research communications
6·2H2O(mP2) and reevaluation of the SiIV–F bond-valence parameter R0
of CaSiFaJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The structure of a second polymorph of CaSiF6·2H2O [calcium hexafluoridosilicate dihydrate; P2/c (No. 13), mP2] was elucidated by single-crystal X-ray diffraction. It arose as an unexpected product when soda-lime glass was attacked by HF. Its consists of infinite ∞2[Ca(H2O)2/1(SiF6)4/4] layers oriented parallel to the bc-crystallographic plane, a unique motif among structurally characterized hydrated hexafluoridosilicates. The also exhibits inter- and intralayer hydrogen bonds, with the interlayer O—H⋯O hydrogen bonds involving a disordered hydrogen atom. The large deviation between the calculated bond-valence sum for Si and the expected value prompted a redetermination of the empirical SiIV–F bond-valence parameter R0. Based on a data set of 42 high-quality crystal structures containing 49 independent SiIV coordination environments, a revised value of 1.534 Å was derived for R0.
Keywords: calcium hexafluoridosilicate; bond-valence parameter; crystal structure; disorder; hydrogen bonding.
CCDC reference: 2303630
1. Chemical context
Calcium hexafluoridosilicate (CaSiF6) and its hydrated form, calcium hexafluoridosilicate dihydrate (CaSiF6·2H2O), are both commercially available chemicals that have found numerous uses, including as additives for cement manufacture (Smart & Roy, 1979), improving dentine remediation treatments (Kawasaki et al., 1996), and as precursors for synthesis of luminescent materials (Kubus & Meyer, 2013). Although the synthesis of CaSiF6·2H2O and its dehydration to CaSiF6 were investigated more than 90 years ago (Carter, 1932), their crystal structures were determined relatively recently by laboratory-based powder X-ray diffraction using simulated annealing and (Frisoni et al., 2011). The study revealed that CaSiF6·2H2O crystallizes in the monoclinic (space group P21/n, mP4) and exhibits a three-dimensional framework structure. In this work, the of a second polymorph of CaSiF6·2H2O (space group P2/c, mP2) was determined by low-temperature single-crystal X-ray diffraction. The observed discrepancies between the calculated and expected bond-valence sum (BVS) for Si also provided the impetus for a reevaluation of the SiIV–F bond-valence parameter R0 and an improved value of R0 was determined.
2. Structural commentary
The 6·2H2O(mP2) features eight atoms in the with one hydrogen atom disordered over two positions. The Ca atom is located on a twofold rotation axis and the Si atom is situated on an inversion centre, whereas the light atoms all lie on general positions. The hexafluoridosilicate anion displays a nearly ideal octahedral coordination, with the cis-F—Si—F angles ranging from 88.37 (4) to 91.63 (4)°. The average Si—F bond length is 1.6859 Å (Table 1), with the bond lengths ranging from 1.6808 (9) to 1.6942 (9) Å, which is in good agreement with the Si—F distances observed in the crystal structures of CaSiF6·2H2O(mP4) (Frisoni et al., 2011) and SrSiF6·2H2O (Golovastikov & Belov, 1982), which span from 1.648 (4) to 1.701 (3) Å and 1.675 (5) to 1.700 (5) Å, respectively. The Ca atom is coordinated by six fluorine atoms at distances of 2.2965 (9)–2.4105 (9) Å originating from four neighbouring [SiF6]2– octahedra, two of which are bound to the metal centre in a bidentate and two in a monodentate manner. In turn, each [SiF6]2– octahedron is coordinated to four Ca2+ cations. The primary coordination sphere of the Ca2+ cation is completed by two water molecules, with a Ca—O distance of 2.4331 (13) Å, resulting in a distorted square antiprismatic coordination (Fig. 1). Such connectivity leads to the formation of ∞2[Ca(H2O)2/1(SiF6)4/4] (Jensen, 1989) infinite layers, which extend along the bc-crystallographic plane and are stacked along the a-axis (Fig. 2), a structural motif that differs from all other hydrated hexafluoridosilicates. Bond-valence sum calculations (Brown, 2009) for Ca and Si using the parameters b = 0.37, R0 = 1.842 Å (Ca–F), R0 = 1.967 Å (Ca–O), and R0 = 1.58 Å (Si–F) obtained from the literature (Brown 2020; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991), yielded 2.05 valence units (v.u.) for Ca and 4.51 v.u. for Si (expected values: 2 for Ca, 4 for Si). Similarly inflated values for the bond-valence sum of Si were also observed when other crystal structures of hexafluoridosilicates were examined, indicating the need to reevaluate the current SiIV–F parameter R0 (Section 5).
of CaSiF3. Supramolecular features
The 6·2H2O(mP2) exhibits both intralayer O—H⋯F and interlayer O—H⋯O hydrogen bonds (Table 2, Fig. 3). The intralayer hydrogen bonds are formed between the F3 atom and the non-disordered hydrogen atom H1, with an O1⋯F3 distance of 2.9042 (14) Å and a graph-set motif of S(6) (Etter et al., 1990). The oxygen atom O1 is involved in two further hydrogen bonds with the disordered hydrogen atoms H2A and H2B, forming O1—H2A⋯O1 and O1—H2B⋯O1 hydrogen bonds, with O⋯O distances of 2.902 (3) and 2.856 (3) Å, respectively, that link the adjacent ∞2[Ca(H2O)2/1(SiF6)4/4] layers.
of CaSiF4. Database survey
A search of the Inorganic et al., 1983; Zagorac et al., 2019) revealed that in addition to the aforementioned mP4 polymorph of CaSiF6·2H2O, twelve other hydrated hexafluoridosilicates of divalent cations have been crystallographically characterized to date. Most of them form hexahydrates with the general formula MSiF6·6H2O, where M = Mg (Syoyama & Osaki, 1972; Cherkasova et al., 2004), Cr (Cotton et al., 1992), Mn (Torii et al., 1997), Fe (Hamilton, 1962; Chevrier et al., 1981), Co (Lynton & Siew; 1973; Ray et al., 1973a; Ray & Mostafa, 1996), Ni (Ray et al., 1973a), Cu (Ray et al., 1973b), and Zn (Ray et al., 1973a). The aforementioned compounds all exhibit a similar structural motif composed of alternating discrete [M(H2O)6]2+ and [SiF6]2– octahedra, connected via O—H⋯F hydrogen bonds into a three-dimensional network. The only examples of tetrahydrated metal(II) hexafluoridosilicates are the isostructural CrSiF6·4H2O (Cotton et al., 1993) and CuSiF6·4H2O (Clark et al., 1969; Schnering & Vu, 1983; Troyanov et al., 1992; Cotton et al., 1993). In their crystal structures, infinite zigzag chains are formed by the coordination of two [SiF6]2– octahedra to the apical positions of the square-planar [M(H2O)4]2+ units. The resulting highly distorted octahedral coordination surrounding the metal centre is characteristic of the Jahn–Teller active cations. The individual chains in the structures are connected by O—H⋯F hydrogen bonds that link the terminal fluorine atoms of the [SiF6]2– units to the water molecules coordinating the metal centres of the adjacent chains. Lastly there are three examples of metal(II) hexafluoridosilicate dihydrates, the isostructural pair CaSiF6·2H2O(mP4) (Frisoni et al., 2011) and SrSiF6·2H2O (Golovastikov & Belov, 1982), and PbSiF6·2H2O (Golubev et al., 1991). All three compounds feature an extended three-dimensional framework structure and display water molecules bridging the metal centres, giving rise to dimeric [(H2O)M(μ-H2O)2M(OH2)]4+ units for M = Ca, Sr and the more complex [Pb4(H2O)6]8+ units in the structure of PbSiF6·2H2O, which contain both μ- and μ3-water molecules. The Ca2+ cation in CaSiF6·2H2O(mP4) is coordinated by five fluorine and three oxygen atoms arranged in a distorted square-antiprismatic coordination. Each of the five fluorine atoms coordinated to the Ca2+ ion belongs to a separate [SiF6]2– octahedron, which contrasts with the structure of the newly discovered mP2 polymorph, where both monodentate and bidentate coordination of the [SiF6]2– anions to the Ca2+ cations is observed (Fig. 4). Conversely, each [SiF6]2– anion in the structure of CaSiF6·2H2O(mP4) coordinates five neighbouring Ca2+ cations, leaving one terminal fluorine atom, which in turn accepts O—H⋯F hydrogen bonds from two water ligands.
Database (ICSD, version January 2023; Bergerhoff5. Redetermination of SiIV–F bond-valence parameter R0
In order to determine a more accurate value of the SiIV–F bond-valence parameter R0, the ICSD was searched for all crystal structures containing SiIV in an exclusively fluorine environment. To ensure that only high-quality data were used for the calculation of the R0 parameter, the data set was limited to crystal structures solved by single-crystal X-ray diffraction at ambient or low-temperature conditions, excluding disordered structures or those with an R1-value above 0.05. A data set of 42 crystal structures was obtained, containing a total of 49 independent SiIV coordination environments, including the compound presented herein (Table 3). The R0i value for each individual Si coordination environment was calculated using formula (A1.3) from the literature (Brown, 2002), which assumes a fixed value for the b parameter (0.37 Å). An improved value for the R0 parameter, 1.534 Å, was obtained by averaging the R0i values, which ranged from 1.508 to 1.562 Å. BVS calculations employing the new empirical parameter yield significantly improved results compared to the calculations performed with the previously reported parameter, as 46 out of 49 evaluated coordination environments give a bond-valence sum within ±0.2 v.u. of the expected value (3.8–4.2 v.u.), in contrast to only a single one when using the old parameter (Table 4).
6. Synthesis and crystallization
Colourless single crystals of the title compound were discovered to have grown serendipitously on a soda-lime watch glass containing a sample of [XeF][SbF6] (Gillespie & Landa, 1973) frozen under a protective layer of perfluorodecalin at 255 K. It is presumed that CaSiF6·2H2O(mP2) formed when the soda-lime glass was attacked by the HF forming during hydrolysis of the highly oxidizing XeII compound.
7. Raman spectroscopy
A Bruker Senterra II confocal Raman microscope was used to record the Raman spectrum on a randomly oriented single crystal of the title compound. The spectrum was measured at room temperature (297 K) in the 50–4250 cm−1 range with a resolution of 4 cm−1 using the 532 nm laser line operating at 12.5 mW.
In the Raman spectrum of CaSiF6·2H2O(mP2) (Fig. 5) the bands observed at 677 and 500 cm−1 correspond to the ν1 and ν2 modes of the [SiF6]2– anion, respectively. The bands at 425 and 392 cm−1 can be assigned to the ν5 mode, split due to the distortion of the anion from the ideal Oh symmetry (Ouasri et al., 2002). The Raman bands observed in the 3300–3600 cm−1 region belong to the symmetric ν1 and antisymmetric ν3 O—H stretching of the coordinated water molecules, whereas the bands at 1649 and 3225 cm−1 could likely be assigned to δ(HOH) (ν2) and 2δ(HOH), respectively (Lacroix et al., 2018).
8. Refinement
Crystal data, data collection and structure . The positions of the hydrogen atoms, including the disordered one, were located in difference maps and freely refined, including their isotropic thermal parameter Uiso (Cooper et al., 2010). The of the disordered hydrogen atoms' occupancies, resulted in values of 0.51 (5) and 0.49 (5) for H2A and H2B, respectively.
details are summarized in Table 5
|
Supporting information
CCDC reference: 2303630
https://doi.org/10.1107/S2056989023009349/hb8080sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009349/hb8080Isup2.hkl
CaSiF6·2H2O | F(000) = 216 |
Mr = 218.20 | Dx = 2.492 Mg m−3 |
Monoclinic, P2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 5.96605 (17) Å | Cell parameters from 5902 reflections |
b = 5.13977 (12) Å | θ = 7.8–75.3° |
c = 9.9308 (3) Å | µ = 12.29 mm−1 |
β = 107.275 (3)° | T = 100 K |
V = 290.78 (1) Å3 | Plate, colourless |
Z = 2 | 0.15 × 0.08 × 0.02 mm |
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M diffractometer | 608 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 598 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.051 |
Detector resolution: 13.3333 pixels mm-1 | θmax = 75.4°, θmin = 7.8° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysalisPro; Rigaku OD, 2022) | k = −6→6 |
Tmin = 0.365, Tmax = 1.000 | l = −12→12 |
8322 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | All H-atom parameters refined |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0488P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
608 reflections | Δρmax = 0.32 e Å−3 |
61 parameters | Δρmin = −0.37 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ca1 | 0.000000 | 0.58252 (7) | 0.250000 | 0.01360 (19) | |
Si1 | 0.000000 | 0.000000 | 0.500000 | 0.0135 (2) | |
F1 | −0.06447 (16) | 0.26688 (17) | 0.39793 (9) | 0.0187 (3) | |
F2 | 0.20424 (15) | 0.17052 (18) | 0.62125 (9) | 0.0178 (2) | |
F3 | −0.19861 (16) | 0.09149 (15) | 0.58239 (10) | 0.0164 (3) | |
O1 | 0.3884 (2) | 0.4033 (2) | 0.36145 (15) | 0.0190 (3) | |
H1 | 0.378 (5) | 0.255 (6) | 0.373 (3) | 0.035 (7)* | |
H2B | 0.469 (8) | 0.483 (9) | 0.441 (5) | 0.016 (13)* | 0.49 (5) |
H2A | 0.475 (8) | 0.419 (7) | 0.318 (5) | 0.017 (13)* | 0.51 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0176 (3) | 0.0092 (3) | 0.0144 (3) | 0.000 | 0.00529 (18) | 0.000 |
Si1 | 0.0181 (3) | 0.0090 (3) | 0.0140 (3) | 0.0000 (2) | 0.0059 (2) | 0.0000 (2) |
F1 | 0.0251 (5) | 0.0124 (4) | 0.0201 (5) | 0.0025 (4) | 0.0091 (4) | 0.0041 (3) |
F2 | 0.0189 (5) | 0.0155 (4) | 0.0190 (5) | −0.0010 (3) | 0.0056 (4) | −0.0037 (3) |
F3 | 0.0201 (5) | 0.0120 (5) | 0.0185 (5) | −0.0003 (3) | 0.0080 (4) | −0.0020 (3) |
O1 | 0.0199 (6) | 0.0145 (6) | 0.0224 (6) | −0.0008 (4) | 0.0058 (5) | 0.0006 (4) |
Ca1—Si1i | 3.2815 (3) | Si1—F1vi | 1.6808 (9) |
Ca1—Si1ii | 3.2815 (3) | Si1—F1 | 1.6809 (9) |
Ca1—F1 | 2.2965 (9) | Si1—F2vi | 1.6826 (9) |
Ca1—F1iii | 2.2965 (9) | Si1—F2 | 1.6827 (9) |
Ca1—F2iv | 2.3783 (9) | Si1—F3 | 1.6942 (9) |
Ca1—F2v | 2.3783 (9) | Si1—F3vi | 1.6942 (9) |
Ca1—F3iv | 2.4105 (9) | O1—H1 | 0.78 (3) |
Ca1—F3v | 2.4105 (9) | O1—H2B | 0.90 (5) |
Ca1—O1 | 2.4331 (13) | O1—H2A | 0.77 (5) |
Ca1—O1iii | 2.4331 (13) | ||
Si1ii—Ca1—Si1i | 98.328 (10) | O1—Ca1—Si1i | 112.20 (3) |
F1iii—Ca1—Si1i | 86.58 (2) | O1iii—Ca1—Si1ii | 112.20 (3) |
F1—Ca1—Si1i | 169.60 (2) | O1iii—Ca1—Si1i | 96.74 (3) |
F1iii—Ca1—Si1ii | 169.60 (2) | O1iii—Ca1—O1 | 135.49 (6) |
F1—Ca1—Si1ii | 86.58 (2) | Ca1vii—Si1—Ca1v | 180.0 |
F1—Ca1—F1iii | 90.11 (4) | F1—Si1—Ca1v | 82.60 (3) |
F1—Ca1—F2iv | 158.57 (3) | F1—Si1—Ca1vii | 97.40 (3) |
F1—Ca1—F2v | 79.82 (3) | F1vi—Si1—Ca1v | 97.40 (3) |
F1iii—Ca1—F2iv | 79.82 (3) | F1vi—Si1—Ca1vii | 82.60 (3) |
F1iii—Ca1—F2v | 158.57 (3) | F1vi—Si1—F1 | 180.0 |
F1—Ca1—F3iv | 142.32 (3) | F1vi—Si1—F2vi | 89.65 (5) |
F1—Ca1—F3v | 100.99 (3) | F1—Si1—F2vi | 90.35 (5) |
F1iii—Ca1—F3v | 142.32 (3) | F1—Si1—F2 | 89.65 (5) |
F1iii—Ca1—F3iv | 100.99 (3) | F1vi—Si1—F2 | 90.35 (5) |
F1—Ca1—O1 | 76.07 (4) | F1—Si1—F3 | 89.83 (4) |
F1iii—Ca1—O1iii | 76.07 (4) | F1—Si1—F3vi | 90.17 (4) |
F1iii—Ca1—O1 | 72.88 (4) | F1vi—Si1—F3 | 90.17 (4) |
F1—Ca1—O1iii | 72.88 (4) | F1vi—Si1—F3vi | 89.83 (4) |
F2v—Ca1—Si1ii | 29.44 (2) | F2—Si1—Ca1v | 44.00 (3) |
F2v—Ca1—Si1i | 99.95 (3) | F2—Si1—Ca1vii | 136.00 (3) |
F2iv—Ca1—Si1i | 29.44 (2) | F2vi—Si1—Ca1v | 136.00 (3) |
F2iv—Ca1—Si1ii | 99.95 (3) | F2vi—Si1—Ca1vii | 44.00 (3) |
F2iv—Ca1—F2v | 115.49 (5) | F2vi—Si1—F2 | 180.0 |
F2iv—Ca1—F3v | 77.00 (3) | F2—Si1—F3vi | 91.63 (4) |
F2v—Ca1—F3v | 58.87 (3) | F2vi—Si1—F3 | 91.63 (4) |
F2v—Ca1—F3iv | 77.00 (3) | F2—Si1—F3 | 88.37 (4) |
F2iv—Ca1—F3iv | 58.87 (3) | F2vi—Si1—F3vi | 88.37 (4) |
F2v—Ca1—O1iii | 82.87 (4) | F3—Si1—Ca1v | 45.25 (3) |
F2iv—Ca1—O1iii | 121.89 (4) | F3vi—Si1—Ca1v | 134.75 (3) |
F2iv—Ca1—O1 | 82.87 (4) | F3—Si1—Ca1vii | 134.75 (3) |
F2v—Ca1—O1 | 121.89 (4) | F3vi—Si1—Ca1vii | 45.25 (3) |
F3v—Ca1—Si1ii | 29.94 (2) | F3—Si1—F3vi | 180.0 |
F3v—Ca1—Si1i | 87.56 (2) | Si1—F1—Ca1 | 155.57 (5) |
F3iv—Ca1—Si1i | 29.94 (2) | Si1—F2—Ca1v | 106.56 (4) |
F3iv—Ca1—Si1ii | 87.56 (2) | Si1—F3—Ca1v | 104.81 (4) |
F3v—Ca1—F3iv | 91.93 (4) | Ca1—O1—H1 | 110 (2) |
F3v—Ca1—O1 | 75.09 (4) | Ca1—O1—H2B | 115 (3) |
F3v—Ca1—O1iii | 141.61 (4) | Ca1—O1—H2A | 114 (3) |
F3iv—Ca1—O1 | 141.61 (4) | H1—O1—H2B | 111 (3) |
F3iv—Ca1—O1iii | 75.09 (4) | H1—O1—H2A | 107 (3) |
O1—Ca1—Si1ii | 96.74 (3) | ||
Ca1v—Si1—F1—Ca1 | 115.56 (12) | F2vi—Si1—F1—Ca1 | −108.01 (13) |
Ca1vii—Si1—F1—Ca1 | −64.44 (12) | F2—Si1—F1—Ca1 | 71.99 (13) |
Ca1vii—Si1—F2—Ca1v | 180.000 (1) | F2vi—Si1—F3—Ca1v | −170.07 (5) |
Ca1vii—Si1—F3—Ca1v | 180.000 (1) | F2—Si1—F3—Ca1v | 9.93 (5) |
F1vi—Si1—F2—Ca1v | −100.32 (4) | F3vi—Si1—F1—Ca1 | −19.64 (13) |
F1—Si1—F2—Ca1v | 79.69 (4) | F3—Si1—F1—Ca1 | 160.36 (13) |
F1—Si1—F3—Ca1v | −79.72 (4) | F3vi—Si1—F2—Ca1v | 169.84 (5) |
F1vi—Si1—F3—Ca1v | 100.28 (4) | F3—Si1—F2—Ca1v | −10.16 (5) |
Symmetry codes: (i) −x, y+1, −z+1/2; (ii) x, y+1, z; (iii) −x, y, −z+1/2; (iv) x, −y+1, z−1/2; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1; (vii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···F3vi | 0.78 (3) | 2.19 (3) | 2.9042 (14) | 153 (3) |
O1—H2B···O1viii | 0.90 (5) | 1.98 (5) | 2.856 (3) | 167 (4) |
O1—H2A···O1ix | 0.77 (5) | 2.17 (5) | 2.902 (3) | 159 (4) |
Symmetry codes: (vi) −x, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) −x+1, y, −z+1/2. |
R0 | Maximum BVS | Minimum BVS | Mean BVS | Standard deviation | % of data within ± 0.2 v.u. | % of data within ± 0.1 v.u. | |
This study | 1.534 | 4.304 | 3.714 | 4.005 | 0.086 | 93.9 | 87.8 |
Brese & O'Keeffe (1991) | 1.58 | 4.860 | 4.194 | 4.522 | 0.098 | 2.0 | 0 |
Compound | ICSD number | Reference | Si—F bond-length range (Å) | BVS for Si (R0 from Brese & O'Keeffe, 1991) | BVS for Si (new R0) |
BaSiF6 | 60882 | (Svensson et al., 1986) | 1.688 (2) | 4.481 | 3.968 |
(CH3NH3)2SiF6 | 110673 | (Conley et al., 2002) | 1.6810 (12)–1.6828 (17) | 4.559 | 4.037 |
(CH7N4)2SiF6·2H2O | 280103 | (Ross et al., 1999) | 1.6797 (9)–1.6808 (9) | 4.578 | 4.054 |
(CH8N4)SiF6 | 280102 | (Ross et al., 1999) | 1.6684 (9)–1.7043 (9) | 4.529 | 4.010 |
(C(NH2)2OH)2SiF6 | 63069 | (Gubin et al., 1988) | 1.677 (2)–1.6971 (18) | 4.513 | 3.996 |
(C(NH2)3)2SiF6 | 59237 | (Waskowska, 1997) | 1.6805 (12)–1.6833 (8) | 4.550 | 4.029 |
(C4H13N5)SiF6 | 166449 | (Gel'mbol'dt et al., 2009) | 1.657 (3)–1.698 (3) | 4.643 | 4.111 |
CaSiF6·2H2O(mP2) | Present work | 1.6808 (9)–1.6942 (9) | 4.507 | 3.991 | |
[Co(NH3)5(NO2)]SiF6 | 280030 | (Naumov et al., 1999) | 1.6769 (18)–1.6899 (13) | 4.495 | 3.981 |
CrSiF6·4H2O | 165384 | (Cotton et al., 1993) | 1.6640 (8)–1.6968 (8) | 4.546 | 4.026 |
CsLiSiF6 | 142874 | (Stoll et al., 2021) | 1.667 (2)–1.699 (2) | 4.479 | 3.966 |
[Cu(bpy)2(H2O)]SiF6·4H2O | 133607 | (Nisbet et al., 2021) | 1.6677 (10)–1.6947 (9) | 4.574 | 4.050 |
[Cu{SC(NH2)2}4]2SiF6 | 249750 | (Bowmaker et al., 2008) | 1.663 (2)–1.696 (2) | 4.585 | 4.060 |
CuSiF6·4H2O | 165385 | (Cotton et al., 1993) | 1.6686 (8)–1.6973 (9) | 4.510 | 3.993 |
CuSiF6·6H2O | 34760 | (Ray et al., 1973b) | 1.679 (5) | 4.591 | 4.066 |
1.659 (6)–1.674 (6) | 4.765 | 4.219 | |||
H2SiF6·4H2O | 40388 | (Mootz & Oellers, 1988) | 1.666 (1)–1.696 (1) | 4.553 | 4.031 |
H2SiF6·6H2O | 40389 | (Mootz & Oellers, 1988) | 1.677 (1)–1.704 (1) | 4.447 | 3.938 |
H2SiF6·9.5H2O | 40390 | (Mootz & Oellers, 1988) | 1.680 (1)–1.697 (1) | 4.454 | 3.944 |
1.684 (1)–1.706 (1) | 4.448 | 3.939 | |||
K2SiF6(cF4) | 420429 | (Kutoglu et al., 2009) | 1.6873 (16) | 4.490 | 3.975 |
K2SiF6(hP2) | 158483 | (Gramaccioli & Campostrini, 2007) | 1.681 (2)–1.689 (2) | 4.518 | 4.000 |
K2SiF6·KNO3 | 417735 | (Rissom et al., 2008) | 1.6782 (6) | 4.601 | 4.074 |
KLiSiF6 | 142875 | (Stoll et al., 2021) | 1.676 (1)–1.701 (1) | 4.495 | 3.980 |
KNaSiF6 | 71334 | (Fischer & Krämer, 1991) | 1.641 (5)–1.678 (5) | 4.860 | 4.304 |
K3Na(SiF6)(TaF7) | 122403 | (Tang et al., 2021) | 1.665 (3)–1.702 (3) | 4.558 | 4.036 |
K3Na4(BF4)(SiF6)3 | 121301 | (Bandemehr et al., 2020) | 1.650 (2)–1.699 (2) | 4.535 | 4.015 |
1.666 (2)–1.700 (1) | 4.560 | 4.038 | |||
Li2SiF6 | 425923 | (Hinteregger et al., 2014) | 1.685 (2) | 4.518 | 4.000 |
1.690 (2)–1.690 (8) | 4.457 | 3.947 | |||
MgSiF6·6H2O | 250196 | (Cherkasova et al., 2004) | 1.6888 (9)–1.7465 (10) | 4.194 | 3.714 |
MnSiF6·6H2O | 59274 | (Torii et al., 1997) | 1.690 (7) | 4.457 | 3.947 |
1.668 (7)–1.693 (7) | 4.575 | 4.051 | |||
(NH3OH)2SiF6·2H2O | 94567 | (Kristl et al., 2002) | 1.6793 (10)–1.6837 (10) | 4.570 | 4.046 |
(NH4)2SiF6 | 54724 | (Fábry et al., 2001) | 1.695 (1)–1.700 (1) | 4.368 | 3.867 |
(N2H5)2SiF6 | 776 | (Ouasri et al., 2019) | 1.6777 (4)–1.7101 (4) | 4.476 | 3.963 |
(N2H6)SiF6 | 35702 | (Cameron et al., 1983) | 1.671 (1)–1.683 (1) | 4.596 | 4.070 |
Na2SiF6 | 433134 | (Zhang et al., 2017) | 1.6755 (14)–1.6756 (14) | 4.635 | 4.104 |
1.6907 (16)–1.6916 (11) | 4.443 | 3.934 | |||
PbSiF6·2H2O | 39358 | (Golubev et al., 1991) | 1.645 (10)–1.707 (10) | 4.558 | 4.036 |
1.664 (10)–1.716 (10) | 4.411 | 3.906 | |||
Rb2SiF6 | 136303 | (Rienmüller et al., 2021) | 1.693 (3) | 4.421 | 3.915 |
[RuF(NH3)4(NO)]SiF6 | 703 | (Mikhailov et al., 2019) | 1.661 (1)–1.713 (2) | 4.556 | 4.035 |
[Ru2(H2O)2(NH4)8S2](SiF6)2 | 111446 | (Woods & Wilson, 2021) | 1.666 (2)–1.7065 (19) | 4.552 | 4.031 |
SiF4 | 48147 | (Mootz & Korte, 1984) | 1.5401 (6) | 4.455 | 3.945 |
SrSiF6·2H2O | 20552 | (Golovastikov & Belov, 1982) | 1.675 (5)–1.700 (5) | 4.502 | 3.987 |
[Tl2(NH3)6]SiF6·2NH3 | 144214 | (Rudel et al., 2021) | 1.687 (2)–1.6877 (15) | 4.488 | 3.974 |
Tl2SiF6 | 136300 | (Rienmüller et al., 2021) | 1.686 (6) | 4.505 | 3.989 |
Tl3F[SiF6] | 136302 | (Rienmüller et al., 2021) | 1.688 (6)–1.695 (6) | 4.439 | 3.931 |
Funding information
Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research and Innovation Agency (N1-0189).
References
Bandemehr, J., Klippstein, J., Ivlev, S., Sachs, M. & Kraus, F. (2020). Z. Kristallogr. 235, 247–254. Web of Science CrossRef CAS Google Scholar
Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66–69. CrossRef CAS Web of Science Google Scholar
Bowmaker, G. A., Pakawatchai, C., Skelton, B. W., Thanyasirikul, Y. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2583–2588. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bonding in Inorganic Chemistry: The Bond Valence Model. Oxford: Oxford University Press. Google Scholar
Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. Web of Science CrossRef PubMed CAS Google Scholar
Brown, I. D. (2020). bvparam2020.cif, Accumulated Table of Bond Valence Parameters, (IUCr) Bond valence parameters, http://www.iucr.org/resources/data/datasets/bond-valence-parameters. Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cameron, T. S., Knop, O. & MacDonald, L. A. (1983). Can. J. Chem. 61, 184–188. CrossRef ICSD CAS Web of Science Google Scholar
Carter, R. H. (1932). J. Econ. Entomol. 25, 707–709. CrossRef CAS Google Scholar
Cherkasova, T. G., Tatarinova, E. S. & Cherkasova, E. V. (2004). Zh. Neorg. Khim. 49, 1161–1164. CAS Google Scholar
Chevrier, G., Hardy, A. & Jéhanno, G. (1981). Acta Cryst. A37, 578–584. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Clark, M. J. R., Fleming, J. E. & Lynton, H. (1969). Can. J. Chem. 47, 3859–3861. CrossRef ICSD CAS Web of Science Google Scholar
Conley, B. D., Yearwood, B. C., Parkin, S. & Atwood, D. A. (2002). J. Fluorine Chem. 115, 155–160. Web of Science CSD CrossRef CAS Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1993). Inorg. Chem. 32, 4868–4870. CrossRef ICSD CAS Web of Science Google Scholar
Cotton, F. A., Falvello, L. R., Murillo, C. A. & Quesada, J. F. (1992). J. Solid State Chem. 96, 192–198. CrossRef ICSD CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fábry, J., Chval, J. & Petříček, V. (2001). Acta Cryst. E57, i90–i91. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Fischer, J. & Krämer, V. (1991). Mater. Res. Bull. 26, 925–930. CrossRef ICSD CAS Web of Science Google Scholar
Frisoni, S., Brenna, S. & Masciocchi, N. (2011). Powder Diffr. 26, 308–312. Web of Science CrossRef ICSD CAS Google Scholar
Gel'mbol'dt, V. O., Minacheva, L. Kh., Ganin, E. V., Sergienko, V. S. & Botoshansky, M. S. (2009). Zh. Neorg. Khim. 54, 1974. Google Scholar
Gillespie, R. J. & Landa, B. (1973). Inorg. Chem. 12, 1383–1389. CrossRef CAS Web of Science Google Scholar
Golovastikov, N. I. & Belov, N. V. (1982). Kristallografiya, 27, 1084–1086. CAS Google Scholar
Golubev, A. M., Ilinets, A. M., Tsvigunov, A. N. & Makarevich, L. G. (1991). Kristallografiya, 36, 214–216. CAS Google Scholar
Gramaccioli, C. M. & Campostrini, I. (2007). Can. Mineral. 45, 1275–1280. Web of Science CrossRef ICSD CAS Google Scholar
Gubin, A. I., Buranbaev, M. Zh., Nurakhmetov, N. N., Suyundikova, F. O. & Tashenov, A. (1988). Kristallografiya, 33, 509–510. CAS Google Scholar
Hamilton, W. C. (1962). Acta Cryst. 15, 353–360. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Hinteregger, E., Wurst, K., Niederwieser, N., Heymann, G. & Huppertz, H. (2014). Z. Kristallogr. 229, 77–82. CAS Google Scholar
Jensen, W. B. (1989). Cohesion and Structure, Vol. 2, The Structures of Binary Compounds, edited by F. R. de Boer and D. G. Pettifor, pp. 105–146. Amsterdam: North-Holland Google Scholar
Kawasaki, A., Ishikawa, K., Suge, T., Yoshiyama, M., Asaoka, K. & Ebisu, S. (1996). J. Dent. 24, 429–434. CrossRef CAS PubMed Web of Science Google Scholar
Kristl, M., Drofenik, M. & Golič, L. (2002). Acta Chim. Slov. 49, 243–250. CAS Google Scholar
Kubus, M. & Meyer, H.-J. (2013). Z. Anorg. Allg. Chem. 639, 669–671. Web of Science CrossRef CAS Google Scholar
Kutoglu, A., Nikolov, V., Petrov, K. & Allmann, R. (2009). ICSD Communication. Google Scholar
Lacroix, M. R., Bukovsky, E. V., Lozinšek, M., Folsom, T. C., Newell, B. S., Liu, Y., Peryshkov, D. V. & Strauss, S. H. (2018). Inorg. Chem. 57, 14983–15000. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lynton, H. & Siew, P. Y. (1973). Can. J. Chem. 51, 227–229. CrossRef ICSD CAS Web of Science Google Scholar
Mikhailov, A., Vuković, V., Kijatkin, C., Wenger, E., Imlau, M., Woike, T., Kostin, G. & Schaniel, D. (2019). Acta Cryst. B75, 1152–1163. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Mootz, D. & Korte, L. (1984). Z. Naturforsch. B, 39, 1295–1299. CrossRef Google Scholar
Mootz, D. & Oellers, E. J. (1988). Z. Anorg. Allg. Chem. 559, 27–39. CrossRef ICSD CAS Web of Science Google Scholar
Naumov, D. Yu., Kashcheeva, N. E., Boldyreva, E. V. & Howard, J. A. K. (1999). Acta Cryst. C55, 1205–1208. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Nisbet, M. L., Hiralal, E. & Poeppelmeier, K. R. (2021). Acta Cryst. E77, 158–164. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Ouasri, A., Lambarki, F., Rhandour, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 1507–1510. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouasri, A., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2002). J. Raman Spectrosc. 33, 715–719. Web of Science CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ray, S. & Mostafa, G. (1996). Z. Kristallogr. 211, 368–372. CrossRef ICSD CAS Web of Science Google Scholar
Ray, S., Zalkin, A. & Templeton, D. H. (1973a). Acta Cryst. B29, 2741–2747. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Ray, S., Zalkin, A. & Templeton, D. H. (1973b). Acta Cryst. B29, 2748–2751. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Rienmüller, J., Bandemehr, J. & Kraus, F. (2021). Z. Naturforsch. B, 76, 559–565. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Rissom, C., Schmidt, H. & Voigt, W. (2008). Cryst. Res. Technol. 43, 74–82. Web of Science CrossRef ICSD CAS Google Scholar
Ross, C. R., Bauer, M. R., Nielson, R. M. & Abrahams, S. C. (1999). Acta Cryst. B55, 246–254. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rudel, S. S., Graubner, T., Karttunen, A. J., Dehnen, S. & Kraus, F. (2021). Inorg. Chem. 60, 15031–15040. Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
Schnering, H. G. von V. & Vu, D. (1983). Angew. Chem. 95, 421. CrossRef ICSD Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smart, R. M. & Roy, D. M. (1979). Cem. Concr. Res. 9, 269–273. CrossRef CAS Web of Science Google Scholar
Stoll, C., Seibald, M., Baumann, D., Bandemehr, J., Kraus, F. & Huppertz, H. (2021). Eur. J. Inorg. Chem. pp. 62–70. Web of Science CrossRef ICSD Google Scholar
Svensson, G., Albertsson, J., Svensson, C. & Elding, L. I. (1986). Acta Chem. Scand. 40a, 631–633. CrossRef ICSD Web of Science Google Scholar
Syoyama, S. & Osaki, K. (1972). Acta Cryst. B28, 2626–2627. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Tang, R. L., Lian, X., Yao, W. D., Liu, W. & Guo, S. P. (2021). Dalton Trans. 50, 16562–16567. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Torii, A., Ogawa, K., Tamura, H. & Osaki, K. (1997). Acta Cryst. C53, 833–836. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Troyanov, S. I., Morozov, I. V. & Korenev, Yu. M. (1992). Zh. Neorg. Khim. 37, 380–387. CAS Google Scholar
Waskowska, A. (1997). Acta Cryst. C53, 128–130. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woods, J. J. & Wilson, J. J. (2021). Angew. Chem. Int. Ed. 60, 1588–1592. Web of Science CrossRef ICSD CAS Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W., Jing, Q., Fang, Y. & Chen, Z. (2017). Z. Anorg. Allg. Chem. 643, 1739–1743. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.