0014 (8)
C100.0348 (11)0.0331 (11)0.0374 (11)0.0067 (9)0.0137 (9)0.0044 (9)
C50.0349 (11)0.0492 (14)0.0331 (11)0.0016 (10)0.0158 (9)0.0019 (10)
C80.0286 (11)0.0411 (12)0.0475 (13)0.0015 (9)0.0160 (10)0.0034 (10)
C90.0386 (12)0.0301 (11)0.0516 (14)0.0005 (9)0.0153 (11)0.0049 (10)
C20.0493 (14)0.0354 (12)0.0517 (15)0.0012 (11)0.0217 (12)0.0085 (11)
C40.0461 (14)0.0645 (17)0.0366 (12)0.0081 (12)0.0209 (11)0.0059 (12)
C30.0573 (16)0.0501 (15)0.0487 (15)0.0050 (13)0.0231 (13)0.0153 (12)
Geometric parameters (Å, º) top
Ni1—O1Wi2.1381 (17)C11—C7ii1.434 (3)
Ni1—O1W2.1381 (17)C11—C101.413 (3)
Ni1—N12.0924 (18)C6—C11.385 (3)
Ni1—N1i2.0924 (18)C6—C51.393 (3)
Ni1—N2i2.0776 (17)C1—C21.386 (3)
Ni1—N22.0775 (17)C7—C81.365 (3)
S1—O11.4558 (18)C10—H100.9300
S1—O31.4419 (19)C10—C91.363 (3)
S1—O21.448 (2)C5—H50.9300
S1—C71.777 (2)C5—C41.382 (4)
O1W—H1WA0.846 (10)C8—H80.9300
O1W—H1WB0.850 (10)C8—C91.403 (3)
N1—C11.456 (3)C9—H90.9300
N1—H1A0.886 (10)C2—H20.9300
N1—H1B0.889 (10)C2—C31.383 (4)
N2—C61.447 (3)C4—H40.9300
N2—H2A0.882 (10)C4—C31.383 (4)
N2—H2B0.891 (10)C3—H30.9300
C11—C11ii1.427 (4)
O1W—Ni1—O1Wi180.0H2A—N2—H2B109 (3)
N1i—Ni1—O1Wi86.20 (8)C11ii—C11—C7ii117.6 (2)
N1i—Ni1—O1W93.80 (8)C10—C11—C11ii119.1 (2)
N1—Ni1—O1Wi93.80 (8)C10—C11—C7ii123.28 (19)
N1—Ni1—O1W86.20 (8)C1—C6—N2118.72 (18)
N1—Ni1—N1i180.0C1—C6—C5119.5 (2)
N2i—Ni1—O1W90.88 (7)C5—C6—N2121.8 (2)
N2i—Ni1—O1Wi89.12 (7)C6—C1—N1118.23 (19)
N2—Ni1—O1W89.12 (7)C6—C1—C2120.1 (2)
N2—Ni1—O1Wi90.88 (7)C2—C1—N1121.6 (2)
N2i—Ni1—N1i83.26 (7)C11ii—C7—S1120.95 (16)
N2—Ni1—N1i96.74 (7)C8—C7—S1117.60 (17)
N2—Ni1—N183.26 (7)C8—C7—C11ii121.45 (19)
N2i—Ni1—N196.74 (7)C11—C10—H10119.4
N2—Ni1—N2i180.00 (10)C9—C10—C11121.2 (2)
O1—S1—C7106.30 (10)C9—C10—H10119.4
O3—S1—O1110.91 (13)C6—C5—H5119.9
O3—S1—O2112.29 (13)C4—C5—C6120.1 (2)
O3—S1—C7107.13 (10)C4—C5—H5119.9
O2—S1—O1112.67 (12)C7—C8—H8120.0
O2—S1—C7107.12 (11)C7—C8—C9120.0 (2)
Ni1—O1W—H1WA121 (2)C9—C8—H8120.0
Ni1—O1W—H1WB115 (3)C10—C9—C8120.7 (2)
H1WA—O1W—H1WB107 (3)C10—C9—H9119.7
Ni1—N1—H1A106 (2)C8—C9—H9119.7
Ni1—N1—H1B115 (2)C1—C2—H2119.9
C1—N1—Ni1109.60 (13)C3—C2—C1120.2 (2)
C1—N1—H1A112 (2)C3—C2—H2119.9
C1—N1—H1B106.1 (19)C5—C4—H4119.9
H1A—N1—H1B108 (3)C5—C4—C3120.2 (2)
Ni1—N2—H2A107.0 (18)C3—C4—H4119.9
Ni1—N2—H2B110.6 (16)C2—C3—H3120.1
C6—N2—Ni1110.14 (13)C4—C3—C2119.8 (2)
C6—N2—H2A110.8 (19)C4—C3—H3120.1
C6—N2—H2B109.3 (17)
Ni1—N1—C1—C62.3 (2)O2—S1—C7—C85.8 (2)
Ni1—N1—C1—C2179.29 (18)C11ii—C11—C10—C91.3 (4)
Ni1—N2—C6—C11.6 (2)C11ii—C7—C8—C91.7 (3)
Ni1—N2—C6—C5178.80 (17)C11—C10—C9—C81.1 (4)
S1—C7—C8—C9177.84 (18)C6—C1—C2—C31.0 (4)
O1—S1—C7—C11ii53.0 (2)C6—C5—C4—C31.0 (4)
O1—S1—C7—C8126.48 (19)C1—C6—C5—C40.3 (3)
N1—C1—C2—C3177.3 (2)C1—C2—C3—C40.3 (4)
O3—S1—C7—C11ii65.6 (2)C7ii—C11—C10—C9178.7 (2)
O3—S1—C7—C8114.9 (2)C7—C8—C9—C100.4 (4)
N2—C6—C1—N12.7 (3)C5—C6—C1—N1177.67 (19)
N2—C6—C1—C2178.9 (2)C5—C6—C1—C20.8 (3)
N2—C6—C5—C4179.9 (2)C5—C4—C3—C20.7 (4)
O2—S1—C7—C11ii173.73 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.89 (1)2.48 (2)3.268 (3)148 (3)
N1—H1B···O2i0.89 (1)2.18 (1)3.066 (3)175 (3)
N2—H2A···O10.88 (1)2.10 (1)2.941 (2)160 (3)
N2—H2B···O3iv0.89 (1)2.06 (1)2.908 (3)158 (2)
O1W—H1WA···O3v0.85 (1)2.12 (2)2.876 (3)148 (3)
O1W—H1WB···O10.85 (1)2.04 (2)2.803 (2)150 (3)
Symmetry codes: (i) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y1/2, z+1/2.
 

Funding information

The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.

References

First citationAbdullah, Kh., Hussien, N., Salam, A., Kareem, A., Rahman, A. & Mourad, S. (2019). Biochem. Cell. Arch. 19, 1705–1711.  Google Scholar
First citationAdhikari, S., Bhattacharjee, T., Bhattacharjee, S., Daniliuc, C. G., Frontera, A., Lopato, E. M. & Bernhard, S. (2021). Dalton Trans. 50, 5632–5643.  CSD CrossRef CAS PubMed Google Scholar
First citationAniket, P., Shantanu, D. S., Anagha, O. B. & Ajinkya, P. S. (2015). Int. J. ChemTech Res. 8, 496–500.  Google Scholar
First citationBottari, F., Moro, G., Sleegers, N., Florea, A., Cowen, T., Piletsky, S., van Nuijs, A. L. N. & De Wael, K. (2020). Electroanalysis, 32, 135–141.  CrossRef CAS Google Scholar
First citationChakraborty, P., Jana, A. & Mohanta, S. (2014). Polyhedron, 77, 39–46.  CSD CrossRef CAS Google Scholar
First citationChen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602.  CSD CrossRef Google Scholar
First citationChen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Chin. J. Inorg. Chem. 18, 659–664.  CAS Google Scholar
First citationChen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491.  CSD CrossRef Google Scholar
First citationDas, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132–4141.  CSD CrossRef CAS Google Scholar
First citationDeng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2012). Cryst. Growth Des. 12, 3342–3355.  Web of Science CSD CrossRef CAS Google Scholar
First citationDjebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411–m1412.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029–5037.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Xu, S.-X. & Zhao, H. (2005). Acta Cryst. E61, m449–m450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJadoun, S., Riaz, U., Yáñez, J. & Pal Singh Chauhan, N. (2021). Eur. Polym. J. 156, 110600.  CrossRef Google Scholar
First citationKokunov, Yu. V., Kovalev, V. V., Gorbunova, Yu. E. & Kozyukhin, S. A. (2015). Russ. J. Inorg. Chem. 60, 151–156.  CrossRef CAS Google Scholar
First citationKonieczny, P., González-Guillén, A. B., Luberda-Durnaś, K., Čižmár, E., Pełka, R., Oszajca, M. & Łasocha, W. (2019). Dalton Trans. 48, 7560–7570.  CSD CrossRef CAS PubMed Google Scholar
First citationKoroteev, P. S., Ilyukhin, A. B., Babeshkin, K. A. & Efimov, N. N. (2020). J. Mol. Struct. 1207, 127800.  CSD CrossRef Google Scholar
First citationLian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482–484.  CSD CrossRef CAS Google Scholar
First citationLu, X., Wang, Z. & Liu, M. (2009). Chin. J. Chem. 27, 221–226.  CSD CrossRef CAS Google Scholar
First citationNgopoh, F. A. I., Lachkar, M., Đorđević, T., Lengauer, C. L. & El Bali, B. (2015). J. Chem. Crystallogr. 45, 369–375.  CSD CrossRef CAS Google Scholar
First citationOh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033.  CSD CrossRef CAS Google Scholar
First citationPardeshi, S. D. & Thore, S. N. (2015). Int. J. Chem. Phys. 4, 300–307.  CAS Google Scholar
First citationPisarevskaya, E. Y., Kolesnichenko, I. I., Averin, A. A., Gorbunov, A. M. & Efimov, O. N. (2020). Synth. Met. 270, 116596.  CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSabbani, S. & Das, S. K. (2009). Inorg. Chem. Commun. 12, 364–367.  CSD CrossRef CAS Google Scholar
First citationSagasser, J., Ma, B. N., Baecker, D., Salcher, S., Hermann, M., Lamprecht, J., Angerer, S., Obexer, P., Kircher, B. & Gust, R. (2019). J. Med. Chem. 62, 8053–8061.  CrossRef CAS PubMed Google Scholar
First citationSayyah, S. M., El–Deeb, M. M., Kamal, S. M. & Azooz, R. (2009). J. Appl. Polym. Sci. 112, 3695–3706.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580.  CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339–4347.  CSD CrossRef CAS Google Scholar
First citationVishvanath, D. P. & Ketan, P. P. (2014). Int. J. ChemTech Res. 8, 457–465.  Google Scholar
First citationWillett, R. D., Gómez-García, C. J., Twamley, B., Gómez-Coca, S. & Ruiz, E. (2012). Inorg. Chem. 51, 5487–5493.  CSD CrossRef CAS PubMed Google Scholar
First citationXu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81–93.  CSD CrossRef CAS Google Scholar
First citationZick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037–1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds