research communications
Synthesis, o-phenylenediamine-κ2N,N′)nickel(II) naphthalene-1,5-disulfonate
and Hirshfeld surface analysis of diaquabis(aTermez State University, "Barkamol avlod", at street, 43., Termez city, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com
The reaction of o-phenylenediamine (OPD), sodium naphthalene1,5-disulfonate (Na2NDS) and nickel sulfate in an ethanol–water mixture yielded the title compound, [Ni(OPD)2(H2O)2]·NDS or [Ni(C6H8N2)2(H2O)2](C10H6O6S2). This salt consists of a complex [Ni(OPD)2(H2O)2]2+ cation with two bidentate OPD ligands and trans aqua ligands, and a non-coordinating NDS2– anion, which is the double-deprotonated form of H2NDS. The NiII atom is situated at a center of inversion and exhibits a slightly tetragonally distorted {O2N4} octahedral coordination environment, with four shorter equatorial Ni—N bonds [2.0775 (17) and 2.0924 (18) Å] and a longer axial Ni—O bond [2.1381 (17) Å]. The OPD ligand is located about an inversion center and is nearly coplanar with the NiN4 plane [dihedral angle 0.95 (9)°]. In the crystal, the cations and anions are connected by charge-assisted intermolecular N—H⋯O and O—H⋯O hydrogen-bonding interactions into the tri-periodic network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), O⋯H/H⋯O (34.3%), C⋯H/H⋯C (14.8%) C⋯C (6.5%) (involving the cations) and O⋯H/H⋯O (50%), H⋯H (25%), C⋯H/H⋯C (15.3%), C⋯C (8.2%) (involving the anions) interactions.
Keywords: o-Phenylenediamine; 1,5-naphthalenedisulfonic acid; crystal structure; intermolecular interactions; hydrogen bonding; Hirshfeld surface.
CCDC reference: 2303464
1. Chemical context
o-Phenylenediamine (OPD) condenses with and to a variety of useful products. Its reactions with carboxylic acids and their derivatives produce the important class of benzimidazoles (Vishvanath & Ketan, 2014; Aniket et al., 2015; Pardeshi & Thore, 2015). Hence, OPD is commonly used in various industrial processes, including the production of dyes, polymers and the synthesis of fungicides, corrosion inhibitors, pigments, and pharmaceuticals (Abdullah et al., 2019; Sagasser et al., 2019; Pisarevskaya et al., 2020; Jadoun et al., 2021). It also exhibits electrical conductivity and is used in the production of conductive materials, such as sensors and batteries (Sayyah et al., 2009; Bottari et al., 2020). OPD is also a versatile ligand in coordination chemistry. It forms complexes with different metal ions, such as lanthanides (Koroteev et al., 2020), zinc (González Guillen et al., 2018; Zick & Geiger, 2016), cobalt (Ngopoh et al., 2015; Konieczny et al., 2019), copper (Djebli et al., 2012; Chakraborty et al., 2014), cadmium (González Guillen et al., 2018) or nickel (Sabbani & Das, 2009; Lu et al., 2009; Willett et al., 2012; Adhikari et al., 2021).
Compounds comprising 1,5-naphthalenedisulfonic acid (H2NDS) or its deprotonated form (sulfonates) are of interest in supramolecular chemistry (Shi et al., 2014; Xu et al., 2019; Chen et al., 2020), because the sulfonate group can accept up to six hydrogen bonds (Chen et al., 2020; Oh et al., 2020; Chen et al., 2022). H2NDS can react with organic compounds under formation of organic cations and the NDS2– anion, or with metal compounds either under formation of non-coordinating NDS2– anions, or with NDS2– as a ligand (Huo et al., 2005; Kokunov et al., 2015). As a ligand, NDS2– can bind in a bridging mode (Lian & Qu, 2013; Das et al., 2015; Tai et al., 2015).
In this work, we focus on the synthesis, 2(H2O)2]·NDS, where the NDS2– anion is not part of the metal coordination sphere.
and Hirshfeld surface analysis of a nickel(II) complex, [Ni(OPD)2. Structural commentary
The structures of the molecular entities of the title compound are shown in Fig. 1. This salt consists of an NiII-centered complex cation with two bidentate OPD ligands and trans-aligned aqua ligands, as well as of a non-coordinating NDS2– anion, which is the double-deprotonated form of H2NDS. The NiII atom is situated at a crystallographic inversion center (Wyckoff letter d of P21/n) and exhibits a slightly tetragonally distorted {O2N4} octahedral coordination environment, with two pairs of shorter equatorial Ni—N bonds [2.0775 (17) and 2.0924 (18) Å] and a pair of longer axial Ni—O bonds [2.1381 (17) Å]. The OPD ligand, likewise located over a crystallographic inversion center at the middle of the central C11—C11(−x + 1, −y + 2, −z + 1) bond, is almost coplanar with the NiN4 plane, with a dihedral angle of 0.95 (9)°. The deviation of the ideal octahedral coordination sphere around nickel might be explained as follows: The inflexible nature of the OPDA ring system with an N⋯N distance between the amino groups of 2.770 (2) Å determines the N2—Ni1—N1 and N2—Ni1—N1(−x + 2, −y + 1, −z + 1) bite angles of 83.26 (7) and 96.74 (7) °, respectively.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the complex Ni(OPD)2(H2O)2]2+ cation and the NDS2– anion are associated via charge-assisted intermolecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1). Each [Ni(OPD)2(H2O)2]2+ cation forms N—H⋯O and O—H⋯O hydrogen bonds with six neighboring organic anions whereby the two aqua and two OPD ligands act solely as hydrogen-bonding donor groups (Fig. 2). All six acceptor oxygen atoms of the SO3− groups of the NDS2− anions participate as double acceptor atoms (Fig. 3). Hydrogen bonds N1—H1B⋯O2iii, N2—H2A⋯O1 and O1W–H1WB⋯O1 lead to the formation of supramolecular zigzag chains parallel to [100]. These chains are further connected by N1—H1A⋯O2ii and N1—H1B⋯O2iii hydrogen bonds, resulting in sheets parallel to (110). Additionally, cations and neighboring dianions are linked through O1W—H1WA⋯O3iv and N2—H2B⋯O3i hydrogen bonds. The molecules stack along [001], thereby forming a consolidated tri-periodic supramolecular network (Fig. 4).
The supramolecular interactions discussed above were quantitatively investigated and visualized using Hirshfeld surface analysis performed with CrystalExplorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.5408 (red) to 1.4249 (blue) a.u.. Visualizations were performed using a red–white–blue color scheme, where red highlights contacts shorter than the sum of the van der Waals (vdW) radii, white contacts around vdW separations, and blue contacts longer than the sum of the vdW radii. It should be noted that the Hirshfeld surfaces and fingerprint plots were calculated separately for the [Ni(OPD)2(H2O)2]2+ cation and the NDS2– dianion. The dnorm surface has twelve bright-red spots on the Hirshfeld surface for the cation and anion each (Fig. 5), resulting from the two O—H⋯O and four N—H⋯O intermolecular hydrogen bonds, as discussed above (Fig. 5; the number is doubled due to inversion symmetry for both entities). The classical O—H⋯O and N—H⋯O hydrogen bonds correspond to H⋯H and H⋯O contacts in the two-dimensional fingerprint plots (with contributions of 44.1 and 50% to the Hirshfeld surface for the [Ni(OPD)2(H2O)2]2+ cation and NDS2– anion, respectively; Fig. 6b and 6f). O⋯H/H⋯O and C⋯H/H⋯C, interactions in the cation, and H⋯H and C⋯H/H⋯C interactions in the dianion follow with contributions of 34.3, 14.8, 25 and 15.3%, respectively (Fig. 6c,d,g,h). Other minor contributions are from C⋯C (6.5%) and C⋯O (0.3%) contacts in the cation, and from C⋯C (8.2%), C⋯O (0.3%), O⋯O (0.1%) and S⋯H (0.1%) contacts in the dianion. The O⋯H/H⋯O contacts are visible as a spike with a sharp tip on the side of the corresponding two-dimensional fingerprint plot, which is indicative of strong intermolecular interactions between atoms. On the other hand, the C⋯H/H⋯C contacts form less pronounced spikes, suggesting that these interactions are much weaker.
4. Database survey
In a search of the Cambridge Structural Database (CSD, version 2022.3.0; Groom et al., 2016), a total of 207 compounds containing the o-phenylenediamine moiety were identified. Out of these, 129 compounds were metal complexes, while 78 compounds were organic salts. One organic salt comprising protonated o-phenylenediamine and 1,5-naphthalenedisulfonate has been studied (CSD refcode PEFYOQ; Deng et al., 2012). When searching with 1,5-naphthalenedisulfonic acid as the search criterion, 90 metal complexes and 170 organic salt compounds were found. In the majority of metal complexes, 1,5-naphthalenedisulfonic acid was found in its dianionic form and was not part of the coordination sphere. However, in ten cases a bridging mode for the 1,5-naphthalenedisulfonate anion was found. Only one compound was identified where the 1,5-naphthalenedisulfonate anion coordinates to a transition-metal cation (copper) in a monodentate manner (XABPEW; Chen et al., 2002).
5. Synthesis and crystallization
The starting materials are commercially available and were used without further purification. The ligand OPDA (0.216 g, 2 mmol) was dissolved in 10 ml of a 1:1 v/v ethanol/water mixture. This solution was then added to a solution containing nickel(II) sulfate heptahydrate (0.281 g, 1 mmol) and disodium naphthalene-1,5-disulfonate (0.332 g, 1 mmol) in 10 ml of the same mixed ethanol/water solvent. The resulting mixture was heated under reflux and stirred for 40 min. After 5 d of slow solvent evaporation at room temperature, a light-green crystalline product was obtained with a yield of 65% (based on Ni). Elemental analysis calculated (%) for C22H26N4NiO8S2: C 44.24, H 4.39, N 9.38; found: C 44.18, H 4.34, N 9.31.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions and refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å for aromatic H atoms. Hydrogen atoms of the amino groups and of the water molecule were located using a difference-Fourier map and refined with bond-length restraints of 0.89 (1) and 0.85 (1) Å, respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2303464
https://doi.org/10.1107/S2056989023009350/wm5701sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009350/wm5701Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2023); cell
CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Ni(C6H8N2)2(H2O)2](C10H6O6S2) | F(000) = 620 |
Mr = 597.30 | Dx = 1.611 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 12.7613 (3) Å | Cell parameters from 6737 reflections |
b = 7.7054 (1) Å | θ = 4.1–71.0° |
c = 13.4641 (3) Å | µ = 3.22 mm−1 |
β = 111.554 (2)° | T = 563 K |
V = 1231.36 (5) Å3 | Block, light green |
Z = 2 | 0.22 × 0.18 × 0.14 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 2380 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2152 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.3°, θmin = 4.1° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −9→9 |
Tmin = 0.573, Tmax = 1.000 | l = −14→16 |
11384 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.8302P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.50 e Å−3 |
2380 reflections | Δρmin = −0.49 e Å−3 |
194 parameters | Extinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.0006 (2) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.000000 | 0.500000 | 0.500000 | 0.02713 (17) | |
S1 | 0.69836 (5) | 0.87424 (8) | 0.39745 (4) | 0.03779 (18) | |
O1W | 0.83329 (14) | 0.4677 (2) | 0.38469 (14) | 0.0412 (4) | |
O1 | 0.73435 (15) | 0.7254 (2) | 0.46852 (14) | 0.0488 (5) | |
N1 | 0.99045 (16) | 0.2387 (2) | 0.53808 (16) | 0.0330 (4) | |
O3 | 0.62288 (17) | 0.8217 (3) | 0.29283 (14) | 0.0574 (5) | |
N2 | 0.93181 (15) | 0.5408 (2) | 0.61643 (14) | 0.0298 (4) | |
O2 | 0.79217 (17) | 0.9758 (3) | 0.39332 (19) | 0.0636 (6) | |
C11 | 0.47191 (16) | 1.0579 (3) | 0.52339 (16) | 0.0276 (4) | |
C6 | 0.91414 (17) | 0.3765 (3) | 0.66003 (16) | 0.0297 (4) | |
C1 | 0.94563 (18) | 0.2253 (3) | 0.62287 (17) | 0.0319 (5) | |
C7 | 0.62041 (18) | 1.0098 (3) | 0.45202 (17) | 0.0313 (5) | |
C10 | 0.50918 (19) | 1.2316 (3) | 0.54324 (18) | 0.0350 (5) | |
H10 | 0.473811 | 1.306841 | 0.575033 | 0.042* | |
C5 | 0.86718 (19) | 0.3671 (3) | 0.73833 (18) | 0.0381 (5) | |
H5 | 0.846130 | 0.468202 | 0.763862 | 0.046* | |
C8 | 0.65220 (18) | 1.1796 (3) | 0.47028 (19) | 0.0385 (5) | |
H8 | 0.711068 | 1.221455 | 0.451995 | 0.046* | |
C9 | 0.5960 (2) | 1.2909 (3) | 0.5166 (2) | 0.0405 (5) | |
H9 | 0.618250 | 1.406318 | 0.529312 | 0.049* | |
C2 | 0.9316 (2) | 0.0661 (3) | 0.6643 (2) | 0.0446 (6) | |
H2 | 0.953980 | −0.035050 | 0.639981 | 0.054* | |
C4 | 0.8518 (2) | 0.2078 (4) | 0.7781 (2) | 0.0474 (6) | |
H4 | 0.819333 | 0.201834 | 0.829604 | 0.057* | |
C3 | 0.8845 (2) | 0.0572 (4) | 0.7417 (2) | 0.0510 (6) | |
H3 | 0.874888 | −0.049782 | 0.769179 | 0.061* | |
H2A | 0.8674 (14) | 0.596 (3) | 0.585 (2) | 0.049 (8)* | |
H2B | 0.9775 (17) | 0.607 (3) | 0.6689 (15) | 0.038 (7)* | |
H1A | 0.946 (2) | 0.188 (4) | 0.4786 (15) | 0.062 (9)* | |
H1B | 1.0556 (14) | 0.182 (3) | 0.561 (2) | 0.052 (8)* | |
H1WA | 0.822 (3) | 0.447 (5) | 0.3199 (11) | 0.072 (11)* | |
H1WB | 0.787 (2) | 0.546 (4) | 0.386 (3) | 0.085 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0287 (3) | 0.0260 (3) | 0.0306 (3) | 0.00340 (18) | 0.0155 (2) | 0.00141 (19) |
S1 | 0.0365 (3) | 0.0456 (3) | 0.0367 (3) | 0.0168 (2) | 0.0198 (2) | 0.0050 (2) |
O1W | 0.0343 (9) | 0.0495 (10) | 0.0395 (9) | 0.0062 (7) | 0.0133 (7) | −0.0073 (8) |
O1 | 0.0481 (10) | 0.0549 (11) | 0.0464 (10) | 0.0299 (8) | 0.0208 (8) | 0.0131 (8) |
N1 | 0.0353 (10) | 0.0280 (9) | 0.0418 (11) | 0.0046 (8) | 0.0212 (9) | 0.0015 (8) |
O3 | 0.0633 (12) | 0.0736 (14) | 0.0348 (9) | 0.0262 (10) | 0.0175 (9) | −0.0035 (9) |
N2 | 0.0291 (9) | 0.0302 (9) | 0.0316 (9) | 0.0041 (7) | 0.0131 (8) | −0.0002 (7) |
O2 | 0.0550 (12) | 0.0644 (13) | 0.0938 (17) | 0.0090 (10) | 0.0538 (12) | 0.0030 (11) |
C11 | 0.0259 (9) | 0.0302 (10) | 0.0258 (9) | 0.0070 (8) | 0.0085 (8) | 0.0004 (8) |
C6 | 0.0246 (10) | 0.0356 (11) | 0.0280 (10) | 0.0001 (8) | 0.0088 (8) | 0.0024 (8) |
C1 | 0.0294 (10) | 0.0331 (11) | 0.0347 (11) | 0.0014 (8) | 0.0135 (9) | 0.0040 (9) |
C7 | 0.0279 (10) | 0.0368 (11) | 0.0300 (10) | 0.0089 (8) | 0.0117 (9) | 0.0014 (8) |
C10 | 0.0348 (11) | 0.0331 (11) | 0.0374 (11) | 0.0067 (9) | 0.0137 (9) | −0.0044 (9) |
C5 | 0.0349 (11) | 0.0492 (14) | 0.0331 (11) | −0.0016 (10) | 0.0158 (9) | −0.0019 (10) |
C8 | 0.0286 (11) | 0.0411 (12) | 0.0475 (13) | 0.0015 (9) | 0.0160 (10) | 0.0034 (10) |
C9 | 0.0386 (12) | 0.0301 (11) | 0.0516 (14) | −0.0005 (9) | 0.0153 (11) | −0.0049 (10) |
C2 | 0.0493 (14) | 0.0354 (12) | 0.0517 (15) | 0.0012 (11) | 0.0217 (12) | 0.0085 (11) |
C4 | 0.0461 (14) | 0.0645 (17) | 0.0366 (12) | −0.0081 (12) | 0.0209 (11) | 0.0059 (12) |
C3 | 0.0573 (16) | 0.0501 (15) | 0.0487 (15) | −0.0050 (13) | 0.0231 (13) | 0.0153 (12) |
Ni1—O1Wi | 2.1381 (17) | C11—C7ii | 1.434 (3) |
Ni1—O1W | 2.1381 (17) | C11—C10 | 1.413 (3) |
Ni1—N1 | 2.0924 (18) | C6—C1 | 1.385 (3) |
Ni1—N1i | 2.0924 (18) | C6—C5 | 1.393 (3) |
Ni1—N2i | 2.0776 (17) | C1—C2 | 1.386 (3) |
Ni1—N2 | 2.0775 (17) | C7—C8 | 1.365 (3) |
S1—O1 | 1.4558 (18) | C10—H10 | 0.9300 |
S1—O3 | 1.4419 (19) | C10—C9 | 1.363 (3) |
S1—O2 | 1.448 (2) | C5—H5 | 0.9300 |
S1—C7 | 1.777 (2) | C5—C4 | 1.382 (4) |
O1W—H1WA | 0.846 (10) | C8—H8 | 0.9300 |
O1W—H1WB | 0.850 (10) | C8—C9 | 1.403 (3) |
N1—C1 | 1.456 (3) | C9—H9 | 0.9300 |
N1—H1A | 0.886 (10) | C2—H2 | 0.9300 |
N1—H1B | 0.889 (10) | C2—C3 | 1.383 (4) |
N2—C6 | 1.447 (3) | C4—H4 | 0.9300 |
N2—H2A | 0.882 (10) | C4—C3 | 1.383 (4) |
N2—H2B | 0.891 (10) | C3—H3 | 0.9300 |
C11—C11ii | 1.427 (4) | ||
O1W—Ni1—O1Wi | 180.0 | H2A—N2—H2B | 109 (3) |
N1i—Ni1—O1Wi | 86.20 (8) | C11ii—C11—C7ii | 117.6 (2) |
N1i—Ni1—O1W | 93.80 (8) | C10—C11—C11ii | 119.1 (2) |
N1—Ni1—O1Wi | 93.80 (8) | C10—C11—C7ii | 123.28 (19) |
N1—Ni1—O1W | 86.20 (8) | C1—C6—N2 | 118.72 (18) |
N1—Ni1—N1i | 180.0 | C1—C6—C5 | 119.5 (2) |
N2i—Ni1—O1W | 90.88 (7) | C5—C6—N2 | 121.8 (2) |
N2i—Ni1—O1Wi | 89.12 (7) | C6—C1—N1 | 118.23 (19) |
N2—Ni1—O1W | 89.12 (7) | C6—C1—C2 | 120.1 (2) |
N2—Ni1—O1Wi | 90.88 (7) | C2—C1—N1 | 121.6 (2) |
N2i—Ni1—N1i | 83.26 (7) | C11ii—C7—S1 | 120.95 (16) |
N2—Ni1—N1i | 96.74 (7) | C8—C7—S1 | 117.60 (17) |
N2—Ni1—N1 | 83.26 (7) | C8—C7—C11ii | 121.45 (19) |
N2i—Ni1—N1 | 96.74 (7) | C11—C10—H10 | 119.4 |
N2—Ni1—N2i | 180.00 (10) | C9—C10—C11 | 121.2 (2) |
O1—S1—C7 | 106.30 (10) | C9—C10—H10 | 119.4 |
O3—S1—O1 | 110.91 (13) | C6—C5—H5 | 119.9 |
O3—S1—O2 | 112.29 (13) | C4—C5—C6 | 120.1 (2) |
O3—S1—C7 | 107.13 (10) | C4—C5—H5 | 119.9 |
O2—S1—O1 | 112.67 (12) | C7—C8—H8 | 120.0 |
O2—S1—C7 | 107.12 (11) | C7—C8—C9 | 120.0 (2) |
Ni1—O1W—H1WA | 121 (2) | C9—C8—H8 | 120.0 |
Ni1—O1W—H1WB | 115 (3) | C10—C9—C8 | 120.7 (2) |
H1WA—O1W—H1WB | 107 (3) | C10—C9—H9 | 119.7 |
Ni1—N1—H1A | 106 (2) | C8—C9—H9 | 119.7 |
Ni1—N1—H1B | 115 (2) | C1—C2—H2 | 119.9 |
C1—N1—Ni1 | 109.60 (13) | C3—C2—C1 | 120.2 (2) |
C1—N1—H1A | 112 (2) | C3—C2—H2 | 119.9 |
C1—N1—H1B | 106.1 (19) | C5—C4—H4 | 119.9 |
H1A—N1—H1B | 108 (3) | C5—C4—C3 | 120.2 (2) |
Ni1—N2—H2A | 107.0 (18) | C3—C4—H4 | 119.9 |
Ni1—N2—H2B | 110.6 (16) | C2—C3—H3 | 120.1 |
C6—N2—Ni1 | 110.14 (13) | C4—C3—C2 | 119.8 (2) |
C6—N2—H2A | 110.8 (19) | C4—C3—H3 | 120.1 |
C6—N2—H2B | 109.3 (17) | ||
Ni1—N1—C1—C6 | 2.3 (2) | O2—S1—C7—C8 | 5.8 (2) |
Ni1—N1—C1—C2 | −179.29 (18) | C11ii—C11—C10—C9 | 1.3 (4) |
Ni1—N2—C6—C1 | 1.6 (2) | C11ii—C7—C8—C9 | 1.7 (3) |
Ni1—N2—C6—C5 | −178.80 (17) | C11—C10—C9—C8 | −1.1 (4) |
S1—C7—C8—C9 | −177.84 (18) | C6—C1—C2—C3 | 1.0 (4) |
O1—S1—C7—C11ii | −53.0 (2) | C6—C5—C4—C3 | 1.0 (4) |
O1—S1—C7—C8 | 126.48 (19) | C1—C6—C5—C4 | −0.3 (3) |
N1—C1—C2—C3 | −177.3 (2) | C1—C2—C3—C4 | −0.3 (4) |
O3—S1—C7—C11ii | 65.6 (2) | C7ii—C11—C10—C9 | −178.7 (2) |
O3—S1—C7—C8 | −114.9 (2) | C7—C8—C9—C10 | −0.4 (4) |
N2—C6—C1—N1 | −2.7 (3) | C5—C6—C1—N1 | 177.67 (19) |
N2—C6—C1—C2 | 178.9 (2) | C5—C6—C1—C2 | −0.8 (3) |
N2—C6—C5—C4 | −179.9 (2) | C5—C4—C3—C2 | −0.7 (4) |
O2—S1—C7—C11ii | −173.73 (18) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2iii | 0.89 (1) | 2.48 (2) | 3.268 (3) | 148 (3) |
N1—H1B···O2i | 0.89 (1) | 2.18 (1) | 3.066 (3) | 175 (3) |
N2—H2A···O1 | 0.88 (1) | 2.10 (1) | 2.941 (2) | 160 (3) |
N2—H2B···O3iv | 0.89 (1) | 2.06 (1) | 2.908 (3) | 158 (2) |
O1W—H1WA···O3v | 0.85 (1) | 2.12 (2) | 2.876 (3) | 148 (3) |
O1W—H1WB···O1 | 0.85 (1) | 2.04 (2) | 2.803 (2) | 150 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (iii) x, y−1, z; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2. |
Funding information
The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.
References
Abdullah, Kh., Hussien, N., Salam, A., Kareem, A., Rahman, A. & Mourad, S. (2019). Biochem. Cell. Arch. 19, 1705–1711. Google Scholar
Adhikari, S., Bhattacharjee, T., Bhattacharjee, S., Daniliuc, C. G., Frontera, A., Lopato, E. M. & Bernhard, S. (2021). Dalton Trans. 50, 5632–5643. CSD CrossRef CAS PubMed Google Scholar
Aniket, P., Shantanu, D. S., Anagha, O. B. & Ajinkya, P. S. (2015). Int. J. ChemTech Res. 8, 496–500. Google Scholar
Bottari, F., Moro, G., Sleegers, N., Florea, A., Cowen, T., Piletsky, S., van Nuijs, A. L. N. & De Wael, K. (2020). Electroanalysis, 32, 135–141. CrossRef CAS Google Scholar
Chakraborty, P., Jana, A. & Mohanta, S. (2014). Polyhedron, 77, 39–46. CSD CrossRef CAS Google Scholar
Chen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602. CSD CrossRef Google Scholar
Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Chin. J. Inorg. Chem. 18, 659–664. CAS Google Scholar
Chen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491. CSD CrossRef Google Scholar
Das, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132–4141. CSD CrossRef CAS Google Scholar
Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2012). Cryst. Growth Des. 12, 3342–3355. Web of Science CSD CrossRef CAS Google Scholar
Djebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411–m1412. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
González Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029–5037. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huo, L.-H., Gao, S., Xu, S.-X. & Zhao, H. (2005). Acta Cryst. E61, m449–m450. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jadoun, S., Riaz, U., Yáñez, J. & Pal Singh Chauhan, N. (2021). Eur. Polym. J. 156, 110600. CrossRef Google Scholar
Kokunov, Yu. V., Kovalev, V. V., Gorbunova, Yu. E. & Kozyukhin, S. A. (2015). Russ. J. Inorg. Chem. 60, 151–156. CrossRef CAS Google Scholar
Konieczny, P., González-Guillén, A. B., Luberda-Durnaś, K., Čižmár, E., Pełka, R., Oszajca, M. & Łasocha, W. (2019). Dalton Trans. 48, 7560–7570. CSD CrossRef CAS PubMed Google Scholar
Koroteev, P. S., Ilyukhin, A. B., Babeshkin, K. A. & Efimov, N. N. (2020). J. Mol. Struct. 1207, 127800. CSD CrossRef Google Scholar
Lian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482–484. CSD CrossRef CAS Google Scholar
Lu, X., Wang, Z. & Liu, M. (2009). Chin. J. Chem. 27, 221–226. CSD CrossRef CAS Google Scholar
Ngopoh, F. A. I., Lachkar, M., Đorđević, T., Lengauer, C. L. & El Bali, B. (2015). J. Chem. Crystallogr. 45, 369–375. CSD CrossRef CAS Google Scholar
Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033. CSD CrossRef CAS Google Scholar
Pardeshi, S. D. & Thore, S. N. (2015). Int. J. Chem. Phys. 4, 300–307. CAS Google Scholar
Pisarevskaya, E. Y., Kolesnichenko, I. I., Averin, A. A., Gorbunov, A. M. & Efimov, O. N. (2020). Synth. Met. 270, 116596. CrossRef Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sabbani, S. & Das, S. K. (2009). Inorg. Chem. Commun. 12, 364–367. CSD CrossRef CAS Google Scholar
Sagasser, J., Ma, B. N., Baecker, D., Salcher, S., Hermann, M., Lamprecht, J., Angerer, S., Obexer, P., Kircher, B. & Gust, R. (2019). J. Med. Chem. 62, 8053–8061. CrossRef CAS PubMed Google Scholar
Sayyah, S. M., El–Deeb, M. M., Kamal, S. M. & Azooz, R. (2009). J. Appl. Polym. Sci. 112, 3695–3706. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580. CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339–4347. CSD CrossRef CAS Google Scholar
Vishvanath, D. P. & Ketan, P. P. (2014). Int. J. ChemTech Res. 8, 457–465. Google Scholar
Willett, R. D., Gómez-García, C. J., Twamley, B., Gómez-Coca, S. & Ruiz, E. (2012). Inorg. Chem. 51, 5487–5493. CSD CrossRef CAS PubMed Google Scholar
Xu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81–93. CSD CrossRef CAS Google Scholar
Zick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037–1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.