research communications
Synthesis, characterization,
and Hirshfeld surface analysis of isobutyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylateaDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Türkiye, eDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Türkiye, fDepartment of Chemistry, Howard University, Washington DC 20059, USA, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C24H29F2NO4, which crystallizes in the orthorhombic Pca21 with Z = 4, the 1,4-dihydropyridine ring adopts a distorted boat conformation, while the cyclohexene ring is in a distorted half-chair conformation. In the crystal, the molecules are linked by N—H⋯O and C—H⋯O interactions, forming supramolecular chains parallel to the a axis. These chains pack with C—H⋯π interactions between them, forming layers parallel to the (010) plane. The cohesion of the is ensured by van der Waals interactions between these layers. Hirshfeld surface analysis shows the major contributions to the crystal packing are from H⋯H (56.9%), F⋯H/H⋯F (15.7%), O⋯H/H⋯O (13.7%) and C⋯H/H⋯C (9.5%) contacts.
Keywords: crystal structure; 1,4-dihydropyridine ring; cyclohexene ring; quinoline ring system; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 2305562
1. Chemical context
Hexahydroquinoline (HHQ) ring systems occupy a prominent place in medicinal chemistry, attracting the attention of researchers for their versatile structural attributes and pharmacological potential. These ring systems, characterized by a unique combination of pyridine and cyclohexane rings, have shown remarkable bioactivity across a spectrum of therapeutic areas. Their capacity to interact with specific biological targets has led to the development of HHQ-based compounds with diverse medicinal properties, including antimicrobial, anti-inflammatory, and anticancer activities (Ranjbar et al., 2019). Recent studies have shown that these compounds are effective in cancer-related inflammatory pathways such as TGF-β (Längle et al., 2019). Additionally, they have been demonstrated to have inhibitory effects on receptors involved in cancer development, such as EGFR, or to reverse multi-drug resistance (Abo Al-Hamd et al., 2023; Shahraki et al., 2020).
The choice to synthesize HHQs is also fueled by the accessibility of various synthetic routes and the opportunity to fine-tune their chemical structure to optimize drug-like properties. Multi-component reactions and et al., 2016). As a result, the strategic pursuit of hexahydroquinoline synthesis continues to be a compelling avenue in medicinal chemistry, promising innovative solutions to pressing medical challenges and drug discovery endeavors.
strategies provide versatile platforms for their synthesis, allowing for systematic modifications to explore structure–activity relationships (SAR; BatistaIn this study, isobutyl 4-(4-difluoromethoxyphenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate was synthesized and its molecular structure was confirmed by IR, 1H NMR, 13C NMR, HRMS and X-ray crystallography. The intermolecular interactions observed in the crystal packing were investigated by Hirshfeld surface analysis.
2. Structural commentary
The 1,4-dihydropyridine ring (N1/C1/C6–C9) of the title compound (Fig. 1), which crystallizes in the orthorhombic Pca21 with Z = 4, adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975) are QT = 0.2779 (16) Å, θ = 73.7 (3)° and φ = 179.1 (3)°], while the cyclohexene ring (C1–C6) has a distorted half-chair conformation [puckering parameters are QT = 0.4464 (18) Å, θ = 48.9 (2)° and φ = 126.3 (3)°]. The 4-(4-difluoromethoxyphenyl) ring (C18–C23) makes a dihedral angle of 88.73 (6)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.415 (2) Å for C3]. The geometrical parameters of the title compound are in agreement with those reported for similar compounds in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked by N—H⋯O and C—H⋯O interactions, forming supramolecular chains parallel to the a-axis direction (see Table 1; Figs. 2 and 3). These chains pack with C—H⋯π interactions between them, forming layers parallel to the (010) plane (Fig. 4). The cohesion of the is ensured by van der Waals interactions between these layers.
The Hirshfeld surfaces and their corresponding two-dimensional fingerprint plots were calculated using the software package Crystal Explorer 17.5 (Spackman et al., 2021). The dnorm surfaces are mapped over a fixed color scale from −0.5961 (red) to 1.9017 (blue) a.u. Red spots on the surface correspond to O⋯H/H⋯O interactions (Tables 1 and 2; Fig. 5a,b).
|
In Fig. 6, fingerprint plots of the most important non-covalent interactions for the title compound are shown. The major contributions to the crystal packing are from H⋯H (56.9%), F⋯H/H⋯F (15.7%), O⋯H/H⋯O (13.7%) and C⋯H/H⋯C (9.5%) contacts. O⋯C/C⋯O (1.1%), F⋯C/C⋯F (1.0%), C⋯C (0.7%), F⋯O/O⋯F (0.6%), O⋯N/N⋯O (0.5%) and N⋯H/H⋯N (0.2%) contacts, which contribute less than 1.1%, are not shown in Fig.7.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,4,5,6,7,8-hexahydroquinoline group showed that the nine most closely related to the title compound are LIMYUF (Pehlivanlar et al., 2023), WEZJUK (Yıldırım et al., 2023), ECUCUE (Yıldırım et al., 2022), LOQCAX (Steiger et al., 2014), NEQMON (Öztürk Yildirim, et al., 2013), PECPUK (Gündüz et al., 2012), IMEJOA (Linden et al., 2011), PUGCIE (Mookiah et al., 2009), UCOLOO (Linden et al., 2006) and DAYJET (Linden et al., 2005). In all of these compounds, molecules are linked by N—H⋯O hydrogen bonds. Furthermore, C—H⋯F hydrogen bonds in LIMYUF, C—H⋯O hydrogen bonds in WEZJUK, ECUCUE, NEQMON, IMEJOA and PUGCIE and C—H⋯π interactions in LIMYUF, WEZJUK and ECUCUE were also observed.
5. Synthesis and crystallization
The synthesis of the compound was carried out by refluxing 1 mmol of 4-(4-difluoromethoxy)benzaldehyde, isobutyl acetoacetate, 4,4-methyl-1,3-cyclohexandione and 5 mmol of ammonium acetate in methanol. The reaction process was monitored by n-hexane (1:1)], and after the reaction was complete, the mixture was allowed to stand at room temperature for a while and then poured into an ice–water mixture (Fig. 7). The resulting precipitates were purified again by crystallization with methanol (Yıldırım et al., 2023).
[ethyl acetate-Isobutyl 4-(4-difluoromethoxyphenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate
Light-yellow solid, m.p: 489–491 K, yield: 85%. IR (cm−1) 3291 (N—H), 1674 (C=O, ester), 1597 (C=O, ketone). 1H NMR (400 MHz, DMSO-d6): δ 0.69 [3H, d, J = 9 Hz, –CH(CH3)a], 0.77 [3H, d, J = 9 Hz, –CH(CH3)b], 0.81 (3H, s, 6-CH3), 0.97 (3H, s, 6-CH3), 1.52–1.65 (2H, m, quinoline H7), 1.72–1.81 (H, m, –CH–), 2.26 (3H, s, 2-CH3), 2.46–2.50 (2H, m, quinoline H8), 3.63–3.72 (2H, m, –CH2)–, 4.94 (H, s, quinoline H4), 6.96 (2H, dd, J = 9.2, 6.8 Hz, Ar-H3,5), 7.16 (2H, dd, J = 9.2, 6.8 Hz, Ar-H4,6), 7.26 (H, s, OCHF2), 9.02 (H, s, NH). 13C NMR (100 MHz, DMSO-d6): 18.6 (2-CH3), 22.3 [–CH(CH3)a], 22.9 [–CH(CH3)b], 23.4 (C-8), 24.2 (6-CH3), 24.8 (6-CH3), 33.5 (C-7), 34.1 (C-4), 35 (–CH–), 39.5 (C-6), 68.2 (–CH2–), 103.8 (C-3), 108.4 (C-4a), 114.2, 116.7, 125.4, 128.2, 135.5, 157.4 (phenyl carbons), 147.1(C-2), 150.6 (C-8a), 166.9 (–COO–), 168.3 (OCHF2) 199.6 (C-5). HRMS (ESI/Q-TOF) m/z: [M + H]+ calculated for C23H25F4NO3: 420.1942; found: 420.2150.
6. Refinement
Crystal data, data collection and structure . The N-bound H atom was located in a difference-Fourier map and refined freely [N1—H1N = 0.87 (2) Å]. All C-bound H atoms were positioned geometrically [C—H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2305562
https://doi.org/10.1107/S2056989023009623/ev2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009623/ev2001Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023009623/ev2001Isup3.cml
C24H29F2NO4 | Dx = 1.276 Mg m−3 |
Mr = 433.48 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 9859 reflections |
a = 11.9879 (7) Å | θ = 2.4–32.7° |
b = 12.1807 (7) Å | µ = 0.10 mm−1 |
c = 15.4518 (9) Å | T = 100 K |
V = 2256.3 (2) Å3 | Chunk, light yellow |
Z = 4 | 0.27 × 0.24 × 0.16 mm |
F(000) = 920 |
Bruker Quest D8 with Photon 2 detector diffractometer | 7264 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.080 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 36.0°, θmin = 2.4° |
Tmin = 0.718, Tmax = 0.744 | h = −18→19 |
103269 measured reflections | k = −20→19 |
9491 independent reflections | l = −25→21 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3823P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.107 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.32 e Å−3 |
9491 reflections | Δρmin = −0.29 e Å−3 |
289 parameters | Absolute structure: Flack x determined using 2721 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.0 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.49509 (14) | 0.92511 (11) | 0.20621 (10) | 0.0455 (4) | |
F2 | 0.36176 (12) | 0.80630 (13) | 0.21602 (10) | 0.0467 (4) | |
O1 | 0.65307 (10) | 0.66738 (10) | 0.65205 (8) | 0.0198 (2) | |
O2 | 0.72200 (10) | 0.33422 (10) | 0.48402 (9) | 0.0239 (3) | |
O3 | 0.60039 (10) | 0.19451 (9) | 0.48360 (8) | 0.0184 (2) | |
O4 | 0.53670 (11) | 0.76006 (11) | 0.24983 (8) | 0.0236 (3) | |
N1 | 0.36644 (10) | 0.41080 (11) | 0.60065 (9) | 0.0143 (2) | |
H1N | 0.299 (2) | 0.3886 (19) | 0.6122 (14) | 0.019 (5)* | |
C1 | 0.40589 (12) | 0.50413 (12) | 0.63969 (10) | 0.0128 (3) | |
C2 | 0.32686 (12) | 0.56285 (13) | 0.69932 (10) | 0.0149 (3) | |
H2A | 0.279873 | 0.508580 | 0.730076 | 0.018* | |
H2B | 0.277189 | 0.611193 | 0.665143 | 0.018* | |
C3 | 0.39163 (14) | 0.63141 (13) | 0.76504 (11) | 0.0171 (3) | |
H3A | 0.429018 | 0.581636 | 0.806558 | 0.021* | |
H3B | 0.338594 | 0.677625 | 0.797973 | 0.021* | |
C4 | 0.47947 (13) | 0.70546 (13) | 0.72264 (11) | 0.0165 (3) | |
C5 | 0.55598 (12) | 0.63711 (12) | 0.66451 (10) | 0.0142 (3) | |
C6 | 0.51077 (12) | 0.54097 (12) | 0.62178 (10) | 0.0134 (3) | |
C7 | 0.57801 (12) | 0.48870 (12) | 0.54998 (10) | 0.0129 (2) | |
H7A | 0.658250 | 0.488219 | 0.567679 | 0.015* | |
C8 | 0.54078 (12) | 0.37018 (12) | 0.53589 (10) | 0.0135 (3) | |
C9 | 0.43551 (13) | 0.33826 (12) | 0.55678 (10) | 0.0142 (3) | |
C10 | 0.54927 (15) | 0.76147 (18) | 0.79303 (13) | 0.0285 (4) | |
H10A | 0.584192 | 0.705497 | 0.829657 | 0.043* | |
H10B | 0.500970 | 0.808215 | 0.828535 | 0.043* | |
H10C | 0.607286 | 0.806523 | 0.765913 | 0.043* | |
C11 | 0.42455 (16) | 0.79274 (14) | 0.66419 (14) | 0.0246 (4) | |
H11A | 0.482159 | 0.841376 | 0.640633 | 0.037* | |
H11B | 0.371361 | 0.835939 | 0.698245 | 0.037* | |
H11C | 0.385240 | 0.756348 | 0.616550 | 0.037* | |
C12 | 0.37972 (13) | 0.22972 (13) | 0.53973 (11) | 0.0186 (3) | |
H12A | 0.400712 | 0.203315 | 0.482072 | 0.028* | |
H12B | 0.298580 | 0.238862 | 0.542595 | 0.028* | |
H12C | 0.403522 | 0.176294 | 0.583404 | 0.028* | |
C13 | 0.62870 (13) | 0.30006 (12) | 0.49936 (10) | 0.0150 (3) | |
C14 | 0.68925 (15) | 0.12977 (14) | 0.44523 (12) | 0.0208 (3) | |
H14A | 0.751816 | 0.122384 | 0.486642 | 0.025* | |
H14B | 0.717478 | 0.166562 | 0.392459 | 0.025* | |
C15 | 0.64362 (16) | 0.01733 (14) | 0.42246 (14) | 0.0260 (4) | |
H15A | 0.576642 | 0.027434 | 0.384717 | 0.031* | |
C16 | 0.6088 (3) | −0.04712 (19) | 0.5015 (2) | 0.0529 (8) | |
H16A | 0.544199 | −0.011657 | 0.528503 | 0.079* | |
H16B | 0.670705 | −0.049424 | 0.542902 | 0.079* | |
H16C | 0.588934 | −0.122088 | 0.484414 | 0.079* | |
C17 | 0.7331 (2) | −0.04286 (16) | 0.37018 (15) | 0.0330 (4) | |
H17A | 0.747606 | −0.002683 | 0.316403 | 0.050* | |
H17B | 0.706990 | −0.117084 | 0.356413 | 0.050* | |
H17C | 0.801872 | −0.047357 | 0.404232 | 0.050* | |
C18 | 0.56699 (12) | 0.55695 (12) | 0.46724 (10) | 0.0137 (3) | |
C19 | 0.46204 (13) | 0.59010 (14) | 0.43930 (11) | 0.0184 (3) | |
H19A | 0.398046 | 0.567489 | 0.470878 | 0.022* | |
C20 | 0.44827 (14) | 0.65559 (15) | 0.36621 (12) | 0.0208 (3) | |
H20A | 0.375930 | 0.676416 | 0.347231 | 0.025* | |
C21 | 0.54288 (14) | 0.68982 (13) | 0.32165 (11) | 0.0183 (3) | |
C22 | 0.64869 (13) | 0.65619 (13) | 0.34636 (11) | 0.0175 (3) | |
H22A | 0.712375 | 0.678221 | 0.314155 | 0.021* | |
C23 | 0.66020 (13) | 0.58949 (13) | 0.41925 (11) | 0.0159 (3) | |
H23A | 0.732370 | 0.565862 | 0.436503 | 0.019* | |
C24 | 0.45780 (18) | 0.84020 (16) | 0.25354 (14) | 0.0294 (4) | |
H24A | 0.444326 | 0.863192 | 0.314777 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0608 (9) | 0.0302 (6) | 0.0454 (8) | 0.0086 (6) | 0.0104 (7) | 0.0181 (6) |
F2 | 0.0317 (7) | 0.0612 (9) | 0.0474 (8) | 0.0089 (6) | −0.0074 (6) | 0.0154 (7) |
O1 | 0.0120 (5) | 0.0199 (5) | 0.0276 (6) | −0.0016 (4) | 0.0042 (4) | −0.0068 (5) |
O2 | 0.0134 (5) | 0.0212 (5) | 0.0371 (7) | −0.0005 (4) | 0.0070 (5) | −0.0075 (5) |
O3 | 0.0158 (5) | 0.0142 (5) | 0.0252 (6) | 0.0018 (4) | 0.0030 (4) | −0.0036 (4) |
O4 | 0.0262 (6) | 0.0255 (6) | 0.0191 (6) | 0.0043 (5) | 0.0044 (5) | 0.0068 (5) |
N1 | 0.0093 (5) | 0.0162 (6) | 0.0173 (6) | −0.0009 (4) | 0.0014 (5) | −0.0004 (5) |
C1 | 0.0110 (6) | 0.0149 (6) | 0.0124 (6) | 0.0015 (5) | 0.0006 (5) | 0.0011 (5) |
C2 | 0.0116 (6) | 0.0179 (6) | 0.0153 (7) | 0.0009 (5) | 0.0033 (5) | −0.0012 (5) |
C3 | 0.0151 (7) | 0.0203 (7) | 0.0158 (7) | −0.0002 (6) | 0.0034 (5) | −0.0026 (6) |
C4 | 0.0129 (6) | 0.0187 (7) | 0.0177 (7) | −0.0003 (5) | 0.0031 (5) | −0.0051 (5) |
C5 | 0.0122 (7) | 0.0156 (6) | 0.0148 (6) | 0.0015 (5) | 0.0004 (5) | −0.0007 (5) |
C6 | 0.0113 (6) | 0.0143 (6) | 0.0145 (6) | 0.0004 (5) | 0.0005 (5) | −0.0005 (5) |
C7 | 0.0095 (6) | 0.0147 (6) | 0.0145 (6) | 0.0001 (5) | 0.0017 (5) | −0.0013 (5) |
C8 | 0.0110 (6) | 0.0141 (6) | 0.0154 (6) | 0.0006 (5) | 0.0009 (5) | −0.0011 (5) |
C9 | 0.0130 (6) | 0.0151 (6) | 0.0146 (7) | 0.0004 (5) | −0.0001 (5) | 0.0012 (5) |
C10 | 0.0201 (8) | 0.0368 (10) | 0.0285 (9) | −0.0063 (7) | 0.0049 (7) | −0.0175 (8) |
C11 | 0.0202 (8) | 0.0184 (7) | 0.0353 (10) | 0.0029 (6) | 0.0080 (7) | 0.0023 (7) |
C12 | 0.0159 (7) | 0.0172 (7) | 0.0229 (8) | −0.0034 (5) | 0.0021 (6) | −0.0016 (6) |
C13 | 0.0141 (6) | 0.0153 (6) | 0.0156 (7) | 0.0010 (5) | −0.0002 (5) | −0.0020 (5) |
C14 | 0.0185 (7) | 0.0177 (7) | 0.0261 (8) | 0.0051 (6) | 0.0032 (6) | −0.0039 (6) |
C15 | 0.0286 (9) | 0.0163 (7) | 0.0331 (10) | 0.0030 (6) | 0.0065 (7) | −0.0029 (7) |
C16 | 0.0751 (19) | 0.0233 (10) | 0.0603 (17) | 0.0074 (11) | 0.0366 (15) | 0.0097 (10) |
C17 | 0.0388 (11) | 0.0202 (8) | 0.0401 (11) | 0.0047 (7) | 0.0097 (9) | −0.0055 (8) |
C18 | 0.0115 (6) | 0.0139 (6) | 0.0157 (7) | −0.0003 (5) | 0.0021 (5) | −0.0013 (5) |
C19 | 0.0124 (6) | 0.0234 (7) | 0.0195 (7) | 0.0007 (6) | 0.0024 (5) | 0.0035 (6) |
C20 | 0.0144 (7) | 0.0279 (8) | 0.0201 (8) | 0.0024 (6) | 0.0000 (6) | 0.0044 (7) |
C21 | 0.0202 (7) | 0.0183 (7) | 0.0164 (7) | 0.0010 (6) | 0.0036 (6) | 0.0019 (6) |
C22 | 0.0160 (7) | 0.0176 (7) | 0.0190 (7) | −0.0020 (5) | 0.0049 (6) | −0.0007 (6) |
C23 | 0.0118 (6) | 0.0160 (6) | 0.0200 (7) | −0.0013 (5) | 0.0023 (5) | −0.0015 (5) |
C24 | 0.0336 (10) | 0.0265 (9) | 0.0280 (10) | 0.0059 (7) | 0.0031 (8) | 0.0076 (7) |
F1—C24 | 1.343 (2) | C10—H10B | 0.9800 |
F2—C24 | 1.354 (3) | C10—H10C | 0.9800 |
O1—C5 | 1.2361 (19) | C11—H11A | 0.9800 |
O2—C13 | 1.2166 (19) | C11—H11B | 0.9800 |
O3—C13 | 1.3518 (18) | C11—H11C | 0.9800 |
O3—C14 | 1.4520 (19) | C12—H12A | 0.9800 |
O4—C24 | 1.360 (2) | C12—H12B | 0.9800 |
O4—C21 | 1.403 (2) | C12—H12C | 0.9800 |
N1—C1 | 1.371 (2) | C14—C15 | 1.516 (2) |
N1—C9 | 1.388 (2) | C14—H14A | 0.9900 |
N1—H1N | 0.87 (2) | C14—H14B | 0.9900 |
C1—C6 | 1.363 (2) | C15—C16 | 1.511 (3) |
C1—C2 | 1.503 (2) | C15—C17 | 1.530 (3) |
C2—C3 | 1.527 (2) | C15—H15A | 1.0000 |
C2—H2A | 0.9900 | C16—H16A | 0.9800 |
C2—H2B | 0.9900 | C16—H16B | 0.9800 |
C3—C4 | 1.533 (2) | C16—H16C | 0.9800 |
C3—H3A | 0.9900 | C17—H17A | 0.9800 |
C3—H3B | 0.9900 | C17—H17B | 0.9800 |
C4—C5 | 1.530 (2) | C17—H17C | 0.9800 |
C4—C10 | 1.532 (2) | C18—C19 | 1.390 (2) |
C4—C11 | 1.543 (2) | C18—C23 | 1.398 (2) |
C5—C6 | 1.449 (2) | C19—C20 | 1.392 (2) |
C6—C7 | 1.512 (2) | C19—H19A | 0.9500 |
C7—C8 | 1.527 (2) | C20—C21 | 1.391 (2) |
C7—C18 | 1.531 (2) | C20—H20A | 0.9500 |
C7—H7A | 1.0000 | C21—C22 | 1.386 (2) |
C8—C9 | 1.359 (2) | C22—C23 | 1.396 (2) |
C8—C13 | 1.469 (2) | C22—H22A | 0.9500 |
C9—C12 | 1.505 (2) | C23—H23A | 0.9500 |
C10—H10A | 0.9800 | C24—H24A | 1.0000 |
C13—O3—C14 | 113.95 (12) | C9—C12—H12B | 109.5 |
C24—O4—C21 | 116.16 (14) | H12A—C12—H12B | 109.5 |
C1—N1—C9 | 122.48 (13) | C9—C12—H12C | 109.5 |
C1—N1—H1N | 119.2 (15) | H12A—C12—H12C | 109.5 |
C9—N1—H1N | 117.1 (15) | H12B—C12—H12C | 109.5 |
C6—C1—N1 | 120.11 (14) | O2—C13—O3 | 121.40 (14) |
C6—C1—C2 | 123.32 (14) | O2—C13—C8 | 122.38 (14) |
N1—C1—C2 | 116.55 (13) | O3—C13—C8 | 116.23 (13) |
C1—C2—C3 | 110.33 (12) | O3—C14—C15 | 108.70 (14) |
C1—C2—H2A | 109.6 | O3—C14—H14A | 109.9 |
C3—C2—H2A | 109.6 | C15—C14—H14A | 109.9 |
C1—C2—H2B | 109.6 | O3—C14—H14B | 109.9 |
C3—C2—H2B | 109.6 | C15—C14—H14B | 109.9 |
H2A—C2—H2B | 108.1 | H14A—C14—H14B | 108.3 |
C2—C3—C4 | 112.76 (13) | C16—C15—C14 | 112.43 (19) |
C2—C3—H3A | 109.0 | C16—C15—C17 | 111.82 (17) |
C4—C3—H3A | 109.0 | C14—C15—C17 | 107.61 (16) |
C2—C3—H3B | 109.0 | C16—C15—H15A | 108.3 |
C4—C3—H3B | 109.0 | C14—C15—H15A | 108.3 |
H3A—C3—H3B | 107.8 | C17—C15—H15A | 108.3 |
C5—C4—C10 | 109.37 (13) | C15—C16—H16A | 109.5 |
C5—C4—C3 | 110.02 (13) | C15—C16—H16B | 109.5 |
C10—C4—C3 | 109.49 (14) | H16A—C16—H16B | 109.5 |
C5—C4—C11 | 106.68 (13) | C15—C16—H16C | 109.5 |
C10—C4—C11 | 109.99 (15) | H16A—C16—H16C | 109.5 |
C3—C4—C11 | 111.25 (13) | H16B—C16—H16C | 109.5 |
O1—C5—C6 | 121.47 (14) | C15—C17—H17A | 109.5 |
O1—C5—C4 | 119.58 (14) | C15—C17—H17B | 109.5 |
C6—C5—C4 | 118.88 (13) | H17A—C17—H17B | 109.5 |
C1—C6—C5 | 121.21 (14) | C15—C17—H17C | 109.5 |
C1—C6—C7 | 120.13 (14) | H17A—C17—H17C | 109.5 |
C5—C6—C7 | 118.37 (13) | H17B—C17—H17C | 109.5 |
C6—C7—C8 | 110.30 (12) | C19—C18—C23 | 118.43 (15) |
C6—C7—C18 | 109.76 (12) | C19—C18—C7 | 119.69 (13) |
C8—C7—C18 | 111.67 (12) | C23—C18—C7 | 121.86 (13) |
C6—C7—H7A | 108.3 | C18—C19—C20 | 121.71 (15) |
C8—C7—H7A | 108.3 | C18—C19—H19A | 119.1 |
C18—C7—H7A | 108.3 | C20—C19—H19A | 119.1 |
C9—C8—C13 | 126.22 (14) | C21—C20—C19 | 118.47 (15) |
C9—C8—C7 | 120.53 (13) | C21—C20—H20A | 120.8 |
C13—C8—C7 | 113.25 (12) | C19—C20—H20A | 120.8 |
C8—C9—N1 | 119.20 (14) | C22—C21—C20 | 121.41 (15) |
C8—C9—C12 | 128.48 (14) | C22—C21—O4 | 116.50 (14) |
N1—C9—C12 | 112.32 (13) | C20—C21—O4 | 122.09 (15) |
C4—C10—H10A | 109.5 | C21—C22—C23 | 118.99 (15) |
C4—C10—H10B | 109.5 | C21—C22—H22A | 120.5 |
H10A—C10—H10B | 109.5 | C23—C22—H22A | 120.5 |
C4—C10—H10C | 109.5 | C22—C23—C18 | 120.93 (15) |
H10A—C10—H10C | 109.5 | C22—C23—H23A | 119.5 |
H10B—C10—H10C | 109.5 | C18—C23—H23A | 119.5 |
C4—C11—H11A | 109.5 | F1—C24—F2 | 106.55 (17) |
C4—C11—H11B | 109.5 | F1—C24—O4 | 107.35 (17) |
H11A—C11—H11B | 109.5 | F2—C24—O4 | 110.76 (17) |
C4—C11—H11C | 109.5 | F1—C24—H24A | 110.7 |
H11A—C11—H11C | 109.5 | F2—C24—H24A | 110.7 |
H11B—C11—H11C | 109.5 | O4—C24—H24A | 110.7 |
C9—C12—H12A | 109.5 | ||
C9—N1—C1—C6 | 13.6 (2) | C13—C8—C9—C12 | −7.0 (3) |
C9—N1—C1—C2 | −168.22 (14) | C7—C8—C9—C12 | 173.21 (15) |
C6—C1—C2—C3 | −25.9 (2) | C1—N1—C9—C8 | −13.9 (2) |
N1—C1—C2—C3 | 155.98 (14) | C1—N1—C9—C12 | 165.30 (14) |
C1—C2—C3—C4 | 50.56 (18) | C14—O3—C13—O2 | −1.8 (2) |
C2—C3—C4—C5 | −53.48 (18) | C14—O3—C13—C8 | 178.30 (14) |
C2—C3—C4—C10 | −173.70 (14) | C9—C8—C13—O2 | −178.39 (17) |
C2—C3—C4—C11 | 64.52 (17) | C7—C8—C13—O2 | 1.4 (2) |
C10—C4—C5—O1 | −31.4 (2) | C9—C8—C13—O3 | 1.5 (2) |
C3—C4—C5—O1 | −151.72 (15) | C7—C8—C13—O3 | −178.68 (13) |
C11—C4—C5—O1 | 87.49 (18) | C13—O3—C14—C15 | −174.28 (15) |
C10—C4—C5—C6 | 151.64 (15) | O3—C14—C15—C16 | −64.8 (2) |
C3—C4—C5—C6 | 31.3 (2) | O3—C14—C15—C17 | 171.65 (16) |
C11—C4—C5—C6 | −89.44 (17) | C6—C7—C18—C19 | −48.25 (19) |
N1—C1—C6—C5 | −177.73 (14) | C8—C7—C18—C19 | 74.40 (18) |
C2—C1—C6—C5 | 4.2 (2) | C6—C7—C18—C23 | 130.33 (15) |
N1—C1—C6—C7 | 8.5 (2) | C8—C7—C18—C23 | −107.02 (16) |
C2—C1—C6—C7 | −169.55 (14) | C23—C18—C19—C20 | −1.0 (2) |
O1—C5—C6—C1 | 176.01 (15) | C7—C18—C19—C20 | 177.62 (15) |
C4—C5—C6—C1 | −7.1 (2) | C18—C19—C20—C21 | −1.3 (3) |
O1—C5—C6—C7 | −10.1 (2) | C19—C20—C21—C22 | 2.8 (3) |
C4—C5—C6—C7 | 166.76 (14) | C19—C20—C21—O4 | −176.98 (16) |
C1—C6—C7—C8 | −26.47 (19) | C24—O4—C21—C22 | −142.79 (17) |
C5—C6—C7—C8 | 159.58 (13) | C24—O4—C21—C20 | 37.0 (2) |
C1—C6—C7—C18 | 96.98 (16) | C20—C21—C22—C23 | −2.1 (3) |
C5—C6—C7—C18 | −76.97 (17) | O4—C21—C22—C23 | 177.71 (14) |
C6—C7—C8—C9 | 26.2 (2) | C21—C22—C23—C18 | −0.2 (2) |
C18—C7—C8—C9 | −96.17 (17) | C19—C18—C23—C22 | 1.8 (2) |
C6—C7—C8—C13 | −153.64 (13) | C7—C18—C23—C22 | −176.84 (14) |
C18—C7—C8—C13 | 84.02 (15) | C21—O4—C24—F1 | 151.23 (16) |
C13—C8—C9—N1 | 172.06 (15) | C21—O4—C24—F2 | −92.82 (19) |
C7—C8—C9—N1 | −7.7 (2) |
Cg3 is the centroid the benzene ring of the 4-(4-difluoromethoxyphenyl group of the title compound. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.87 (2) | 1.98 (2) | 2.8426 (17) | 173 (2) |
C12—H12A···O3 | 0.98 | 2.40 | 2.817 (2) | 105 |
C19—H19A···O2i | 0.95 | 2.43 | 3.100 (2) | 127 |
C3—H3A···Cg3ii | 0.99 | 2.84 | 3.7345 (18) | 151 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1, −y+1, z+1/2. |
H15A···H10B | 2.37 | 1 - x, 1 - y, -1/2 + z |
F2···H11B | 2.83 | 1/2 - x, y, - 1/2 + z |
O1···H1N | 1.98 | 1/2 + x, 1 - y, z |
H10A···H22A | 2.47 | 3/2 - x, y, 1/2 + z |
H17B···H22A | 2.58 | x, -1 + y, z |
H12A···H17C | 2.54 | -1/2 + x, -y, z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, RS and SÖY; methodology, RS and GÇ; investigation, RS and SÖY; writing (original draft), GÇ and MA; writing (review and editing of the manuscript), RS and SÖY; crystal data production and validation, RJB and SÖY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.
References
Abo Al-Hamd, M. G., Tawfik, H. O., Abdullah, O., Yamaguchi, K., Sugiura, M., Mehany, A. B. M., El-Hamamsy, M. H. & El-Moselhy, T. F. (2023). J. Enzyme Inhib. Med. Chem. 38, 2241674. https://doi. org/10.1080/14756366.2023.2241674. Google Scholar
Batista, V. F., Pinto, D. C. G. A. & Silva, A. M. S. (2016). ACS Sustainable Chem. Eng. 4, 4064–4078. Web of Science CrossRef CAS Google Scholar
Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Längle, D., Werner, T. R., Wesseler, F., Reckzeh, E., Schaumann, N., Drowley, L., Polla, M., Plowright, A. T., Hirt, M. N., Eschenhagen, T. & Schade, D. (2019). ChemMedChem, 14, 810–822. Web of Science PubMed Google Scholar
Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84. Web of Science CSD CrossRef IUCr Journals Google Scholar
Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664. Web of Science CSD CrossRef IUCr Journals Google Scholar
Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pehlivanlar, E., Yıldırım, S. Ö., Şimşek, R., Akkurt, M., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 664–668. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ranjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471–508. Web of Science CrossRef CAS PubMed Google Scholar
Shahraki, O., Khoshneviszadeh, M., Dehghani, M., Mohabbati, M., Tavakkoli, M., Saso, L., Edraki, N. & Firuzi, O. (2020). Molecules, 25, 1839. https://doi. org/10.3390/molecules25081839. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187–191. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.