research communications
Synthesis, o-phenylenediamine
and Hirshfeld surface analysis of a cadmium complex of naphthalene-1,5-disulfonate andaTermez State University, Barkamol Avlod St. 43, Termez, 190111, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St. 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
A novel o-phenylenediamine (opda)-based cadmium complex, bis(benzene-1,2-diamine-κ2N,N′)bis(benzene-1,2-diamine-κN)cadmium(II) naphthalene-1,5-disulfonate, [Cd(C6H8N2)4](C10H6O6S2), was synthesized. The complex salt crystallizes in the monoclinic C2/c. The Cd atom occupies a special position and coordinates six nitrogen atoms from four o-phenylenediamine molecules, two as chelating ligands and two as monodentate ligands. The amino H atoms of opda interact with two O atoms of the naphthalene-1,5-disulfonate anions. The anions act as bridges between [Cd(opda)4]2+ cations, forming a two-dimensional network in the [010] and [001] directions. The Hirshfeld surface analysis shows that the primary factors contributing to the supramolecular interactions are short contacts, particularly of the type H⋯H, O⋯H and C⋯H.
Keywords: crystal structure; cadmium complex; o-phenylenediamine; naphthalene-1,5-disulfonate; Hirshfeld surface analysis.
CCDC reference: 2257108
1. Chemical context
Cadmium is widely used in the fabrication of rechargeable batteries, in alloys, coatings (electroplating), solar cells, plastic stabilizers, phosphate fertilizers, and pigments (Omar et al., 2014; Morrow, 2010; Indumathi et al., 2011; Kapadnis et al., 2020; Wakkaf et al., 2020; Roberts, 2014; Cesaratto et al., 2014). Given its common use, cadmium is now spreading widely in the environment (Kumar et al., 2019; Wang et al., 2023) and, due to its toxicity, it is necessary to prevent the technogenic spread of cadmium and its harmful consequences.
When it comes to complex formation, organic ligands with multiple donor centers that form chelates play a crucial role. Stable complexes are obtained by the formation of a ring consisting of five or six members, including a metal atom in the ring. Additionally, when the bidentate ligand is involved in coordination with the central atom by forming a five-membered ring, it further increases the stability of the complex (Lawrance, 2010). The conformational change of five- and six-membered diamine chelate rings in metal complexes has been thoroughly documented (Corey et al., 1959; Gollogly et al., 1967; Ma et al., 2005, 2012). In this regard, the o-phenylenediamine (opda) ligand has been extensively studied as a linking agent that effectively forms a chelating ring with a variety of metal cations. Developing metal ion sorbents utilizing these organic ligands is both economically and practically efficient. We present a report on the and Hirshfeld surface analysis of a newly synthesized Cd complex salt of naphthalene-1,5-disulfonate with o-phenylenediamine (opda) as its base.
2. Structural commentary
The complex salt [Cd(opda)4](C10H6O6S2) crystallizes in the monoclinic system, C2/c. The Cd atom occupies a special position with twofold symmetry (Wyckoff position 4e). The midpoint of the naphthalene-1,5-disulfonate anion lies on a center of inversion (Wyckoff position 4b). Therefore, the consists of one half of the complex cation and anion.
Fig. 1 shows the coordination environment of the Cd atom and the hydrogen bonds between the amine hydrogens and the oxygen atoms of the anion. The Cd atom coordinates six nitrogen atoms which come from two o-phenylenediamine molecules and their two symmetry-related counterparts [symmetry operation: (i) 1 − x, y, − z]. The naphthalene-1,5-disulfonate anion is completed by atoms related by 1 − x, 2 − y, 1 − z [symmetry operation: (ii)]. Two of the o-phenylenediamine ligands are coordinated in a chelating fashion while the other two form monodentate bonds. The chelating and monodentate ligands are located in cis positions. The complex exhibits a distorted octahedral coordination sphere for the metal atom due to the reduction of the N1—Cd1—N2 angle [70.41 (6)°]. This value is similar to those found in other cadmium complexes reported by several authors (Gonzalez Guillen et al., 2018; Malinina et al., 2007; Rahman et al., 2017; Supriya, 2009) where a chelate ring is observed. The largest bond angle between atoms in the basal plane in this polyhedron is 101.57 (6)° for N1i—Cd1—N3. Distortions are also observed in the angles between opposite vertex atoms. A value of 162.11 (10)° is observed for N1i—Cd1—N1 and 170.30 (6)° for N2—Cd1—N3i and N2i—Cd1—N3. All Cd1—N bonds have very close values with the maximum difference of only 0.0842 Å. The chelating coordination mode slightly affects the positions of the N and C atoms in the opda ligands. The opda ligands are approximately planar, with a maximum deviation from the least-squares plane of 0.003 Å for atom C12 in the monodentate one (r.m.s. deviation 0.002 Å) and 0.005 Å for atom C1 in the bidentate one (0.002 Å r.m.s. deviation). The dihedral angle between the main planes of the phenyl ring (C1–C6 or C7–C12) and the N—C—C—N fragment is 4.16 (12)° in the bidentate ligand and 1.73 (13)° in the monodentate ligand.
3. Supramolecular features
In the crystal, the [Cd(opda)4]2+ cation and the naphthalene-1,5-disulfonate dianion interact via N1—H1B⋯O1, N3—H3A⋯O2, N3—H3B⋯O2ii, N4—H4A⋯O1ii and N2—H2A⋯O2i hydrogen bonds (Fig. 1, Table 1). Here the O1 atom participates in a bifurcated hydrogen bond with N1 and N4ii and the O2 atom does the same with atoms N3 and N3ii. These hydrogen bonds form infinite two-dimensional networks along the [010] and [001] directions in which the naphthalene-1,5-disulfonate dianions serve as bridges between [Cd(opda)4]2+ cations as hydrogen bond acceptors in both directions (Fig. 2).
Each [Cd(opda)4]2+ cation is surrounded by naphthalene-1,5-disulfonate2− anions from four positions, and their oxygen atoms (symmetry codes x, y, z; 1 - x, y, − z; 1 − x, −1 + y, − z; x, −1 + y, z) are hydrogen-bonded to the NH groups of the cation. These hydrogen bonds serve to grow the network along the [010] direction (Fig. 2). At the same time, the naphthalene-1,5-disulfonate anions are attached to neighboring [Cd(opda)4]2+ cations, through hydrogen bonds that ensure the growth of the crystal network in the [001] direction (Figs. 2 and 3).
4. Hirshfeld surface analysis
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis (Spackman & Byrom, 1997) was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). The Hirshfeld surfaces mapped over dnorm for both moieties (representing various interactions with the default colors) are shown in Fig. 4. The default scaling was used {−0.4573, 1.2430 Å for the [Cd(opda)4] cation and −0.4579, 1.0829 Å for the naphthalene-1,5-disulfone anion}.
The two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5. The most significant interactions, whose contribution to the Hirshfeld surface area exceed 20.0% at least for one of the ions in the structure, are H⋯H {54% and 28% for the [Cd(opda)4] cation and naphthalene-1,5-disulfone anion moieties, respectively}, H⋯O/O⋯H (22.1% and 43.5%) and C⋯H/H⋯C (22.5% and 26.4%). These interactions play a crucial role in the overall consolidation of the crystal structure.
5. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016) revealed that 74 crystal structures have been reported for chelate complexes of o-phenylenediamine with several metal atoms. The CSD includes structures of complexes of NiII and CrII based on o-phenylenediamine with ratios of 1:4 and six-coordination numbers (OPDANI, Elder et al., 1974; FENVOK, Ariyananda et al., 2005; SOFXIU, Jubb et al., 1991). However, no complexes and metal complexes containing o-phenylenediamine and the naphthalene-1,5-disulfonate anion together in the crystal have been reported.
6. Synthesis and crystallization
Ethanol/water 1:1 (10 mL) solutions of Cd(CH3COO)2·2H2O (0.266 g, 0.001 mol) and sodium naphthalene-1,5-disulfonate (0.332 g, 0.001 mol) were combined. To the obtained solution, a 10 ml ethanol solution of o-phenylenediamine (opda) (0.432 g, 0.004 mol) was added dropwise and then stirred at 323 K for 30 minutes. The final solution was left to crystallize and X-ray quality single crystals were produced after 15 days by slow evaporation of the solvent.
7. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were located in difference-Fourier maps and refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2257108
https://doi.org/10.1107/S2056989023010125/dj2067sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023010125/dj2067Isup2.hkl
[Cd(C6H8N2)4](C10H6O6S2) | F(000) = 1704 |
Mr = 831.24 | Dx = 1.582 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 23.5743 (2) Å | Cell parameters from 13387 reflections |
b = 7.7286 (1) Å | θ = 3.9–71.3° |
c = 19.7260 (2) Å | µ = 6.62 mm−1 |
β = 103.858 (1)° | T = 293 K |
V = 3489.39 (7) Å3 | Block, colourless |
Z = 4 | 0.3 × 0.26 × 0.2 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3390 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3298 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.4°, θmin = 3.9° |
ω scans | h = −23→28 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −9→9 |
Tmin = 0.698, Tmax = 1.000 | l = −24→24 |
16542 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0374P)2 + 1.6331P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.29 e Å−3 |
3390 reflections | Δρmin = −0.51 e Å−3 |
264 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00060 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.500000 | 0.30368 (2) | 0.750000 | 0.03390 (8) | |
S1 | 0.57283 (2) | 0.75940 (6) | 0.64093 (2) | 0.03278 (11) | |
O3 | 0.63434 (6) | 0.7592 (2) | 0.67223 (8) | 0.0538 (4) | |
O2 | 0.53752 (7) | 0.82032 (19) | 0.68767 (7) | 0.0461 (4) | |
O1 | 0.55070 (7) | 0.59515 (18) | 0.60921 (8) | 0.0471 (3) | |
N3 | 0.55688 (7) | 0.5428 (2) | 0.81048 (8) | 0.0324 (3) | |
N1 | 0.56647 (7) | 0.2566 (2) | 0.68088 (9) | 0.0359 (3) | |
N2 | 0.57034 (7) | 0.0874 (2) | 0.80405 (10) | 0.0412 (4) | |
C17 | 0.50295 (7) | 0.9405 (2) | 0.52814 (8) | 0.0264 (3) | |
C7 | 0.61049 (7) | 0.5314 (2) | 0.86432 (8) | 0.0320 (4) | |
N4 | 0.55812 (9) | 0.3778 (3) | 0.93793 (11) | 0.0553 (5) | |
C15 | 0.60837 (7) | 0.9911 (2) | 0.55757 (9) | 0.0334 (4) | |
H15 | 0.645358 | 0.968869 | 0.585633 | 0.040* | |
C16 | 0.56084 (7) | 0.9092 (2) | 0.57062 (8) | 0.0277 (3) | |
C13 | 0.54760 (8) | 1.1410 (3) | 0.46009 (9) | 0.0341 (4) | |
H13 | 0.543889 | 1.218105 | 0.423086 | 0.041* | |
C14 | 0.60174 (8) | 1.1089 (3) | 0.50191 (10) | 0.0382 (4) | |
H14 | 0.634285 | 1.165022 | 0.493536 | 0.046* | |
C12 | 0.60984 (8) | 0.4504 (3) | 0.92721 (9) | 0.0391 (4) | |
C6 | 0.62457 (8) | 0.1375 (2) | 0.78897 (10) | 0.0361 (4) | |
C1 | 0.62273 (8) | 0.2241 (2) | 0.72671 (10) | 0.0348 (4) | |
C2 | 0.67355 (10) | 0.2866 (3) | 0.71257 (13) | 0.0493 (5) | |
H2 | 0.672048 | 0.345609 | 0.671084 | 0.059* | |
C8 | 0.66153 (9) | 0.5986 (3) | 0.85278 (11) | 0.0468 (5) | |
H8 | 0.661275 | 0.653233 | 0.810709 | 0.056* | |
C5 | 0.67805 (9) | 0.1121 (3) | 0.83592 (12) | 0.0506 (5) | |
H5 | 0.679763 | 0.052972 | 0.877417 | 0.061* | |
C11 | 0.66247 (10) | 0.4376 (3) | 0.97790 (12) | 0.0572 (6) | |
H11 | 0.663070 | 0.383961 | 1.020270 | 0.069* | |
C3 | 0.72678 (10) | 0.2621 (4) | 0.75990 (16) | 0.0609 (6) | |
H3 | 0.760948 | 0.304468 | 0.750326 | 0.073* | |
C4 | 0.72872 (10) | 0.1742 (3) | 0.82129 (15) | 0.0619 (7) | |
H4 | 0.764382 | 0.156738 | 0.853024 | 0.074* | |
C9 | 0.71343 (10) | 0.5848 (4) | 0.90398 (14) | 0.0677 (7) | |
H9 | 0.747926 | 0.630189 | 0.896406 | 0.081* | |
C10 | 0.71319 (11) | 0.5032 (4) | 0.96591 (14) | 0.0718 (8) | |
H10 | 0.747871 | 0.492453 | 1.000044 | 0.086* | |
H3A | 0.5610 (10) | 0.613 (4) | 0.7782 (13) | 0.049 (7)* | |
H2A | 0.5562 (12) | 0.003 (4) | 0.7824 (14) | 0.063 (8)* | |
H1A | 0.5530 (11) | 0.162 (4) | 0.6578 (13) | 0.051 (7)* | |
H1B | 0.5681 (12) | 0.337 (4) | 0.6538 (15) | 0.064 (9)* | |
H3B | 0.5317 (11) | 0.593 (3) | 0.8244 (13) | 0.054 (7)* | |
H4A | 0.5264 (13) | 0.448 (4) | 0.9240 (14) | 0.064 (8)* | |
H2B | 0.5746 (12) | 0.072 (4) | 0.8486 (16) | 0.071 (9)* | |
H4B | 0.5614 (16) | 0.361 (5) | 0.980 (2) | 0.102 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02348 (11) | 0.03120 (12) | 0.04631 (12) | 0.000 | 0.00697 (7) | 0.000 |
S1 | 0.0289 (2) | 0.0389 (2) | 0.0286 (2) | 0.00213 (17) | 0.00313 (16) | 0.00811 (16) |
O3 | 0.0305 (7) | 0.0741 (10) | 0.0503 (9) | 0.0027 (7) | −0.0035 (6) | 0.0233 (8) |
O2 | 0.0478 (8) | 0.0612 (10) | 0.0323 (7) | 0.0017 (6) | 0.0153 (6) | 0.0050 (6) |
O1 | 0.0549 (9) | 0.0323 (7) | 0.0501 (8) | 0.0017 (6) | 0.0044 (6) | 0.0089 (6) |
N3 | 0.0312 (8) | 0.0332 (8) | 0.0283 (7) | 0.0007 (6) | −0.0019 (6) | 0.0012 (6) |
N1 | 0.0329 (8) | 0.0379 (9) | 0.0361 (8) | 0.0067 (7) | 0.0064 (6) | −0.0009 (7) |
N2 | 0.0349 (8) | 0.0400 (10) | 0.0458 (10) | 0.0000 (7) | 0.0041 (7) | 0.0097 (8) |
C17 | 0.0245 (8) | 0.0272 (8) | 0.0277 (7) | 0.0021 (6) | 0.0070 (6) | 0.0004 (6) |
C7 | 0.0308 (9) | 0.0319 (9) | 0.0299 (8) | 0.0015 (7) | 0.0003 (6) | −0.0013 (7) |
N4 | 0.0487 (11) | 0.0661 (13) | 0.0476 (11) | −0.0084 (10) | 0.0048 (8) | 0.0217 (10) |
C15 | 0.0237 (8) | 0.0391 (10) | 0.0359 (9) | 0.0002 (7) | 0.0039 (6) | 0.0026 (7) |
C16 | 0.0265 (8) | 0.0303 (8) | 0.0259 (7) | 0.0031 (6) | 0.0059 (6) | 0.0006 (6) |
C13 | 0.0298 (8) | 0.0371 (9) | 0.0359 (9) | −0.0002 (7) | 0.0091 (7) | 0.0108 (7) |
C14 | 0.0251 (8) | 0.0428 (11) | 0.0475 (10) | −0.0044 (7) | 0.0103 (7) | 0.0090 (8) |
C12 | 0.0384 (10) | 0.0393 (10) | 0.0351 (9) | 0.0002 (8) | 0.0001 (7) | 0.0038 (8) |
C6 | 0.0292 (9) | 0.0315 (9) | 0.0449 (10) | 0.0043 (7) | 0.0035 (7) | 0.0007 (8) |
C1 | 0.0274 (9) | 0.0344 (9) | 0.0421 (10) | 0.0066 (7) | 0.0072 (7) | −0.0038 (7) |
C2 | 0.0404 (11) | 0.0536 (13) | 0.0580 (13) | 0.0055 (9) | 0.0196 (10) | 0.0023 (10) |
C8 | 0.0370 (10) | 0.0579 (13) | 0.0454 (11) | −0.0042 (9) | 0.0096 (8) | 0.0041 (9) |
C5 | 0.0380 (11) | 0.0556 (14) | 0.0517 (12) | 0.0084 (9) | −0.0022 (9) | 0.0069 (10) |
C11 | 0.0511 (13) | 0.0697 (15) | 0.0404 (11) | 0.0033 (11) | −0.0091 (9) | 0.0125 (10) |
C3 | 0.0315 (11) | 0.0721 (16) | 0.0802 (18) | −0.0003 (11) | 0.0158 (11) | −0.0033 (14) |
C4 | 0.0299 (11) | 0.0720 (17) | 0.0753 (17) | 0.0078 (10) | −0.0039 (10) | −0.0017 (13) |
C9 | 0.0311 (11) | 0.093 (2) | 0.0735 (16) | −0.0103 (12) | 0.0026 (10) | 0.0021 (15) |
C10 | 0.0386 (12) | 0.098 (2) | 0.0636 (16) | 0.0009 (13) | −0.0183 (11) | 0.0066 (14) |
Cd1—N3i | 2.4230 (15) | N4—H4B | 0.82 (4) |
Cd1—N3 | 2.4230 (15) | C15—H15 | 0.9300 |
Cd1—N1i | 2.3388 (16) | C15—C16 | 1.364 (2) |
Cd1—N1 | 2.3388 (16) | C15—C14 | 1.406 (3) |
Cd1—N2 | 2.4153 (17) | C13—H13 | 0.9300 |
Cd1—N2i | 2.4153 (17) | C13—C14 | 1.366 (2) |
S1—O3 | 1.4335 (15) | C14—H14 | 0.9300 |
S1—O2 | 1.4601 (15) | C12—C11 | 1.398 (3) |
S1—O1 | 1.4556 (15) | C6—C1 | 1.390 (3) |
S1—C16 | 1.7765 (16) | C6—C5 | 1.388 (3) |
N3—C7 | 1.446 (2) | C1—C2 | 1.381 (3) |
N3—H3A | 0.86 (3) | C2—H2 | 0.9300 |
N3—H3B | 0.81 (3) | C2—C3 | 1.386 (3) |
N1—C1 | 1.437 (2) | C8—H8 | 0.9300 |
N1—H1A | 0.88 (3) | C8—C9 | 1.392 (3) |
N1—H1B | 0.83 (3) | C5—H5 | 0.9300 |
N2—C6 | 1.434 (2) | C5—C4 | 1.380 (4) |
N2—H2A | 0.81 (3) | C11—H11 | 0.9300 |
N2—H2B | 0.87 (3) | C11—C10 | 1.370 (4) |
C17—C17ii | 1.423 (3) | C3—H3 | 0.9300 |
C17—C16 | 1.440 (2) | C3—C4 | 1.380 (4) |
C17—C13ii | 1.415 (2) | C4—H4 | 0.9300 |
C7—C12 | 1.393 (3) | C9—H9 | 0.9300 |
C7—C8 | 1.379 (3) | C9—C10 | 1.376 (4) |
N4—C12 | 1.403 (3) | C10—H10 | 0.9300 |
N4—H4A | 0.91 (3) | ||
N3i—Cd1—N3 | 80.58 (7) | H4A—N4—H4B | 106 (3) |
N1i—Cd1—N3 | 101.57 (6) | C16—C15—H15 | 119.8 |
N1i—Cd1—N3i | 92.10 (6) | C16—C15—C14 | 120.34 (15) |
N1—Cd1—N3i | 101.57 (6) | C14—C15—H15 | 119.8 |
N1—Cd1—N3 | 92.10 (6) | C17—C16—S1 | 121.00 (12) |
N1i—Cd1—N1 | 162.11 (10) | C15—C16—S1 | 117.74 (12) |
N1—Cd1—N2 | 70.41 (6) | C15—C16—C17 | 121.26 (15) |
N1—Cd1—N2i | 96.90 (6) | C17ii—C13—H13 | 119.3 |
N1i—Cd1—N2 | 96.89 (6) | C14—C13—C17ii | 121.44 (16) |
N1i—Cd1—N2i | 70.41 (6) | C14—C13—H13 | 119.3 |
N2—Cd1—N3 | 94.02 (6) | C15—C14—H14 | 119.9 |
N2—Cd1—N3i | 170.30 (6) | C13—C14—C15 | 120.15 (16) |
N2i—Cd1—N3i | 94.02 (6) | C13—C14—H14 | 119.9 |
N2i—Cd1—N3 | 170.30 (6) | C7—C12—N4 | 120.60 (17) |
N2—Cd1—N2i | 92.41 (9) | C7—C12—C11 | 118.13 (19) |
O3—S1—O2 | 113.53 (10) | C11—C12—N4 | 121.22 (19) |
O3—S1—O1 | 113.92 (10) | C1—C6—N2 | 118.20 (16) |
O3—S1—C16 | 107.01 (9) | C5—C6—N2 | 122.42 (19) |
O2—S1—C16 | 105.95 (8) | C5—C6—C1 | 119.26 (18) |
O1—S1—O2 | 110.66 (9) | C6—C1—N1 | 117.96 (17) |
O1—S1—C16 | 105.00 (8) | C2—C1—N1 | 121.76 (19) |
Cd1—N3—H3A | 105.4 (16) | C2—C1—C6 | 120.12 (19) |
Cd1—N3—H3B | 99.6 (19) | C1—C2—H2 | 119.8 |
C7—N3—Cd1 | 126.76 (11) | C1—C2—C3 | 120.4 (2) |
C7—N3—H3A | 110.4 (16) | C3—C2—H2 | 119.8 |
C7—N3—H3B | 111.3 (18) | C7—C8—H8 | 119.9 |
H3A—N3—H3B | 100 (2) | C7—C8—C9 | 120.1 (2) |
Cd1—N1—H1A | 102.8 (16) | C9—C8—H8 | 119.9 |
Cd1—N1—H1B | 114 (2) | C6—C5—H5 | 119.8 |
C1—N1—Cd1 | 107.87 (12) | C4—C5—C6 | 120.3 (2) |
C1—N1—H1A | 110.1 (17) | C4—C5—H5 | 119.8 |
C1—N1—H1B | 111 (2) | C12—C11—H11 | 119.6 |
H1A—N1—H1B | 111 (3) | C10—C11—C12 | 120.8 (2) |
Cd1—N2—H2A | 100 (2) | C10—C11—H11 | 119.6 |
Cd1—N2—H2B | 116.2 (19) | C2—C3—H3 | 120.2 |
C6—N2—Cd1 | 105.88 (12) | C4—C3—C2 | 119.5 (2) |
C6—N2—H2A | 113 (2) | C4—C3—H3 | 120.2 |
C6—N2—H2B | 110.7 (19) | C5—C4—H4 | 119.8 |
H2A—N2—H2B | 111 (3) | C3—C4—C5 | 120.4 (2) |
C17ii—C17—C16 | 117.68 (18) | C3—C4—H4 | 119.8 |
C13ii—C17—C17ii | 119.12 (18) | C8—C9—H9 | 120.3 |
C13ii—C17—C16 | 123.20 (15) | C10—C9—C8 | 119.3 (2) |
C12—C7—N3 | 119.18 (16) | C10—C9—H9 | 120.3 |
C8—C7—N3 | 119.98 (17) | C11—C10—C9 | 120.8 (2) |
C8—C7—C12 | 120.84 (17) | C11—C10—H10 | 119.6 |
C12—N4—H4A | 113.3 (18) | C9—C10—H10 | 119.6 |
C12—N4—H4B | 110 (3) | ||
Cd1—N3—C7—C12 | −62.9 (2) | C17ii—C13—C14—C15 | 0.8 (3) |
Cd1—N3—C7—C8 | 116.43 (18) | C7—C12—C11—C10 | 0.0 (4) |
Cd1—N1—C1—C6 | 33.6 (2) | C7—C8—C9—C10 | 0.2 (4) |
Cd1—N1—C1—C2 | −141.87 (17) | N4—C12—C11—C10 | 177.5 (3) |
Cd1—N2—C6—C1 | −31.2 (2) | C16—C15—C14—C13 | −0.6 (3) |
Cd1—N2—C6—C5 | 144.82 (18) | C13ii—C17—C16—S1 | 1.4 (2) |
O3—S1—C16—C17 | −179.81 (14) | C13ii—C17—C16—C15 | −179.75 (17) |
O3—S1—C16—C15 | 1.27 (17) | C14—C15—C16—S1 | 178.96 (14) |
O2—S1—C16—C17 | −58.37 (15) | C14—C15—C16—C17 | 0.0 (3) |
O2—S1—C16—C15 | 122.71 (15) | C12—C7—C8—C9 | 0.6 (3) |
O1—S1—C16—C17 | 58.79 (15) | C12—C11—C10—C9 | 0.7 (5) |
O1—S1—C16—C15 | −120.12 (15) | C6—C1—C2—C3 | 0.7 (3) |
N3—C7—C12—N4 | 1.2 (3) | C6—C5—C4—C3 | 0.0 (4) |
N3—C7—C12—C11 | 178.65 (19) | C1—C6—C5—C4 | 0.9 (3) |
N3—C7—C8—C9 | −178.7 (2) | C1—C2—C3—C4 | 0.1 (4) |
N1—C1—C2—C3 | 176.0 (2) | C2—C3—C4—C5 | −0.5 (4) |
N2—C6—C1—N1 | −0.6 (3) | C8—C7—C12—N4 | −178.1 (2) |
N2—C6—C1—C2 | 174.92 (19) | C8—C7—C12—C11 | −0.7 (3) |
N2—C6—C5—C4 | −175.1 (2) | C8—C9—C10—C11 | −0.8 (5) |
C17ii—C17—C16—S1 | −178.68 (15) | C5—C6—C1—N1 | −176.70 (19) |
C17ii—C17—C16—C15 | 0.2 (3) | C5—C6—C1—C2 | −1.2 (3) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2 | 0.86 (3) | 2.36 (3) | 3.185 (2) | 160 (2) |
N2—H2A···O2iii | 0.81 (3) | 2.30 (3) | 3.046 (3) | 154 (3) |
N1—H1B···O1 | 0.83 (3) | 2.18 (3) | 2.955 (2) | 156 (3) |
N3—H3B···O2i | 0.81 (3) | 2.37 (3) | 3.097 (2) | 150 (2) |
N4—H4A···O1i | 0.91 (3) | 2.11 (3) | 3.021 (3) | 176 (3) |
Symmetry codes: (i) −x+1, y, −z+3/2; (iii) x, y−1, z. |
Funding information
This work was supported by Uzbekistan Ministry of higher education, science and innovation.
References
Ariyananda, W. G. P. & Norman, R. E. (2005). Acta Cryst. E61, m187–m189. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cesaratto, A., D'Andrea, C., Nevin, A., Valentini, G., Tassone, F., Alberti, R. & Comelli, D. (2014). Anal. Methods 6, 130–138. CrossRef CAS Google Scholar
Corey, E. J. & Bailar, J. C. (1959). J. Am. Chem. Soc. 81, 2620–2629. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elder, R. C., Koran, D. & Mark, H. B. (1974). Inorg. Chem. 13, 1644–1649. CrossRef CAS Google Scholar
Gollogly, J. & Hawkins, C. (1967). Aust. J. Chem. 20, 2395–2402. CrossRef CAS Google Scholar
Gonzalez Guillen, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 9, 5029–5037. Google Scholar
Indumathi, S. N., Vasudevan, T., Sundarrajan, S., Subba Rao, B. V., Murthy, C. V. S. & Yadav, D. R. (2011). Metal Finishing, 109, 15–21. CAS Google Scholar
Jubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. & Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045–2050. CSD CrossRef Web of Science Google Scholar
Kapadnis, R. S., Bansode, S. B., Supekar, A. T., Bhujbal, P. K., Kale, S. S., Jadkar, S. R. & Pathan, H. M. (2020). ES Energy & Environment, 10, 3-12. CAS Google Scholar
Kumar, S. & Sharma, A. (2019). Rev. Environ. Health, 34, 327–338. CrossRef CAS PubMed Google Scholar
Lawrance, G. A. (2010). Introduction to Coordination Chemistry. John Wiley & Sons Ltd. Google Scholar
Ma, G., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165–3173. CrossRef CAS Google Scholar
Ma, K.-R., Shi, J., Zhang, D.-J. & Xu, J.-N. (2012). J. Mol. Struct. 1013, 138–142. CrossRef CAS Google Scholar
Malinina, E. A., Drozdova, V. V., Goeva, L. V., Polyakova, I. N. & Kuznetsov, N. T. (2007). Russ. J. Inorg. Chem. 52, 854–858. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Morrow, H. (2010). Kirk-Othmer Encyclopedia of Chemical Technology. Cadmium and Cadmium Alloys. 4, 1–36. https://doi. org/10.1002/0471238961.0301041303011818.a01.pub3. Google Scholar
Omar, N., Firouz, Y., Monem, M. A., Samba, A., Gualous, H., Coosemans, T., Van den Bossche, P. & Van Mierlo, J. (2014). Reference Module in Chemistry: Molecular Sciences and Chemical Engineering, https://doi. org/10.1016/B978-0-12-409547-2.10740-1 Google Scholar
Rahman, W. S. K. A., Ahmad, J., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1363–1367. CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roberts, T. L. (2014). Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering, 83, 52–59. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Supriya, S. (2009). J. Chem. Sci. 121, 137–143. CrossRef CAS Google Scholar
Wakkaf, T., Allouche, M., Harrath, A. H., Mansour, L., Alwasel, S., Ansari, K. G. M. T., Beyrem, H., Sellami, B. & Boufahja, F. (2020). Environ. Pollut. 266, 115263. https://doi.org/10.1016/j.envpol.2020.115263 Google Scholar
Wang, H., Sun, Sh., Ren, Y., Yang, R., Guo, J., Zong, Yu., Zhang, Q., Zhao, J., Zhang, W., Xu, W., Guan, Sh. & Xu, J. (2023). Biol. Trace Elem. Res. 201, 139–148. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.