research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a cadmium complex of naphthalene-1,5-di­sulfonate and o-phenyl­enedi­amine

crossmark logo

aTermez State University, Barkamol Avlod St. 43, Termez, 190111, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St. 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 6 June 2023; accepted 22 November 2023; online 30 November 2023)

A novel o-phenyl­enedi­amine (opda)-based cadmium complex, bis­(benzene-1,2-di­amine-κ2N,N′)bis­(benzene-1,2-di­amine-κN)cadmium(II) naphthalene-1,5-di­sulfonate, [Cd(C6H8N2)4](C10H6O6S2), was synthesized. The complex salt crystallizes in the monoclinic space group C2/c. The Cd atom occupies a special position and coordinates six nitro­gen atoms from four o-phenyl­enedi­amine mol­ecules, two as chelating ligands and two as monodentate ligands. The amino H atoms of opda inter­act with two O atoms of the naphthalene-1,5-di­sulfonate anions. The anions act as bridges between [Cd(opda)4]2+ cations, forming a two-dimensional network in the [010] and [001] directions. The Hirshfeld surface analysis shows that the primary factors contributing to the supramolecular inter­actions are short contacts, particularly van der Waals forces of the type H⋯H, O⋯H and C⋯H.

1. Chemical context

Cadmium is widely used in the fabrication of rechargeable batteries, in alloys, coatings (electroplating), solar cells, plastic stabilizers, phosphate fertilizers, and pigments (Omar et al., 2014[Omar, N., Firouz, Y., Monem, M. A., Samba, A., Gualous, H., Coosemans, T., Van den Bossche, P. & Van Mierlo, J. (2014). Reference Module in Chemistry: Molecular Sciences and Chemical Engineering, https://doi. org/10.1016/B978-0-12-409547-2.10740-1]; Morrow, 2010[Morrow, H. (2010). Kirk-Othmer Encyclopedia of Chemical Technology. Cadmium and Cadmium Alloys. 4, 1-36. https://doi. org/10.1002/0471238961.0301041303011818.a01.pub3.]; Indumathi et al., 2011[Indumathi, S. N., Vasudevan, T., Sundarrajan, S., Subba Rao, B. V., Murthy, C. V. S. & Yadav, D. R. (2011). Metal Finishing, 109, 15-21.]; Kapadnis et al., 2020[Kapadnis, R. S., Bansode, S. B., Supekar, A. T., Bhujbal, P. K., Kale, S. S., Jadkar, S. R. & Pathan, H. M. (2020). ES Energy & Environment, 10, 3-12.]; Wakkaf et al., 2020[Wakkaf, T., Allouche, M., Harrath, A. H., Mansour, L., Alwasel, S., Ansari, K. G. M. T., Beyrem, H., Sellami, B. & Boufahja, F. (2020). Environ. Pollut. 266, 115263. https://doi.org/10.1016/j.envpol.2020.115263]; Roberts, 2014[Roberts, T. L. (2014). Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering, 83, 52-59.]; Cesaratto et al., 2014[Cesaratto, A., D'Andrea, C., Nevin, A., Valentini, G., Tassone, F., Alberti, R. & Comelli, D. (2014). Anal. Methods 6, 130-138.]). Given its common use, cadmium is now spreading widely in the environment (Kumar et al., 2019[Kumar, S. & Sharma, A. (2019). Rev. Environ. Health, 34, 327-338.]; Wang et al., 2023[Wang, H., Sun, Sh., Ren, Y., Yang, R., Guo, J., Zong, Yu., Zhang, Q., Zhao, J., Zhang, W., Xu, W., Guan, Sh. & Xu, J. (2023). Biol. Trace Elem. Res. 201, 139-148.]) and, due to its toxicity, it is necessary to prevent the technogenic spread of cadmium and its harmful consequences.

When it comes to complex formation, organic ligands with multiple donor centers that form chelates play a crucial role. Stable complexes are obtained by the formation of a ring consisting of five or six members, including a metal atom in the ring. Additionally, when the bidentate ligand is involved in coordination with the central atom by forming a five-membered ring, it further increases the stability of the complex (Lawrance, 2010[Lawrance, G. A. (2010). Introduction to Coordination Chemistry. John Wiley & Sons Ltd.]). The conformational change of five- and six-membered di­amine chelate rings in metal complexes has been thoroughly documented (Corey et al., 1959[Corey, E. J. & Bailar, J. C. (1959). J. Am. Chem. Soc. 81, 2620-2629.]; Gollogly et al., 1967[Gollogly, J. & Hawkins, C. (1967). Aust. J. Chem. 20, 2395-2402.]; Ma et al., 2005[Ma, G., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165-3173.], 2012[Ma, K.-R., Shi, J., Zhang, D.-J. & Xu, J.-N. (2012). J. Mol. Struct. 1013, 138-142.]). In this regard, the o-phenyl­enedi­amine (opda) ligand has been extensively studied as a linking agent that effectively forms a chelating ring with a variety of metal cations. Developing metal ion sorbents utilizing these organic ligands is both economically and practically efficient. We present a report on the crystal structure and Hirshfeld surface analysis of a newly synthesized Cd complex salt of naphthalene-1,5-di­sulfonate with o-phenyl­enedi­amine (opda) as its base.

[Scheme 1]

2. Structural commentary

The complex salt [Cd(opda)4](C10H6O6S2) crystallizes in the monoclinic system, space group C2/c. The Cd atom occupies a special position with twofold symmetry (Wyckoff position 4e). The midpoint of the naphthalene-1,5-di­sulfonate anion lies on a center of inversion (Wyckoff position 4b). Therefore, the asymmetric unit consists of one half of the complex cation and anion.

Fig. 1[link] shows the coordination environment of the Cd atom and the hydrogen bonds between the amine hydrogens and the oxygen atoms of the anion. The Cd atom coordinates six nitro­gen atoms which come from two o-phenyl­enedi­amine mol­ecules and their two symmetry-related counterparts [symmetry operation: (i) 1 − x, y, [{3\over 2}] − z]. The naphthalene-1,5-di­sulfonate anion is completed by atoms related by 1 − x, 2 − y, 1 − z [symmetry operation: (ii)]. Two of the o-phenyl­enedi­amine ligands are coordinated in a chelating fashion while the other two form monodentate bonds. The chelating and monodentate ligands are located in cis positions. The complex exhibits a distorted octa­hedral coordination sphere for the metal atom due to the reduction of the N1—Cd1—N2 angle [70.41 (6)°]. This value is similar to those found in other cadmium complexes reported by several authors (Gonzalez Guillen et al., 2018[Gonzalez Guillen, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 9, 5029-5037.]; Malinina et al., 2007[Malinina, E. A., Drozdova, V. V., Goeva, L. V., Polyakova, I. N. & Kuznetsov, N. T. (2007). Russ. J. Inorg. Chem. 52, 854-858.]; Rahman et al., 2017[Rahman, W. S. K. A., Ahmad, J., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1363-1367.]; Supriya, 2009[Supriya, S. (2009). J. Chem. Sci. 121, 137-143.]) where a chelate ring is observed. The largest bond angle between atoms in the basal plane in this polyhedron is 101.57 (6)° for N1i—Cd1—N3. Distortions are also observed in the angles between opposite vertex atoms. A value of 162.11 (10)° is observed for N1i—Cd1—N1 and 170.30 (6)° for N2—Cd1—N3i and N2i—Cd1—N3. All Cd1—N bonds have very close values with the maximum difference of only 0.0842 Å. The chelating coordination mode slightly affects the positions of the N and C atoms in the opda ligands. The opda ligands are approximately planar, with a maximum deviation from the least-squares plane of 0.003 Å for atom C12 in the monodentate one (r.m.s. deviation 0.002 Å) and 0.005 Å for atom C1 in the bidentate one (0.002 Å r.m.s. deviation). The dihedral angle between the main planes of the phenyl ring (C1–C6 or C7–C12) and the N—C—C—N fragment is 4.16 (12)° in the bidentate ligand and 1.73 (13)° in the monodentate ligand.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. The hydrogen bond is indicated by a dashed line. Displacement ellipsoids are plotted at the 30% probability level. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) 1 − x, y, 3/2 - z.]

3. Supra­molecular features

In the crystal, the [Cd(opda)4]2+ cation and the naphthalene-1,5-di­sulfonate dianion inter­act via N1—H1B⋯O1, N3—H3A⋯O2, N3—H3B⋯O2ii, N4—H4A⋯O1ii and N2—H2A⋯O2i hydrogen bonds (Fig. 1[link], Table 1[link]). Here the O1 atom participates in a bifurcated hydrogen bond with N1 and N4ii and the O2 atom does the same with atoms N3 and N3ii. These hydrogen bonds form infinite two-dimensional networks along the [010] and [001] directions in which the naphthalene-1,5-di­sulfonate dianions serve as bridges between [Cd(opda)4]2+ cations as hydrogen bond acceptors in both directions (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2 0.86 (3) 2.36 (3) 3.185 (2) 160 (2)
N2—H2A⋯O2i 0.81 (3) 2.30 (3) 3.046 (3) 154 (3)
N1—H1B⋯O1 0.83 (3) 2.18 (3) 2.955 (2) 156 (3)
N3—H3B⋯O2ii 0.81 (3) 2.37 (3) 3.097 (2) 150 (2)
N4—H4A⋯O1ii 0.91 (3) 2.11 (3) 3.021 (3) 176 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the corrugated layers parallel to the (200) plane showing hydrogen bonds in cyan lines. Projection along the perpendicular to the (200) plane.

Each [Cd(opda)4]2+ cation is surrounded by naphthalene-1,5-di­sulfonate2− anions from four positions, and their oxygen atoms (symmetry codes x, y, z; 1 - x, y, [{3\over 2}] − z; 1 − x, −1 + y, [{3\over 2}] − z; x, −1 + y, z) are hydrogen-bonded to the NH groups of the cation. These hydrogen bonds serve to grow the network along the [010] direction (Fig. 2[link]). At the same time, the naphthalene-1,5-di­sulfonate anions are attached to neighboring [Cd(opda)4]2+ cations, through hydrogen bonds that ensure the growth of the crystal network in the [001] direction (Figs. 2[link] and 3[link]).

[Figure 3]
Figure 3
View of the mol­ecular packing showing the hydrogen-bonding inter­actions that extend along the c-axis direction.

4. Hirshfeld surface analysis

To further investigate the inter­molecular inter­actions present in the title compound, a Hirshfeld surface analysis (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]) was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surfaces mapped over dnorm for both moieties (representing various inter­actions with the default colors) are shown in Fig. 4[link]. The default scaling was used {−0.4573, 1.2430 Å for the [Cd(opda)4] cation and −0.4579, 1.0829 Å for the naphthalene-1,5-di­sulfone anion}.

[Figure 4]
Figure 4
Hirshfeld surfaces of the [Cd(opda)4]2+ cation and the [naphthalene-1,5-di­sulfonate]2− anion mapped with dnorm.

The two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are shown in Fig. 5[link]. The most significant inter­actions, whose contribution to the Hirshfeld surface area exceed 20.0% at least for one of the ions in the structure, are H⋯H {54% and 28% for the [Cd(opda)4] cation and naphthalene-1,5-di­sulfone anion moieties, respectively}, H⋯O/O⋯H (22.1% and 43.5%) and C⋯H/H⋯C (22.5% and 26.4%). These inter­actions play a crucial role in the overall consolidation of the crystal structure.

[Figure 5]
Figure 5
Contributions of the various contacts to the two-dimensional fingerprint plots built using the Hirshfeld surfaces of the [Cd(opda)4]2+ cation (at the top) and the [naphthalene-1,5-di­sulfonate]2− anion (at the bottom).

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016) revealed that 74 crystal structures have been reported for chelate complexes of o-phenyl­enedi­amine with several metal atoms. The CSD includes structures of complexes of NiII and CrII based on o-phenyl­enedi­amine with ratios of 1:4 and six-coordination numbers (OPDANI, Elder et al., 1974[Elder, R. C., Koran, D. & Mark, H. B. (1974). Inorg. Chem. 13, 1644-1649.]; FENVOK, Ariyananda et al., 2005[Ariyananda, W. G. P. & Norman, R. E. (2005). Acta Cryst. E61, m187-m189.]; SOFXIU, Jubb et al., 1991[Jubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. & Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045-2050.]). However, no co-crystal complexes and metal complexes containing o-phenyl­enedi­amine and the naphthalene-1,5-di­sulfonate anion together in the crystal have been reported.

6. Synthesis and crystallization

Ethanol/water 1:1 (10 mL) solutions of Cd(CH3COO)2·2H2O (0.266 g, 0.001 mol) and sodium naphthalene-1,5-di­sulfonate (0.332 g, 0.001 mol) were combined. To the obtained solution, a 10 ml ethanol solution of o-phenyl­enedi­amine (opda) (0.432 g, 0.004 mol) was added dropwise and then stirred at 323 K for 30 minutes. The final solution was left to crystallize and X-ray quality single crystals were produced after 15 days by slow evaporation of the solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference-Fourier maps and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C6H8N2)4](C10H6O6S2)
Mr 831.24
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 23.5743 (2), 7.7286 (1), 19.7260 (2)
β (°) 103.858 (1)
V3) 3489.39 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.62
Crystal size (mm) 0.3 × 0.26 × 0.2
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.698, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16542, 3390, 3298
Rint 0.030
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.04
No. of reflections 3390
No. of parameters 264
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis(benzene-1,2-diamine-κ2N,N')bis(benzene-1,2-diamine-κN)cadmium(II) naphthalene-1,5-disulfonate top
Crystal data top
[Cd(C6H8N2)4](C10H6O6S2)F(000) = 1704
Mr = 831.24Dx = 1.582 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 23.5743 (2) ÅCell parameters from 13387 reflections
b = 7.7286 (1) Åθ = 3.9–71.3°
c = 19.7260 (2) ŵ = 6.62 mm1
β = 103.858 (1)°T = 293 K
V = 3489.39 (7) Å3Block, colourless
Z = 40.3 × 0.26 × 0.2 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3390 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3298 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω scansh = 2328
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 99
Tmin = 0.698, Tmax = 1.000l = 2424
16542 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.6331P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.29 e Å3
3390 reflectionsΔρmin = 0.51 e Å3
264 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00060 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.30368 (2)0.7500000.03390 (8)
S10.57283 (2)0.75940 (6)0.64093 (2)0.03278 (11)
O30.63434 (6)0.7592 (2)0.67223 (8)0.0538 (4)
O20.53752 (7)0.82032 (19)0.68767 (7)0.0461 (4)
O10.55070 (7)0.59515 (18)0.60921 (8)0.0471 (3)
N30.55688 (7)0.5428 (2)0.81048 (8)0.0324 (3)
N10.56647 (7)0.2566 (2)0.68088 (9)0.0359 (3)
N20.57034 (7)0.0874 (2)0.80405 (10)0.0412 (4)
C170.50295 (7)0.9405 (2)0.52814 (8)0.0264 (3)
C70.61049 (7)0.5314 (2)0.86432 (8)0.0320 (4)
N40.55812 (9)0.3778 (3)0.93793 (11)0.0553 (5)
C150.60837 (7)0.9911 (2)0.55757 (9)0.0334 (4)
H150.6453580.9688690.5856330.040*
C160.56084 (7)0.9092 (2)0.57062 (8)0.0277 (3)
C130.54760 (8)1.1410 (3)0.46009 (9)0.0341 (4)
H130.5438891.2181050.4230860.041*
C140.60174 (8)1.1089 (3)0.50191 (10)0.0382 (4)
H140.6342851.1650220.4935360.046*
C120.60984 (8)0.4504 (3)0.92721 (9)0.0391 (4)
C60.62457 (8)0.1375 (2)0.78897 (10)0.0361 (4)
C10.62273 (8)0.2241 (2)0.72671 (10)0.0348 (4)
C20.67355 (10)0.2866 (3)0.71257 (13)0.0493 (5)
H20.6720480.3456090.6710840.059*
C80.66153 (9)0.5986 (3)0.85278 (11)0.0468 (5)
H80.6612750.6532330.8107090.056*
C50.67805 (9)0.1121 (3)0.83592 (12)0.0506 (5)
H50.6797630.0529720.8774170.061*
C110.66247 (10)0.4376 (3)0.97790 (12)0.0572 (6)
H110.6630700.3839611.0202700.069*
C30.72678 (10)0.2621 (4)0.75990 (16)0.0609 (6)
H30.7609480.3044680.7503260.073*
C40.72872 (10)0.1742 (3)0.82129 (15)0.0619 (7)
H40.7643820.1567380.8530240.074*
C90.71343 (10)0.5848 (4)0.90398 (14)0.0677 (7)
H90.7479260.6301890.8964060.081*
C100.71319 (11)0.5032 (4)0.96591 (14)0.0718 (8)
H100.7478710.4924531.0000440.086*
H3A0.5610 (10)0.613 (4)0.7782 (13)0.049 (7)*
H2A0.5562 (12)0.003 (4)0.7824 (14)0.063 (8)*
H1A0.5530 (11)0.162 (4)0.6578 (13)0.051 (7)*
H1B0.5681 (12)0.337 (4)0.6538 (15)0.064 (9)*
H3B0.5317 (11)0.593 (3)0.8244 (13)0.054 (7)*
H4A0.5264 (13)0.448 (4)0.9240 (14)0.064 (8)*
H2B0.5746 (12)0.072 (4)0.8486 (16)0.071 (9)*
H4B0.5614 (16)0.361 (5)0.980 (2)0.102 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02348 (11)0.03120 (12)0.04631 (12)0.0000.00697 (7)0.000
S10.0289 (2)0.0389 (2)0.0286 (2)0.00213 (17)0.00313 (16)0.00811 (16)
O30.0305 (7)0.0741 (10)0.0503 (9)0.0027 (7)0.0035 (6)0.0233 (8)
O20.0478 (8)0.0612 (10)0.0323 (7)0.0017 (6)0.0153 (6)0.0050 (6)
O10.0549 (9)0.0323 (7)0.0501 (8)0.0017 (6)0.0044 (6)0.0089 (6)
N30.0312 (8)0.0332 (8)0.0283 (7)0.0007 (6)0.0019 (6)0.0012 (6)
N10.0329 (8)0.0379 (9)0.0361 (8)0.0067 (7)0.0064 (6)0.0009 (7)
N20.0349 (8)0.0400 (10)0.0458 (10)0.0000 (7)0.0041 (7)0.0097 (8)
C170.0245 (8)0.0272 (8)0.0277 (7)0.0021 (6)0.0070 (6)0.0004 (6)
C70.0308 (9)0.0319 (9)0.0299 (8)0.0015 (7)0.0003 (6)0.0013 (7)
N40.0487 (11)0.0661 (13)0.0476 (11)0.0084 (10)0.0048 (8)0.0217 (10)
C150.0237 (8)0.0391 (10)0.0359 (9)0.0002 (7)0.0039 (6)0.0026 (7)
C160.0265 (8)0.0303 (8)0.0259 (7)0.0031 (6)0.0059 (6)0.0006 (6)
C130.0298 (8)0.0371 (9)0.0359 (9)0.0002 (7)0.0091 (7)0.0108 (7)
C140.0251 (8)0.0428 (11)0.0475 (10)0.0044 (7)0.0103 (7)0.0090 (8)
C120.0384 (10)0.0393 (10)0.0351 (9)0.0002 (8)0.0001 (7)0.0038 (8)
C60.0292 (9)0.0315 (9)0.0449 (10)0.0043 (7)0.0035 (7)0.0007 (8)
C10.0274 (9)0.0344 (9)0.0421 (10)0.0066 (7)0.0072 (7)0.0038 (7)
C20.0404 (11)0.0536 (13)0.0580 (13)0.0055 (9)0.0196 (10)0.0023 (10)
C80.0370 (10)0.0579 (13)0.0454 (11)0.0042 (9)0.0096 (8)0.0041 (9)
C50.0380 (11)0.0556 (14)0.0517 (12)0.0084 (9)0.0022 (9)0.0069 (10)
C110.0511 (13)0.0697 (15)0.0404 (11)0.0033 (11)0.0091 (9)0.0125 (10)
C30.0315 (11)0.0721 (16)0.0802 (18)0.0003 (11)0.0158 (11)0.0033 (14)
C40.0299 (11)0.0720 (17)0.0753 (17)0.0078 (10)0.0039 (10)0.0017 (13)
C90.0311 (11)0.093 (2)0.0735 (16)0.0103 (12)0.0026 (10)0.0021 (15)
C100.0386 (12)0.098 (2)0.0636 (16)0.0009 (13)0.0183 (11)0.0066 (14)
Geometric parameters (Å, º) top
Cd1—N3i2.4230 (15)N4—H4B0.82 (4)
Cd1—N32.4230 (15)C15—H150.9300
Cd1—N1i2.3388 (16)C15—C161.364 (2)
Cd1—N12.3388 (16)C15—C141.406 (3)
Cd1—N22.4153 (17)C13—H130.9300
Cd1—N2i2.4153 (17)C13—C141.366 (2)
S1—O31.4335 (15)C14—H140.9300
S1—O21.4601 (15)C12—C111.398 (3)
S1—O11.4556 (15)C6—C11.390 (3)
S1—C161.7765 (16)C6—C51.388 (3)
N3—C71.446 (2)C1—C21.381 (3)
N3—H3A0.86 (3)C2—H20.9300
N3—H3B0.81 (3)C2—C31.386 (3)
N1—C11.437 (2)C8—H80.9300
N1—H1A0.88 (3)C8—C91.392 (3)
N1—H1B0.83 (3)C5—H50.9300
N2—C61.434 (2)C5—C41.380 (4)
N2—H2A0.81 (3)C11—H110.9300
N2—H2B0.87 (3)C11—C101.370 (4)
C17—C17ii1.423 (3)C3—H30.9300
C17—C161.440 (2)C3—C41.380 (4)
C17—C13ii1.415 (2)C4—H40.9300
C7—C121.393 (3)C9—H90.9300
C7—C81.379 (3)C9—C101.376 (4)
N4—C121.403 (3)C10—H100.9300
N4—H4A0.91 (3)
N3i—Cd1—N380.58 (7)H4A—N4—H4B106 (3)
N1i—Cd1—N3101.57 (6)C16—C15—H15119.8
N1i—Cd1—N3i92.10 (6)C16—C15—C14120.34 (15)
N1—Cd1—N3i101.57 (6)C14—C15—H15119.8
N1—Cd1—N392.10 (6)C17—C16—S1121.00 (12)
N1i—Cd1—N1162.11 (10)C15—C16—S1117.74 (12)
N1—Cd1—N270.41 (6)C15—C16—C17121.26 (15)
N1—Cd1—N2i96.90 (6)C17ii—C13—H13119.3
N1i—Cd1—N296.89 (6)C14—C13—C17ii121.44 (16)
N1i—Cd1—N2i70.41 (6)C14—C13—H13119.3
N2—Cd1—N394.02 (6)C15—C14—H14119.9
N2—Cd1—N3i170.30 (6)C13—C14—C15120.15 (16)
N2i—Cd1—N3i94.02 (6)C13—C14—H14119.9
N2i—Cd1—N3170.30 (6)C7—C12—N4120.60 (17)
N2—Cd1—N2i92.41 (9)C7—C12—C11118.13 (19)
O3—S1—O2113.53 (10)C11—C12—N4121.22 (19)
O3—S1—O1113.92 (10)C1—C6—N2118.20 (16)
O3—S1—C16107.01 (9)C5—C6—N2122.42 (19)
O2—S1—C16105.95 (8)C5—C6—C1119.26 (18)
O1—S1—O2110.66 (9)C6—C1—N1117.96 (17)
O1—S1—C16105.00 (8)C2—C1—N1121.76 (19)
Cd1—N3—H3A105.4 (16)C2—C1—C6120.12 (19)
Cd1—N3—H3B99.6 (19)C1—C2—H2119.8
C7—N3—Cd1126.76 (11)C1—C2—C3120.4 (2)
C7—N3—H3A110.4 (16)C3—C2—H2119.8
C7—N3—H3B111.3 (18)C7—C8—H8119.9
H3A—N3—H3B100 (2)C7—C8—C9120.1 (2)
Cd1—N1—H1A102.8 (16)C9—C8—H8119.9
Cd1—N1—H1B114 (2)C6—C5—H5119.8
C1—N1—Cd1107.87 (12)C4—C5—C6120.3 (2)
C1—N1—H1A110.1 (17)C4—C5—H5119.8
C1—N1—H1B111 (2)C12—C11—H11119.6
H1A—N1—H1B111 (3)C10—C11—C12120.8 (2)
Cd1—N2—H2A100 (2)C10—C11—H11119.6
Cd1—N2—H2B116.2 (19)C2—C3—H3120.2
C6—N2—Cd1105.88 (12)C4—C3—C2119.5 (2)
C6—N2—H2A113 (2)C4—C3—H3120.2
C6—N2—H2B110.7 (19)C5—C4—H4119.8
H2A—N2—H2B111 (3)C3—C4—C5120.4 (2)
C17ii—C17—C16117.68 (18)C3—C4—H4119.8
C13ii—C17—C17ii119.12 (18)C8—C9—H9120.3
C13ii—C17—C16123.20 (15)C10—C9—C8119.3 (2)
C12—C7—N3119.18 (16)C10—C9—H9120.3
C8—C7—N3119.98 (17)C11—C10—C9120.8 (2)
C8—C7—C12120.84 (17)C11—C10—H10119.6
C12—N4—H4A113.3 (18)C9—C10—H10119.6
C12—N4—H4B110 (3)
Cd1—N3—C7—C1262.9 (2)C17ii—C13—C14—C150.8 (3)
Cd1—N3—C7—C8116.43 (18)C7—C12—C11—C100.0 (4)
Cd1—N1—C1—C633.6 (2)C7—C8—C9—C100.2 (4)
Cd1—N1—C1—C2141.87 (17)N4—C12—C11—C10177.5 (3)
Cd1—N2—C6—C131.2 (2)C16—C15—C14—C130.6 (3)
Cd1—N2—C6—C5144.82 (18)C13ii—C17—C16—S11.4 (2)
O3—S1—C16—C17179.81 (14)C13ii—C17—C16—C15179.75 (17)
O3—S1—C16—C151.27 (17)C14—C15—C16—S1178.96 (14)
O2—S1—C16—C1758.37 (15)C14—C15—C16—C170.0 (3)
O2—S1—C16—C15122.71 (15)C12—C7—C8—C90.6 (3)
O1—S1—C16—C1758.79 (15)C12—C11—C10—C90.7 (5)
O1—S1—C16—C15120.12 (15)C6—C1—C2—C30.7 (3)
N3—C7—C12—N41.2 (3)C6—C5—C4—C30.0 (4)
N3—C7—C12—C11178.65 (19)C1—C6—C5—C40.9 (3)
N3—C7—C8—C9178.7 (2)C1—C2—C3—C40.1 (4)
N1—C1—C2—C3176.0 (2)C2—C3—C4—C50.5 (4)
N2—C6—C1—N10.6 (3)C8—C7—C12—N4178.1 (2)
N2—C6—C1—C2174.92 (19)C8—C7—C12—C110.7 (3)
N2—C6—C5—C4175.1 (2)C8—C9—C10—C110.8 (5)
C17ii—C17—C16—S1178.68 (15)C5—C6—C1—N1176.70 (19)
C17ii—C17—C16—C150.2 (3)C5—C6—C1—C21.2 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.86 (3)2.36 (3)3.185 (2)160 (2)
N2—H2A···O2iii0.81 (3)2.30 (3)3.046 (3)154 (3)
N1—H1B···O10.83 (3)2.18 (3)2.955 (2)156 (3)
N3—H3B···O2i0.81 (3)2.37 (3)3.097 (2)150 (2)
N4—H4A···O1i0.91 (3)2.11 (3)3.021 (3)176 (3)
Symmetry codes: (i) x+1, y, z+3/2; (iii) x, y1, z.
 

Funding information

This work was supported by Uzbekistan Ministry of higher education, science and innovation.

References

First citationAriyananda, W. G. P. & Norman, R. E. (2005). Acta Cryst. E61, m187–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCesaratto, A., D'Andrea, C., Nevin, A., Valentini, G., Tassone, F., Alberti, R. & Comelli, D. (2014). Anal. Methods 6, 130–138.  CrossRef CAS Google Scholar
First citationCorey, E. J. & Bailar, J. C. (1959). J. Am. Chem. Soc. 81, 2620–2629.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElder, R. C., Koran, D. & Mark, H. B. (1974). Inorg. Chem. 13, 1644–1649.  CrossRef CAS Google Scholar
First citationGollogly, J. & Hawkins, C. (1967). Aust. J. Chem. 20, 2395–2402.  CrossRef CAS Google Scholar
First citationGonzalez Guillen, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 9, 5029–5037.  Google Scholar
First citationIndumathi, S. N., Vasudevan, T., Sundarrajan, S., Subba Rao, B. V., Murthy, C. V. S. & Yadav, D. R. (2011). Metal Finishing, 109, 15–21.  CAS Google Scholar
First citationJubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. & Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045–2050.  CSD CrossRef Web of Science Google Scholar
First citationKapadnis, R. S., Bansode, S. B., Supekar, A. T., Bhujbal, P. K., Kale, S. S., Jadkar, S. R. & Pathan, H. M. (2020). ES Energy & Environment, 10, 3-12.  CAS Google Scholar
First citationKumar, S. & Sharma, A. (2019). Rev. Environ. Health, 34, 327–338.  CrossRef CAS PubMed Google Scholar
First citationLawrance, G. A. (2010). Introduction to Coordination Chemistry. John Wiley & Sons Ltd.  Google Scholar
First citationMa, G., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165–3173.  CrossRef CAS Google Scholar
First citationMa, K.-R., Shi, J., Zhang, D.-J. & Xu, J.-N. (2012). J. Mol. Struct. 1013, 138–142.  CrossRef CAS Google Scholar
First citationMalinina, E. A., Drozdova, V. V., Goeva, L. V., Polyakova, I. N. & Kuznetsov, N. T. (2007). Russ. J. Inorg. Chem. 52, 854–858.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMorrow, H. (2010). Kirk-Othmer Encyclopedia of Chemical Technology. Cadmium and Cadmium Alloys. 4, 1–36. https://doi. org/10.1002/0471238961.0301041303011818.a01.pub3.  Google Scholar
First citationOmar, N., Firouz, Y., Monem, M. A., Samba, A., Gualous, H., Coosemans, T., Van den Bossche, P. & Van Mierlo, J. (2014). Reference Module in Chemistry: Molecular Sciences and Chemical Engineering, https://doi. org/10.1016/B978-0-12-409547-2.10740-1  Google Scholar
First citationRahman, W. S. K. A., Ahmad, J., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1363–1367.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoberts, T. L. (2014). Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering, 83, 52–59.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupriya, S. (2009). J. Chem. Sci. 121, 137–143.  CrossRef CAS Google Scholar
First citationWakkaf, T., Allouche, M., Harrath, A. H., Mansour, L., Alwasel, S., Ansari, K. G. M. T., Beyrem, H., Sellami, B. & Boufahja, F. (2020). Environ. Pollut. 266, 115263. https://doi.org/10.1016/j.envpol.2020.115263  Google Scholar
First citationWang, H., Sun, Sh., Ren, Y., Yang, R., Guo, J., Zong, Yu., Zhang, Q., Zhao, J., Zhang, W., Xu, W., Guan, Sh. & Xu, J. (2023). Biol. Trace Elem. Res. 201, 139–148.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds