research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of CaSiF6·2H2O(mP2) and reevaluation of the SiIV–F bond-valence parameter R0

crossmark logo

aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 October 2023; accepted 25 October 2023; online 2 November 2023)

The structure of a second polymorph of CaSiF6·2H2O [calcium hexafluorido­silicate dihydrate; space group P2/c (No. 13), Pearson symbol mP2] was elucidated by single-crystal X-ray diffraction. It arose as an unexpected product when soda-lime glass was attacked by HF. Its crystal structure consists of infinite 2[Ca(H2O)2/1(SiF6)4/4] layers oriented parallel to the bc-crystallographic plane, a unique motif among structurally characterized hydrated hexa­fluorido­silicates. The crystal structure also exhibits inter- and intra­layer hydrogen bonds, with the inter­layer O—H⋯O hydrogen bonds involving a disordered hydrogen atom. The large deviation between the calculated bond-valence sum for Si and the expected value prompted a redetermination of the empirical SiIV–F bond-valence parameter R0. Based on a data set of 42 high-quality crystal structures containing 49 independent SiIV coordination environments, a revised value of 1.534 Å was derived for R0.

1. Chemical context

Calcium hexa­fluorido­silicate (CaSiF6) and its hydrated form, calcium hexa­fluorido­silicate dihydrate (CaSiF6·2H2O), are both commercially available chemicals that have found numerous uses, including as additives for cement manufacture (Smart & Roy, 1979[Smart, R. M. & Roy, D. M. (1979). Cem. Concr. Res. 9, 269-273.]), improving dentine remediation treatments (Kawasaki et al., 1996[Kawasaki, A., Ishikawa, K., Suge, T., Yoshiyama, M., Asaoka, K. & Ebisu, S. (1996). J. Dent. 24, 429-434.]), and as precursors for synthesis of luminescent materials (Kubus & Meyer, 2013[Kubus, M. & Meyer, H.-J. (2013). Z. Anorg. Allg. Chem. 639, 669-671.]). Although the synthesis of CaSiF6·2H2O and its dehydration to CaSiF6 were investigated more than 90 years ago (Carter, 1932[Carter, R. H. (1932). J. Econ. Entomol. 25, 707-709.]), their crystal structures were determined relatively recently by laboratory-based powder X-ray diffraction using simulated annealing and Rietveld refinement (Frisoni et al., 2011[Frisoni, S., Brenna, S. & Masciocchi, N. (2011). Powder Diffr. 26, 308-312.]). The study revealed that CaSiF6·2H2O crystallizes in the monoclinic crystal system (space group P21/n, Pearson symbol mP4) and exhibits a three-dimensional framework structure. In this work, the crystal structure of a second polymorph of CaSiF6·2H2O (space group P2/c, Pearson symbol mP2) was determined by low-temperature single-crystal X-ray diffraction. The observed discrepancies between the calculated and expected bond-valence sum (BVS) for Si also provided the impetus for a reevaluation of the SiIV–F bond-valence parameter R0 and an improved value of R0 was determined.

2. Structural commentary

The crystal structure of CaSiF6·2H2O(mP2) features eight atoms in the asymmetric unit, with one hydrogen atom disordered over two positions. The Ca atom is located on a twofold rotation axis and the Si atom is situated on an inversion centre, whereas the light atoms all lie on general positions. The hexa­fluorido­silicate anion displays a nearly ideal octa­hedral coordination, with the cis-F—Si—F angles ranging from 88.37 (4) to 91.63 (4)°. The average Si—F bond length is 1.6859 Å (Table 1[link]), with the bond lengths ranging from 1.6808 (9) to 1.6942 (9) Å, which is in good agreement with the Si—F distances observed in the crystal structures of CaSiF6·2H2O(mP4) (Frisoni et al., 2011[Frisoni, S., Brenna, S. & Masciocchi, N. (2011). Powder Diffr. 26, 308-312.]) and SrSiF6·2H2O (Golovastikov & Belov, 1982[Golovastikov, N. I. & Belov, N. V. (1982). Kristallografiya, 27, 1084-1086.]), which span from 1.648 (4) to 1.701 (3) Å and 1.675 (5) to 1.700 (5) Å, respectively. The Ca atom is coordinated by six fluorine atoms at distances of 2.2965 (9)–2.4105 (9) Å originating from four neighbouring [SiF6]2– octa­hedra, two of which are bound to the metal centre in a bidentate and two in a monodentate manner. In turn, each [SiF6]2– octa­hedron is coordinated to four Ca2+ cations. The primary coordination sphere of the Ca2+ cation is completed by two water mol­ecules, with a Ca—O distance of 2.4331 (13) Å, resulting in a distorted square anti­prismatic coordination (Fig. 1[link]). Such connectivity leads to the formation of 2[Ca(H2O)2/1(SiF6)4/4] (Jensen, 1989[Jensen, W. B. (1989). Cohesion and Structure, Vol. 2, The Structures of Binary Compounds, edited by F. R. de Boer and D. G. Pettifor, pp. 105-146. Amsterdam: North-Holland]) infinite layers, which extend along the bc-crystallographic plane and are stacked along the a-axis (Fig. 2[link]), a structural motif that differs from all other hydrated hexa­fluorido­silicates. Bond-valence sum calculations (Brown, 2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]) for Ca and Si using the parameters b = 0.37, R0 = 1.842 Å (Ca–F), R0 = 1.967 Å (Ca–O), and R0 = 1.58 Å (Si–F) obtained from the literature (Brown 2020[Brown, I. D. (2020). bvparam2020.cif, Accumulated Table of Bond Valence Parameters, (IUCr) Bond valence parameters, http://www.iucr.org/resources/data/datasets/bond-valence-parameters. Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada.]; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), yielded 2.05 valence units (v.u.) for Ca and 4.51 v.u. for Si (expected values: 2 for Ca, 4 for Si). Similarly inflated values for the bond-valence sum of Si were also observed when other crystal structures of hexa­fluorido­silicates were examined, indicating the need to reevaluate the current SiIV–F parameter R0 (Section 5).

Table 1
Selected bond lengths (Å)

Ca1—F1 2.2965 (9) Si1—F1 1.6809 (9)
Ca1—F2i 2.3783 (9) Si1—F2 1.6827 (9)
Ca1—F3i 2.4105 (9) Si1—F3 1.6942 (9)
Ca1—O1 2.4331 (13)    
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The distorted square anti­prismatic coordination environment of the Ca2+ cation in the crystal structure of CaSiF6·2H2O(mP2). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms shown as spheres of arbitrary radius. Hydrogen atom H2 is disordered over two sites with occupancies 0.49 (5) and 0.51 (5) [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) x, −y + 1, z − [{1\over 2}]; (iii) −x, −y + 1, −z + 1.]
[Figure 2]
Figure 2
A single 2[Ca(H2O)2/1(SiF6)4/4] layer viewed along [100], with the intra­layer O—H⋯F hydrogen bonds depicted as dashed lines.

3. Supra­molecular features

The crystal structure of CaSiF6·2H2O(mP2) exhibits both intra­layer O—H⋯F and inter­layer O—H⋯O hydrogen bonds (Table 2[link], Fig. 3[link]). The intra­layer hydrogen bonds are formed between the F3 atom and the non-disordered hydrogen atom H1, with an O1⋯F3 distance of 2.9042 (14) Å and a graph-set motif of S(6) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The oxygen atom O1 is involved in two further hydrogen bonds with the disordered hydrogen atoms H2A and H2B, forming O1—H2A⋯O1 and O1—H2B⋯O1 hydrogen bonds, with O⋯O distances of 2.902 (3) and 2.856 (3) Å, respectively, that link the adjacent 2[Ca(H2O)2/1(SiF6)4/4] layers.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F3ii 0.78 (3) 2.19 (3) 2.9042 (14) 153 (3)
O1—H2B⋯O1iii 0.90 (5) 1.98 (5) 2.856 (3) 167 (4)
O1—H2A⋯O1iv 0.77 (5) 2.17 (5) 2.902 (3) 159 (4)
Symmetry codes: (ii) [-x, -y, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Selected fragment of the crystal structure of CaSiF6·2H2O(mP2) displaying intra- and inter­layer hydrogen bonds, which connect the adjacent layers. Some of the disordered hydrogen atoms have been omitted for clarity.

4. Database survey

A search of the Inorganic Crystal Structure Database (ICSD, version January 2023; Bergerhoff et al., 1983[Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66-69.]; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) revealed that in addition to the aforementioned mP4 polymorph of CaSiF6·2H2O, twelve other hydrated hexa­fluorido­silicates of divalent cations have been crystallographically characterized to date. Most of them form hexa­hydrates with the general formula MSiF6·6H2O, where M = Mg (Syoyama & Osaki, 1972[Syoyama, S. & Osaki, K. (1972). Acta Cryst. B28, 2626-2627.]; Cherkasova et al., 2004[Cherkasova, T. G., Tatarinova, E. S. & Cherkasova, E. V. (2004). Zh. Neorg. Khim. 49, 1161-1164.]), Cr (Cotton et al., 1992[Cotton, F. A., Falvello, L. R., Murillo, C. A. & Quesada, J. F. (1992). J. Solid State Chem. 96, 192-198.]), Mn (Torii et al., 1997[Torii, A., Ogawa, K., Tamura, H. & Osaki, K. (1997). Acta Cryst. C53, 833-836.]), Fe (Hamilton, 1962[Hamilton, W. C. (1962). Acta Cryst. 15, 353-360.]; Chevrier et al., 1981[Chevrier, G., Hardy, A. & Jéhanno, G. (1981). Acta Cryst. A37, 578-584.]), Co (Lynton & Siew; 1973[Lynton, H. & Siew, P. Y. (1973). Can. J. Chem. 51, 227-229.]; Ray et al., 1973a[Ray, S., Zalkin, A. & Templeton, D. H. (1973a). Acta Cryst. B29, 2741-2747.]; Ray & Mostafa, 1996[Ray, S. & Mostafa, G. (1996). Z. Kristallogr. 211, 368-372.]), Ni (Ray et al., 1973a[Ray, S., Zalkin, A. & Templeton, D. H. (1973a). Acta Cryst. B29, 2741-2747.]), Cu (Ray et al., 1973b[Ray, S., Zalkin, A. & Templeton, D. H. (1973b). Acta Cryst. B29, 2748-2751.]), and Zn (Ray et al., 1973a[Ray, S., Zalkin, A. & Templeton, D. H. (1973a). Acta Cryst. B29, 2741-2747.]). The aforementioned compounds all exhibit a similar structural motif composed of alternating discrete [M(H2O)6]2+ and [SiF6]2– octa­hedra, connected via O—H⋯F hydrogen bonds into a three-dimensional network. The only examples of tetra­hydrated metal(II) hexa­fluorido­silicates are the isostructural CrSiF6·4H2O (Cotton et al., 1993[Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868-4870.]) and CuSiF6·4H2O (Clark et al., 1969[Clark, M. J. R., Fleming, J. E. & Lynton, H. (1969). Can. J. Chem. 47, 3859-3861.]; Schnering & Vu, 1983[Schnering, H. G. von V. & Vu, D. (1983). Angew. Chem. 95, 421.]; Troyanov et al., 1992[Troyanov, S. I., Morozov, I. V. & Korenev, Yu. M. (1992). Zh. Neorg. Khim. 37, 380-387.]; Cotton et al., 1993[Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868-4870.]). In their crystal structures, infinite zigzag chains are formed by the coordination of two [SiF6]2– octa­hedra to the apical positions of the square-planar [M(H2O)4]2+ units. The resulting highly distorted octa­hedral coordination surrounding the metal centre is characteristic of the Jahn–Teller active cations. The individual chains in the structures are connected by O—H⋯F hydrogen bonds that link the terminal fluorine atoms of the [SiF6]2– units to the water mol­ecules coordinating the metal centres of the adjacent chains. Lastly there are three examples of metal(II) hexa­fluorido­silicate dihydrates, the isostructural pair CaSiF6·2H2O(mP4) (Frisoni et al., 2011[Frisoni, S., Brenna, S. & Masciocchi, N. (2011). Powder Diffr. 26, 308-312.]) and SrSiF6·2H2O (Golovastikov & Belov, 1982[Golovastikov, N. I. & Belov, N. V. (1982). Kristallografiya, 27, 1084-1086.]), and PbSiF6·2H2O (Golubev et al., 1991[Golubev, A. M., Ilinets, A. M., Tsvigunov, A. N. & Makarevich, L. G. (1991). Kristallografiya, 36, 214-216.]). All three compounds feature an extended three-dimensional framework structure and display water mol­ecules bridging the metal centres, giving rise to dimeric [(H2O)M(μ-H2O)2M(OH2)]4+ units for M = Ca, Sr and the more complex [Pb4(H2O)6]8+ units in the structure of PbSiF6·2H2O, which contain both μ- and μ3-water mol­ecules. The Ca2+ cation in CaSiF6·2H2O(mP4) is coordinated by five fluorine and three oxygen atoms arranged in a distorted square-anti­prismatic coordination. Each of the five fluorine atoms coordinated to the Ca2+ ion belongs to a separate [SiF6]2– octa­hedron, which contrasts with the structure of the newly discovered mP2 polymorph, where both monodentate and bidentate coord­ination of the [SiF6]2– anions to the Ca2+ cations is observed (Fig. 4[link]). Conversely, each [SiF6]2– anion in the structure of CaSiF6·2H2O(mP4) coordinates five neighbouring Ca2+ cations, leaving one terminal fluorine atom, which in turn accepts O—H⋯F hydrogen bonds from two water ligands.

[Figure 4]
Figure 4
Comparison of the crystal structures of CaSiF6·2H2O(mP4) (top) and CaSiF6·2H2O(mP2) (bottom), viewed along [010].

5. Redetermination of SiIV–F bond-valence parameter R0

In order to determine a more accurate value of the SiIV–F bond-valence parameter R0, the ICSD was searched for all crystal structures containing SiIV in an exclusively fluorine environment. To ensure that only high-quality data were used for the calculation of the R0 parameter, the data set was limited to crystal structures solved by single-crystal X-ray diffraction at ambient or low-temperature conditions, excluding disordered structures or those with an R1-value above 0.05. A data set of 42 crystal structures was obtained, containing a total of 49 independent SiIV coordination environments, including the compound presented herein (Table 3[link]). The R0i value for each individual Si coordination environment was calculated using formula (A1.3) from the literature (Brown, 2002[Brown, I. D. (2002). The Chemical Bonding in Inorganic Chemistry: The Bond Valence Model. Oxford: Oxford University Press.]), which assumes a fixed value for the b parameter (0.37 Å). An improved value for the R0 parameter, 1.534 Å, was obtained by averaging the R0i values, which ranged from 1.508 to 1.562 Å. BVS calculations employing the new empirical parameter yield significantly improved results compared to the calculations performed with the previously reported parameter, as 46 out of 49 evaluated coordination environments give a bond-valence sum within ±0.2 v.u. of the expected value (3.8–4.2 v.u.), in contrast to only a single one when using the old parameter (Table 4[link]).

Table 3
Crystal structures used for the calculation of the new empirical R0 bond-valence parameter for SiIV–F

Compound ICSD number Reference Si—F bond-length range (Å) BVS for Si (R0 from Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) BVS for Si (new R0)
BaSiF6 60882 (Svensson et al., 1986[Svensson, G., Albertsson, J., Svensson, C. & Elding, L. I. (1986). Acta Chem. Scand. 40a, 631-633.]) 1.688 (2) 4.481 3.968
(CH3NH3)2SiF6 110673 (Conley et al., 2002[Conley, B. D., Yearwood, B. C., Parkin, S. & Atwood, D. A. (2002). J. Fluorine Chem. 115, 155-160.]) 1.6810 (12)–1.6828 (17) 4.559 4.037
(CH7N4)2SiF6·2H2O 280103 (Ross et al., 1999[Ross, C. R., Bauer, M. R., Nielson, R. M. & Abrahams, S. C. (1999). Acta Cryst. B55, 246-254.]) 1.6797 (9)–1.6808 (9) 4.578 4.054
(CH8N4)SiF6 280102 (Ross et al., 1999[Ross, C. R., Bauer, M. R., Nielson, R. M. & Abrahams, S. C. (1999). Acta Cryst. B55, 246-254.]) 1.6684 (9)–1.7043 (9) 4.529 4.010
(C(NH2)2OH)2SiF6 63069 (Gubin et al., 1988[Gubin, A. I., Buranbaev, M. Zh., Nurakhmetov, N. N., Suyundikova, F. O. & Tashenov, A. (1988). Kristallografiya, 33, 509-510.]) 1.677 (2)–1.6971 (18) 4.513 3.996
(C(NH2)3)2SiF6 59237 (Waskowska, 1997[Waskowska, A. (1997). Acta Cryst. C53, 128-130.]) 1.6805 (12)–1.6833 (8) 4.550 4.029
(C4H13N5)SiF6 166449 (Gel'mbol'dt et al., 2009[Gel'mbol'dt, V. O., Minacheva, L. Kh., Ganin, E. V., Sergienko, V. S. & Botoshansky, M. S. (2009). Zh. Neorg. Khim. 54, 1974.]) 1.657 (3)–1.698 (3) 4.643 4.111
CaSiF6·2H2O(mP2) Present work   1.6808 (9)–1.6942 (9) 4.507 3.991
[Co(NH3)5(NO2)]SiF6 280030 (Naumov et al., 1999[Naumov, D. Yu., Kashcheeva, N. E., Boldyreva, E. V. & Howard, J. A. K. (1999). Acta Cryst. C55, 1205-1208.]) 1.6769 (18)–1.6899 (13) 4.495 3.981
CrSiF6·4H2O 165384 (Cotton et al., 1993[Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868-4870.]) 1.6640 (8)–1.6968 (8) 4.546 4.026
CsLiSiF6 142874 (Stoll et al., 2021[Stoll, C., Seibald, M., Baumann, D., Bandemehr, J., Kraus, F. & Huppertz, H. (2021). Eur. J. Inorg. Chem. pp. 62-70.]) 1.667 (2)–1.699 (2) 4.479 3.966
[Cu(bpy)2(H2O)]SiF6·4H2O 133607 (Nisbet et al., 2021[Nisbet, M. L., Hiralal, E. & Poeppelmeier, K. R. (2021). Acta Cryst. E77, 158-164.]) 1.6677 (10)–1.6947 (9) 4.574 4.050
[Cu{SC(NH2)2}4]2SiF6 249750 (Bowmaker et al., 2008[Bowmaker, G. A., Pakawatchai, C., Skelton, B. W., Thanyasirikul, Y. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2583-2588.]) 1.663 (2)–1.696 (2) 4.585 4.060
CuSiF6·4H2O 165385 (Cotton et al., 1993[Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868-4870.]) 1.6686 (8)–1.6973 (9) 4.510 3.993
CuSiF6·6H2O 34760 (Ray et al., 1973b[Ray, S., Zalkin, A. & Templeton, D. H. (1973b). Acta Cryst. B29, 2748-2751.]) 1.679 (5) 4.591 4.066
      1.659 (6)–1.674 (6) 4.765 4.219
H2SiF6·4H2O 40388 (Mootz & Oellers, 1988[Mootz, D. & Oellers, E. J. (1988). Z. Anorg. Allg. Chem. 559, 27-39.]) 1.666 (1)–1.696 (1) 4.553 4.031
H2SiF6·6H2O 40389 (Mootz & Oellers, 1988[Mootz, D. & Oellers, E. J. (1988). Z. Anorg. Allg. Chem. 559, 27-39.]) 1.677 (1)–1.704 (1) 4.447 3.938
H2SiF6·9.5H2O 40390 (Mootz & Oellers, 1988[Mootz, D. & Oellers, E. J. (1988). Z. Anorg. Allg. Chem. 559, 27-39.]) 1.680 (1)–1.697 (1) 4.454 3.944
      1.684 (1)–1.706 (1) 4.448 3.939
K2SiF6(cF4) 420429 (Kutoglu et al., 2009[Kutoglu, A., Nikolov, V., Petrov, K. & Allmann, R. (2009). ICSD Communication.]) 1.6873 (16) 4.490 3.975
K2SiF6(hP2) 158483 (Gramaccioli & Campostrini, 2007[Gramaccioli, C. M. & Campostrini, I. (2007). Can. Mineral. 45, 1275-1280.]) 1.681 (2)–1.689 (2) 4.518 4.000
K2SiF6·KNO3 417735 (Rissom et al., 2008[Rissom, C., Schmidt, H. & Voigt, W. (2008). Cryst. Res. Technol. 43, 74-82.]) 1.6782 (6) 4.601 4.074
KLiSiF6 142875 (Stoll et al., 2021[Stoll, C., Seibald, M., Baumann, D., Bandemehr, J., Kraus, F. & Huppertz, H. (2021). Eur. J. Inorg. Chem. pp. 62-70.]) 1.676 (1)–1.701 (1) 4.495 3.980
KNaSiF6 71334 (Fischer & Krämer, 1991[Fischer, J. & Krämer, V. (1991). Mater. Res. Bull. 26, 925-930.]) 1.641 (5)–1.678 (5) 4.860 4.304
K3Na(SiF6)(TaF7) 122403 (Tang et al., 2021[Tang, R. L., Lian, X., Yao, W. D., Liu, W. & Guo, S. P. (2021). Dalton Trans. 50, 16562-16567.]) 1.665 (3)–1.702 (3) 4.558 4.036
K3Na4(BF4)(SiF6)3 121301 (Bandemehr et al., 2020[Bandemehr, J., Klippstein, J., Ivlev, S., Sachs, M. & Kraus, F. (2020). Z. Kristallogr. 235, 247-254.]) 1.650 (2)–1.699 (2) 4.535 4.015
      1.666 (2)–1.700 (1) 4.560 4.038
Li2SiF6 425923 (Hinter­egger et al., 2014[Hinteregger, E., Wurst, K., Niederwieser, N., Heymann, G. & Huppertz, H. (2014). Z. Kristallogr. 229, 77-82.]) 1.685 (2) 4.518 4.000
      1.690 (2)–1.690 (8) 4.457 3.947
MgSiF6·6H2O 250196 (Cherkasova et al., 2004[Cherkasova, T. G., Tatarinova, E. S. & Cherkasova, E. V. (2004). Zh. Neorg. Khim. 49, 1161-1164.]) 1.6888 (9)–1.7465 (10) 4.194 3.714
MnSiF6·6H2O 59274 (Torii et al., 1997[Torii, A., Ogawa, K., Tamura, H. & Osaki, K. (1997). Acta Cryst. C53, 833-836.]) 1.690 (7) 4.457 3.947
      1.668 (7)–1.693 (7) 4.575 4.051
(NH3OH)2SiF6·2H2O 94567 (Kristl et al., 2002[Kristl, M., Drofenik, M. & Golič, L. (2002). Acta Chim. Slov. 49, 243-250.]) 1.6793 (10)–1.6837 (10) 4.570 4.046
(NH4)2SiF6 54724 (Fábry et al., 2001[Fábry, J., Chval, J. & Petříček, V. (2001). Acta Cryst. E57, i90-i91.]) 1.695 (1)–1.700 (1) 4.368 3.867
(N2H5)2SiF6 776 (Ouasri et al., 2019[Ouasri, A., Lambarki, F., Rhandour, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 1507-1510.]) 1.6777 (4)–1.7101 (4) 4.476 3.963
(N2H6)SiF6 35702 (Cameron et al., 1983[Cameron, T. S., Knop, O. & MacDonald, L. A. (1983). Can. J. Chem. 61, 184-188.]) 1.671 (1)–1.683 (1) 4.596 4.070
Na2SiF6 433134 (Zhang et al., 2017[Zhang, W., Jing, Q., Fang, Y. & Chen, Z. (2017). Z. Anorg. Allg. Chem. 643, 1739-1743.]) 1.6755 (14)–1.6756 (14) 4.635 4.104
      1.6907 (16)–1.6916 (11) 4.443 3.934
PbSiF6·2H2O 39358 (Golubev et al., 1991[Golubev, A. M., Ilinets, A. M., Tsvigunov, A. N. & Makarevich, L. G. (1991). Kristallografiya, 36, 214-216.]) 1.645 (10)–1.707 (10) 4.558 4.036
      1.664 (10)–1.716 (10) 4.411 3.906
Rb2SiF6 136303 (Rienmüller et al., 2021[Rienmüller, J., Bandemehr, J. & Kraus, F. (2021). Z. Naturforsch. B, 76, 559-565.]) 1.693 (3) 4.421 3.915
[RuF(NH3)4(NO)]SiF6 703 (Mikhailov et al., 2019[Mikhailov, A., Vuković, V., Kijatkin, C., Wenger, E., Imlau, M., Woike, T., Kostin, G. & Schaniel, D. (2019). Acta Cryst. B75, 1152-1163.]) 1.661 (1)–1.713 (2) 4.556 4.035
[Ru2(H2O)2(NH4)8S2](SiF6)2 111446 (Woods & Wilson, 2021[Woods, J. J. & Wilson, J. J. (2021). Angew. Chem. Int. Ed. 60, 1588-1592.]) 1.666 (2)–1.7065 (19) 4.552 4.031
SiF4 48147 (Mootz & Korte, 1984[Mootz, D. & Korte, L. (1984). Z. Naturforsch. B, 39, 1295-1299.]) 1.5401 (6) 4.455 3.945
SrSiF6·2H2O 20552 (Golovastikov & Belov, 1982[Golovastikov, N. I. & Belov, N. V. (1982). Kristallografiya, 27, 1084-1086.]) 1.675 (5)–1.700 (5) 4.502 3.987
[Tl2(NH3)6]SiF6·2NH3 144214 (Rudel et al., 2021[Rudel, S. S., Graubner, T., Karttunen, A. J., Dehnen, S. & Kraus, F. (2021). Inorg. Chem. 60, 15031-15040.]) 1.687 (2)–1.6877 (15) 4.488 3.974
Tl2SiF6 136300 (Rienmüller et al., 2021[Rienmüller, J., Bandemehr, J. & Kraus, F. (2021). Z. Naturforsch. B, 76, 559-565.]) 1.686 (6) 4.505 3.989
Tl3F[SiF6] 136302 (Rienmüller et al., 2021[Rienmüller, J., Bandemehr, J. & Kraus, F. (2021). Z. Naturforsch. B, 76, 559-565.]) 1.688 (6)–1.695 (6) 4.439 3.931

Table 4
Comparison of the BVS calculation results for SiIV of crystal structures collected in Table 3[link] employing the new R0 parameter and the previously reported parameter

  R0 Maximum BVS Minimum BVS Mean BVS Standard deviation % of data within ± 0.2 v.u. % of data within ± 0.1 v.u.
This study 1.534 4.304 3.714 4.005 0.086 93.9 87.8
Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) 1.58 4.860 4.194 4.522 0.098 2.0 0

6. Synthesis and crystallization

Colourless single crystals of the title compound were discovered to have grown serendipitously on a soda-lime watch glass containing a sample of [XeF][SbF6] (Gillespie & Landa, 1973[Gillespie, R. J. & Landa, B. (1973). Inorg. Chem. 12, 1383-1389.]) frozen under a protective layer of perfluoro­deca­lin at 255 K. It is presumed that CaSiF6·2H2O(mP2) formed when the soda-lime glass was attacked by the HF forming during hydrolysis of the highly oxidizing XeII compound.

7. Raman spectroscopy

A Bruker Senterra II confocal Raman microscope was used to record the Raman spectrum on a randomly oriented single crystal of the title compound. The spectrum was measured at room temperature (297 K) in the 50–4250 cm−1 range with a resolution of 4 cm−1 using the 532 nm laser line operating at 12.5 mW.

In the Raman spectrum of CaSiF6·2H2O(mP2) (Fig. 5[link]) the bands observed at 677 and 500 cm−1 correspond to the ν1 and ν2 modes of the [SiF6]2– anion, respectively. The bands at 425 and 392 cm−1 can be assigned to the ν5 mode, split due to the distortion of the anion from the ideal Oh symmetry (Ouasri et al., 2002[Ouasri, A., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2002). J. Raman Spectrosc. 33, 715-719.]). The Raman bands observed in the 3300–3600 cm−1 region belong to the symmetric ν1 and anti­symmetric ν3 O—H stretching of the coordinated water mol­ecules, whereas the bands at 1649 and 3225 cm−1 could likely be assigned to δ(HOH) (ν2) and 2δ(HOH), respectively (Lacroix et al., 2018[Lacroix, M. R., Bukovsky, E. V., Lozinšek, M., Folsom, T. C., Newell, B. S., Liu, Y., Peryshkov, D. V. & Strauss, S. H. (2018). Inorg. Chem. 57, 14983-15000.]).

[Figure 5]
Figure 5
Raman spectrum of CaSiF6·2H2O(mP2).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The positions of the hydrogen atoms, including the disordered one, were located in difference maps and freely refined, including their isotropic thermal parameter Uiso (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). The refinement of the disordered hydrogen atoms' occupancies, resulted in values of 0.51 (5) and 0.49 (5) for H2A and H2B, respectively.

Table 5
Experimental details

Crystal data
Chemical formula CaSiF6·2H2O
Mr 218.20
Crystal system, space group Monoclinic, P2/c
Temperature (K) 100
a, b, c (Å) 5.96605 (17), 5.13977 (12), 9.9308 (3)
β (°) 107.275 (3)
V3) 290.78 (1)
Z 2
Radiation type Cu Kα
μ (mm−1) 12.29
Crystal size (mm) 0.15 × 0.08 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.365, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8322, 608, 598
Rint 0.051
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.14
No. of reflections 608
No. of parameters 61
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Calcium hexafluoridosilicate dihydrate top
Crystal data top
CaSiF6·2H2OF(000) = 216
Mr = 218.20Dx = 2.492 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54184 Å
a = 5.96605 (17) ÅCell parameters from 5902 reflections
b = 5.13977 (12) Åθ = 7.8–75.3°
c = 9.9308 (3) ŵ = 12.29 mm1
β = 107.275 (3)°T = 100 K
V = 290.78 (1) Å3Plate, colourless
Z = 20.15 × 0.08 × 0.02 mm
Data collection top
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
diffractometer
608 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source598 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 13.3333 pixels mm-1θmax = 75.4°, θmin = 7.8°
ω scansh = 77
Absorption correction: gaussian
(CrysalisPro; Rigaku OD, 2022)
k = 66
Tmin = 0.365, Tmax = 1.000l = 1212
8322 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0488P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
608 reflectionsΔρmax = 0.32 e Å3
61 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.0000000.58252 (7)0.2500000.01360 (19)
Si10.0000000.0000000.5000000.0135 (2)
F10.06447 (16)0.26688 (17)0.39793 (9)0.0187 (3)
F20.20424 (15)0.17052 (18)0.62125 (9)0.0178 (2)
F30.19861 (16)0.09149 (15)0.58239 (10)0.0164 (3)
O10.3884 (2)0.4033 (2)0.36145 (15)0.0190 (3)
H10.378 (5)0.255 (6)0.373 (3)0.035 (7)*
H2B0.469 (8)0.483 (9)0.441 (5)0.016 (13)*0.49 (5)
H2A0.475 (8)0.419 (7)0.318 (5)0.017 (13)*0.51 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0176 (3)0.0092 (3)0.0144 (3)0.0000.00529 (18)0.000
Si10.0181 (3)0.0090 (3)0.0140 (3)0.0000 (2)0.0059 (2)0.0000 (2)
F10.0251 (5)0.0124 (4)0.0201 (5)0.0025 (4)0.0091 (4)0.0041 (3)
F20.0189 (5)0.0155 (4)0.0190 (5)0.0010 (3)0.0056 (4)0.0037 (3)
F30.0201 (5)0.0120 (5)0.0185 (5)0.0003 (3)0.0080 (4)0.0020 (3)
O10.0199 (6)0.0145 (6)0.0224 (6)0.0008 (4)0.0058 (5)0.0006 (4)
Geometric parameters (Å, º) top
Ca1—Si1i3.2815 (3)Si1—F1vi1.6808 (9)
Ca1—Si1ii3.2815 (3)Si1—F11.6809 (9)
Ca1—F12.2965 (9)Si1—F2vi1.6826 (9)
Ca1—F1iii2.2965 (9)Si1—F21.6827 (9)
Ca1—F2iv2.3783 (9)Si1—F31.6942 (9)
Ca1—F2v2.3783 (9)Si1—F3vi1.6942 (9)
Ca1—F3iv2.4105 (9)O1—H10.78 (3)
Ca1—F3v2.4105 (9)O1—H2B0.90 (5)
Ca1—O12.4331 (13)O1—H2A0.77 (5)
Ca1—O1iii2.4331 (13)
Si1ii—Ca1—Si1i98.328 (10)O1—Ca1—Si1i112.20 (3)
F1iii—Ca1—Si1i86.58 (2)O1iii—Ca1—Si1ii112.20 (3)
F1—Ca1—Si1i169.60 (2)O1iii—Ca1—Si1i96.74 (3)
F1iii—Ca1—Si1ii169.60 (2)O1iii—Ca1—O1135.49 (6)
F1—Ca1—Si1ii86.58 (2)Ca1vii—Si1—Ca1v180.0
F1—Ca1—F1iii90.11 (4)F1—Si1—Ca1v82.60 (3)
F1—Ca1—F2iv158.57 (3)F1—Si1—Ca1vii97.40 (3)
F1—Ca1—F2v79.82 (3)F1vi—Si1—Ca1v97.40 (3)
F1iii—Ca1—F2iv79.82 (3)F1vi—Si1—Ca1vii82.60 (3)
F1iii—Ca1—F2v158.57 (3)F1vi—Si1—F1180.0
F1—Ca1—F3iv142.32 (3)F1vi—Si1—F2vi89.65 (5)
F1—Ca1—F3v100.99 (3)F1—Si1—F2vi90.35 (5)
F1iii—Ca1—F3v142.32 (3)F1—Si1—F289.65 (5)
F1iii—Ca1—F3iv100.99 (3)F1vi—Si1—F290.35 (5)
F1—Ca1—O176.07 (4)F1—Si1—F389.83 (4)
F1iii—Ca1—O1iii76.07 (4)F1—Si1—F3vi90.17 (4)
F1iii—Ca1—O172.88 (4)F1vi—Si1—F390.17 (4)
F1—Ca1—O1iii72.88 (4)F1vi—Si1—F3vi89.83 (4)
F2v—Ca1—Si1ii29.44 (2)F2—Si1—Ca1v44.00 (3)
F2v—Ca1—Si1i99.95 (3)F2—Si1—Ca1vii136.00 (3)
F2iv—Ca1—Si1i29.44 (2)F2vi—Si1—Ca1v136.00 (3)
F2iv—Ca1—Si1ii99.95 (3)F2vi—Si1—Ca1vii44.00 (3)
F2iv—Ca1—F2v115.49 (5)F2vi—Si1—F2180.0
F2iv—Ca1—F3v77.00 (3)F2—Si1—F3vi91.63 (4)
F2v—Ca1—F3v58.87 (3)F2vi—Si1—F391.63 (4)
F2v—Ca1—F3iv77.00 (3)F2—Si1—F388.37 (4)
F2iv—Ca1—F3iv58.87 (3)F2vi—Si1—F3vi88.37 (4)
F2v—Ca1—O1iii82.87 (4)F3—Si1—Ca1v45.25 (3)
F2iv—Ca1—O1iii121.89 (4)F3vi—Si1—Ca1v134.75 (3)
F2iv—Ca1—O182.87 (4)F3—Si1—Ca1vii134.75 (3)
F2v—Ca1—O1121.89 (4)F3vi—Si1—Ca1vii45.25 (3)
F3v—Ca1—Si1ii29.94 (2)F3—Si1—F3vi180.0
F3v—Ca1—Si1i87.56 (2)Si1—F1—Ca1155.57 (5)
F3iv—Ca1—Si1i29.94 (2)Si1—F2—Ca1v106.56 (4)
F3iv—Ca1—Si1ii87.56 (2)Si1—F3—Ca1v104.81 (4)
F3v—Ca1—F3iv91.93 (4)Ca1—O1—H1110 (2)
F3v—Ca1—O175.09 (4)Ca1—O1—H2B115 (3)
F3v—Ca1—O1iii141.61 (4)Ca1—O1—H2A114 (3)
F3iv—Ca1—O1141.61 (4)H1—O1—H2B111 (3)
F3iv—Ca1—O1iii75.09 (4)H1—O1—H2A107 (3)
O1—Ca1—Si1ii96.74 (3)
Ca1v—Si1—F1—Ca1115.56 (12)F2vi—Si1—F1—Ca1108.01 (13)
Ca1vii—Si1—F1—Ca164.44 (12)F2—Si1—F1—Ca171.99 (13)
Ca1vii—Si1—F2—Ca1v180.000 (1)F2vi—Si1—F3—Ca1v170.07 (5)
Ca1vii—Si1—F3—Ca1v180.000 (1)F2—Si1—F3—Ca1v9.93 (5)
F1vi—Si1—F2—Ca1v100.32 (4)F3vi—Si1—F1—Ca119.64 (13)
F1—Si1—F2—Ca1v79.69 (4)F3—Si1—F1—Ca1160.36 (13)
F1—Si1—F3—Ca1v79.72 (4)F3vi—Si1—F2—Ca1v169.84 (5)
F1vi—Si1—F3—Ca1v100.28 (4)F3—Si1—F2—Ca1v10.16 (5)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z; (iii) x, y, z+1/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F3vi0.78 (3)2.19 (3)2.9042 (14)153 (3)
O1—H2B···O1viii0.90 (5)1.98 (5)2.856 (3)167 (4)
O1—H2A···O1ix0.77 (5)2.17 (5)2.902 (3)159 (4)
Symmetry codes: (vi) x, y, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y, z+1/2.
Comparison of the BVS calculation results for SiIV of crystal structures collected in Table 2 employing the new R0 parameter and the previously reported parameter top
R0Maximum BVSMinimum BVSMean BVSStandard deviation% of data within ± 0.2 v.u.% of data within ± 0.1 v.u.
This study1.5344.3043.7144.0050.08693.987.8
Brese & O'Keeffe (1991)1.584.8604.1944.5220.0982.00
Crystal structures used for the calculation of the new empirical R0 bond-valence parameter for SiSiIV–F top
CompoundICSD numberReferenceSi—F bond-length range (Å)BVS for Si (R0 from Brese & O'Keeffe, 1991)BVS for Si (new R0)
BaSiF660882(Svensson et al., 1986)1.688 (2)4.4813.968
(CH3NH3)2SiF6110673(Conley et al., 2002)1.6810 (12)–1.6828 (17)4.5594.037
(CH7N4)2SiF6·2H2O280103(Ross et al., 1999)1.6797 (9)–1.6808 (9)4.5784.054
(CH8N4)SiF6280102(Ross et al., 1999)1.6684 (9)–1.7043 (9)4.5294.010
(C(NH2)2OH)2SiF663069(Gubin et al., 1988)1.677 (2)–1.6971 (18)4.5133.996
(C(NH2)3)2SiF659237(Waskowska, 1997)1.6805 (12)–1.6833 (8)4.5504.029
(C4H13N5)SiF6166449(Gel'mbol'dt et al., 2009)1.657 (3)–1.698 (3)4.6434.111
CaSiF6·2H2O(mP2)Present work1.6808 (9)–1.6942 (9)4.5073.991
[Co(NH3)5(NO2)]SiF6280030(Naumov et al., 1999)1.6769 (18)–1.6899 (13)4.4953.981
CrSiF6·4H2O165384(Cotton et al., 1993)1.6640 (8)–1.6968 (8)4.5464.026
CsLiSiF6142874(Stoll et al., 2021)1.667 (2)–1.699 (2)4.4793.966
[Cu(bpy)2(H2O)]SiF6·4H2O133607(Nisbet et al., 2021)1.6677 (10)–1.6947 (9)4.5744.050
[Cu{SC(NH2)2}4]2SiF6249750(Bowmaker et al., 2008)1.663 (2)–1.696 (2)4.5854.060
CuSiF6·4H2O165385(Cotton et al., 1993)1.6686 (8)–1.6973 (9)4.5103.993
CuSiF6·6H2O34760(Ray et al., 1973b)1.679 (5)4.5914.066
1.659 (6)–1.674 (6)4.7654.219
H2SiF6·4H2O40388(Mootz & Oellers, 1988)1.666 (1)–1.696 (1)4.5534.031
H2SiF6·6H2O40389(Mootz & Oellers, 1988)1.677 (1)–1.704 (1)4.4473.938
H2SiF6·9.5H2O40390(Mootz & Oellers, 1988)1.680 (1)–1.697 (1)4.4543.944
1.684 (1)–1.706 (1)4.4483.939
K2SiF6(cF4)420429(Kutoglu et al., 2009)1.6873 (16)4.4903.975
K2SiF6(hP2)158483(Gramaccioli & Campostrini, 2007)1.681 (2)–1.689 (2)4.5184.000
K2SiF6·KNO3417735(Rissom et al., 2008)1.6782 (6)4.6014.074
KLiSiF6142875(Stoll et al., 2021)1.676 (1)–1.701 (1)4.4953.980
KNaSiF671334(Fischer & Krämer, 1991)1.641 (5)–1.678 (5)4.8604.304
K3Na(SiF6)(TaF7)122403(Tang et al., 2021)1.665 (3)–1.702 (3)4.5584.036
K3Na4(BF4)(SiF6)3121301(Bandemehr et al., 2020)1.650 (2)–1.699 (2)4.5354.015
1.666 (2)–1.700 (1)4.5604.038
Li2SiF6425923(Hinteregger et al., 2014)1.685 (2)4.5184.000
1.690 (2)–1.690 (8)4.4573.947
MgSiF6·6H2O250196(Cherkasova et al., 2004)1.6888 (9)–1.7465 (10)4.1943.714
MnSiF6·6H2O59274(Torii et al., 1997)1.690 (7)4.4573.947
1.668 (7)–1.693 (7)4.5754.051
(NH3OH)2SiF6·2H2O94567(Kristl et al., 2002)1.6793 (10)–1.6837 (10)4.5704.046
(NH4)2SiF654724(Fábry et al., 2001)1.695 (1)–1.700 (1)4.3683.867
(N2H5)2SiF6776(Ouasri et al., 2019)1.6777 (4)–1.7101 (4)4.4763.963
(N2H6)SiF635702(Cameron et al., 1983)1.671 (1)–1.683 (1)4.5964.070
Na2SiF6433134(Zhang et al., 2017)1.6755 (14)–1.6756 (14)4.6354.104
1.6907 (16)–1.6916 (11)4.4433.934
PbSiF6·2H2O39358(Golubev et al., 1991)1.645 (10)–1.707 (10)4.5584.036
1.664 (10)–1.716 (10)4.4113.906
Rb2SiF6136303(Rienmüller et al., 2021)1.693 (3)4.4213.915
[RuF(NH3)4(NO)]SiF6703(Mikhailov et al., 2019)1.661 (1)–1.713 (2)4.5564.035
[Ru2(H2O)2(NH4)8S2](SiF6)2111446(Woods & Wilson, 2021)1.666 (2)–1.7065 (19)4.5524.031
SiF448147(Mootz & Korte, 1984)1.5401 (6)4.4553.945
SrSiF6·2H2O20552(Golovastikov & Belov, 1982)1.675 (5)–1.700 (5)4.5023.987
[Tl2(NH3)6]SiF6·2NH3144214(Rudel et al., 2021)1.687 (2)–1.6877 (15)4.4883.974
Tl2SiF6136300(Rienmüller et al., 2021)1.686 (6)4.5053.989
Tl3F[SiF6]136302(Rienmüller et al., 2021)1.688 (6)–1.695 (6)4.4393.931
 

Funding information

Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research and Innovation Agency (N1-0189).

References

First citationBandemehr, J., Klippstein, J., Ivlev, S., Sachs, M. & Kraus, F. (2020). Z. Kristallogr. 235, 247–254.  Web of Science CrossRef CAS Google Scholar
First citationBergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66–69.  CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., Pakawatchai, C., Skelton, B. W., Thanyasirikul, Y. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2583–2588.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bonding in Inorganic Chemistry: The Bond Valence Model. Oxford: Oxford University Press.  Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, I. D. (2020). bvparam2020.cif, Accumulated Table of Bond Valence Parameters, (IUCr) Bond valence parameters, http://www.iucr.org/resources/data/datasets/bond-valence-parameters. Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCameron, T. S., Knop, O. & MacDonald, L. A. (1983). Can. J. Chem. 61, 184–188.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCarter, R. H. (1932). J. Econ. Entomol. 25, 707–709.  CrossRef CAS Google Scholar
First citationCherkasova, T. G., Tatarinova, E. S. & Cherkasova, E. V. (2004). Zh. Neorg. Khim. 49, 1161–1164.  CAS Google Scholar
First citationChevrier, G., Hardy, A. & Jéhanno, G. (1981). Acta Cryst. A37, 578–584.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationClark, M. J. R., Fleming, J. E. & Lynton, H. (1969). Can. J. Chem. 47, 3859–3861.  CrossRef ICSD CAS Web of Science Google Scholar
First citationConley, B. D., Yearwood, B. C., Parkin, S. & Atwood, D. A. (2002). J. Fluorine Chem. 115, 155–160.  Web of Science CSD CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868–4870.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCotton, F. A., Falvello, L. R., Murillo, C. A. & Quesada, J. F. (1992). J. Solid State Chem. 96, 192–198.  CrossRef ICSD CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J., Chval, J. & Petříček, V. (2001). Acta Cryst. E57, i90–i91.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationFischer, J. & Krämer, V. (1991). Mater. Res. Bull. 26, 925–930.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFrisoni, S., Brenna, S. & Masciocchi, N. (2011). Powder Diffr. 26, 308–312.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGel'mbol'dt, V. O., Minacheva, L. Kh., Ganin, E. V., Sergienko, V. S. & Botoshansky, M. S. (2009). Zh. Neorg. Khim. 54, 1974.  Google Scholar
First citationGillespie, R. J. & Landa, B. (1973). Inorg. Chem. 12, 1383–1389.  CrossRef CAS Web of Science Google Scholar
First citationGolovastikov, N. I. & Belov, N. V. (1982). Kristallografiya, 27, 1084–1086.  CAS Google Scholar
First citationGolubev, A. M., Ilinets, A. M., Tsvigunov, A. N. & Makarevich, L. G. (1991). Kristallografiya, 36, 214–216.  CAS Google Scholar
First citationGramaccioli, C. M. & Campostrini, I. (2007). Can. Mineral. 45, 1275–1280.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGubin, A. I., Buranbaev, M. Zh., Nurakhmetov, N. N., Suyundikova, F. O. & Tashenov, A. (1988). Kristallografiya, 33, 509–510.  CAS Google Scholar
First citationHamilton, W. C. (1962). Acta Cryst. 15, 353–360.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationHinteregger, E., Wurst, K., Niederwieser, N., Heymann, G. & Huppertz, H. (2014). Z. Kristallogr. 229, 77–82.  CAS Google Scholar
First citationJensen, W. B. (1989). Cohesion and Structure, Vol. 2, The Structures of Binary Compounds, edited by F. R. de Boer and D. G. Pettifor, pp. 105–146. Amsterdam: North-Holland  Google Scholar
First citationKawasaki, A., Ishikawa, K., Suge, T., Yoshiyama, M., Asaoka, K. & Ebisu, S. (1996). J. Dent. 24, 429–434.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKristl, M., Drofenik, M. & Golič, L. (2002). Acta Chim. Slov. 49, 243–250.  CAS Google Scholar
First citationKubus, M. & Meyer, H.-J. (2013). Z. Anorg. Allg. Chem. 639, 669–671.  Web of Science CrossRef CAS Google Scholar
First citationKutoglu, A., Nikolov, V., Petrov, K. & Allmann, R. (2009). ICSD Communication.  Google Scholar
First citationLacroix, M. R., Bukovsky, E. V., Lozinšek, M., Folsom, T. C., Newell, B. S., Liu, Y., Peryshkov, D. V. & Strauss, S. H. (2018). Inorg. Chem. 57, 14983–15000.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLynton, H. & Siew, P. Y. (1973). Can. J. Chem. 51, 227–229.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMikhailov, A., Vuković, V., Kijatkin, C., Wenger, E., Imlau, M., Woike, T., Kostin, G. & Schaniel, D. (2019). Acta Cryst. B75, 1152–1163.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationMootz, D. & Korte, L. (1984). Z. Naturforsch. B, 39, 1295–1299.  CrossRef Google Scholar
First citationMootz, D. & Oellers, E. J. (1988). Z. Anorg. Allg. Chem. 559, 27–39.  CrossRef ICSD CAS Web of Science Google Scholar
First citationNaumov, D. Yu., Kashcheeva, N. E., Boldyreva, E. V. & Howard, J. A. K. (1999). Acta Cryst. C55, 1205–1208.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNisbet, M. L., Hiralal, E. & Poeppelmeier, K. R. (2021). Acta Cryst. E77, 158–164.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationOuasri, A., Lambarki, F., Rhandour, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 1507–1510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuasri, A., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2002). J. Raman Spectrosc. 33, 715–719.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRay, S. & Mostafa, G. (1996). Z. Kristallogr. 211, 368–372.  CrossRef ICSD CAS Web of Science Google Scholar
First citationRay, S., Zalkin, A. & Templeton, D. H. (1973a). Acta Cryst. B29, 2741–2747.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationRay, S., Zalkin, A. & Templeton, D. H. (1973b). Acta Cryst. B29, 2748–2751.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationRienmüller, J., Bandemehr, J. & Kraus, F. (2021). Z. Naturforsch. B, 76, 559–565.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationRissom, C., Schmidt, H. & Voigt, W. (2008). Cryst. Res. Technol. 43, 74–82.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRoss, C. R., Bauer, M. R., Nielson, R. M. & Abrahams, S. C. (1999). Acta Cryst. B55, 246–254.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRudel, S. S., Graubner, T., Karttunen, A. J., Dehnen, S. & Kraus, F. (2021). Inorg. Chem. 60, 15031–15040.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
First citationSchnering, H. G. von V. & Vu, D. (1983). Angew. Chem. 95, 421.  CrossRef ICSD Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmart, R. M. & Roy, D. M. (1979). Cem. Concr. Res. 9, 269–273.  CrossRef CAS Web of Science Google Scholar
First citationStoll, C., Seibald, M., Baumann, D., Bandemehr, J., Kraus, F. & Huppertz, H. (2021). Eur. J. Inorg. Chem. pp. 62–70.  Web of Science CrossRef ICSD Google Scholar
First citationSvensson, G., Albertsson, J., Svensson, C. & Elding, L. I. (1986). Acta Chem. Scand. 40a, 631–633.  CrossRef ICSD Web of Science Google Scholar
First citationSyoyama, S. & Osaki, K. (1972). Acta Cryst. B28, 2626–2627.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationTang, R. L., Lian, X., Yao, W. D., Liu, W. & Guo, S. P. (2021). Dalton Trans. 50, 16562–16567.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationTorii, A., Ogawa, K., Tamura, H. & Osaki, K. (1997). Acta Cryst. C53, 833–836.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationTroyanov, S. I., Morozov, I. V. & Korenev, Yu. M. (1992). Zh. Neorg. Khim. 37, 380–387.  CAS Google Scholar
First citationWaskowska, A. (1997). Acta Cryst. C53, 128–130.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoods, J. J. & Wilson, J. J. (2021). Angew. Chem. Int. Ed. 60, 1588–1592.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Jing, Q., Fang, Y. & Chen, Z. (2017). Z. Anorg. Allg. Chem. 643, 1739–1743.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds