- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. DFT Studies
- 5. Hirshfeld surface and two-dimensional fingerprint plots
- 6. Crystal void analysis
- 7. Interaction energies and Energy frame works
- 8. Molecular docking study
- 9. Database survey
- 10. Synthesis and crystallization
- 11. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. DFT Studies
- 5. Hirshfeld surface and two-dimensional fingerprint plots
- 6. Crystal void analysis
- 7. Interaction energies and Energy frame works
- 8. Molecular docking study
- 9. Database survey
- 10. Synthesis and crystallization
- 11. Refinement
- Supporting information
- References
research communications
Synthesis,
and computational analysis of 2,7-bis(4-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-oneaDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bDepartment of Chemistry, St. John's College, Palayamkottai 627 002, Tamil Nadu, India, cPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamil Nadu, India, and dPG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chlorophenyl substituents adopt equatorial orientations. The chlorophenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting intermolecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) interactions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and molecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) interactions. Analysis of the interaction energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A molecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1.
Keywords: synthesis; X-ray crystal structure; C—H⋯O and N—H⋯O hydrogen bonds; C—Cl⋯π (ring) interactions; 1,4-diazepane derivative; chair conformation; DFT; Hirshfeld surface analysis; 3ERT protein; molecular docking.
CCDC reference: 2166707
1. Chemical context
Quite a few reports have long established that 1,4-diazepane derivatives (Sethuvasan et al., 2016; Maheshwaran et al., 2015) are chemically (Baliah et al., 1978; Thennarasu & Perumal, 2002) and biologically (Murthy & Knaus, 1999; Wolkinger et al., 2009) significant motifs. In the view of widespread applications of 1,4-diazepane in the synthetic and medicinal fields, we report here the synthesis, and computational analysis of 2,7-bis(4-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-one (I).
2. Structural commentary
In the title compound, which crystallizes in the monoclinic P21/n, with Z = 4 (Fig. 1), the seven-membered 1,4-diazepane (N1/C2/C3/N4/C5/C6/C7) ring is in a chair conformation and exhibits puckering parameters (Cremer & Pople, 1975) QT = 0.721 (2) Å, q2 = 0.259 (2) Å, q3 = 0.673 (2) Å, φ(2) = −157.2 (4)° and φ(3) = 5.16 (14)°. The spherical polar angle θ(2) = 21.09 (13)°. The displacements of atoms N1, C2, C3, N4, C5, C6, and C7 from the least-squares plane defined by C2/C3/C6/C7 are −0.7164 (20), −0.0283 (9), 0.0226 (7), 0.9539 (26), 0.8620 (28), −0.0232 (8) and 0.0288 (9) Å, respectively, confirming the chair conformation of the 1,4-diazepane ring. The dihedral angles between the best plane of the diazepane ring (C2/C3/C6/C7) and the planar 4-chlorophenyl rings [C21–C26 and C71B–C76B] are 88.1 (1)° and 82.7 (3)°, respectively. The sum of the bond angles at the nitrogen atom N1 is 332.2°, indicating a pyramidal geometry at N1. The sum of the bond angles at N4 is 356.2°, indicating a planar configuration at N4. As evident from torsion angles N4—C3—C2—C21 [−166.89 (13)°] and C5—C6—C7—C71B[163.1 (4)°], the 4-chlorophenyl rings at C2 and C7 both occupy the equatorial positions of the 1,4-diazepane chair ring. One of the methyl groups at C3, occupies the axial position [N1—C2—C3—C31 = −52.76 (19)°] while the other methyl [N1—C2—C3—C32 = −174.79 (15)°] occupies the equatorial position. The 4-chlorophenyl ring at C7 is disordered over two positions [C71A–C76A (minor) and C71B–C76B (major) components with an interplanar angle of 12.2 (4)°; refined occupancy ratio of 0.480 (16):0.520 (16)]. The main residue disorder is 29%.
3. Supramolecular features
In the crystal, N4—H4⋯O5i hydrogen-bonding interactions (Fig. 2, Table 1) form dimers with an R22(8) graph-set motif. The molecules are further linked by C32—H32A⋯O5i and C73B—H73B⋯O5ii hydrogen bonds and C—Cl⋯π interactions [C24—Cl2⋯Cg3(− + x, − y, + z): C24—Cl2 = 1.744 (2) Å, Cl2⋯Cg3 = 3.641 (5) Å, C24⋯Cg3 = 4.946 (8) Å and C24—Cl2⋯Cg3 = 129.99 (11)°; C74A—Cl7A⋯Cg1(1 − x, 1 − y, 1 − z): C74A—Cl7A = 1.756 (12) Å, Cl7A⋯Cg1 = 3.772 (8) Å, C74A⋯Cg1 = 5.467 (12) Å and C74A—Cl7A⋯Cg1 = 161.7 (6)°; Cg1 and Cg3 are the centroids of the C21–C26 and C71A–C76A rings, respectively]
4. DFT Studies
The theoretical optimized structure of (I) for the disordered molecule with higher site occupancy in the gas phase was computed using Gaussian 09W, Revision A.02 (Frisch et al., 2009) by applying the B3LYP/6-31G(d,p) level basis set. The optimized structure, HOMO and LUMO energies, and molecular electrostatic potential were generated using GaussView 5.0 (Dennington et al., 2009). Comparison of calculated geometrical parameters with those of the experimental results revealed that they are generally in good agreement (Table 2). The slight variations between the geometrical parameters observed for the gas phase (theoretical) and those of the solid phase (experimental) are quite explicable.
|
The electron density in highest occupied molecular orbital and lowest unoccupied molecular orbital computed are shown in Fig. 3. In the HOMO, the electron density largely resides over the diazepanone ring and the phenyl ring at C7 whereas in the LUMO, the electron density is delocalized and largely resides over the phenyl ring at C2. The energies of frontier molecular orbitals EHOMO and ELUMO are −6.4148 eV and −0.7333 eV, respectively. The energy gap ΔE (ELUMO - EHOMO) is 5.6815 eV. The (A = -ELUMO = 0.7333 eV) and (IP = -EHOMO = 6.4148 eV) were used to calculate the (χ = 3.5740 eV), chemical hardness (η = 2.8407 eV) and chemical softness (S = 0.1760 eV). From the values of chemical hardness and the high energy gap, it is understood that the molecule is chemically hard and less polarizable.
The molecular electrostatic potential (MEP) surface (Fig. 4) provides information about the reactive sites of (I). The red region on the MEP surface over the carbonyl oxygen atom indicates an electron-rich centre with partial negative charge, which is vulnerable to electrophilic attack, whereas the yellow region over both the chlorine atoms shows a less electron-rich region and the pale-blue region spread all over the molecule indicates the less electron-deficient region (Politzer & Murray, 2002).
5. Hirshfeld surface and two-dimensional fingerprint plots
The Hirshfeld surface and two-dimensional fingerprint plots including all orientations of the disordered molecule were generated using CrystalExplorer 21.5 (Spackman et al., 2021) to study the molecular interactions with enhanced details (see also Fig. S1 in the supporting information). The Hirshfeld surface plotted over dnorm in the range −0.5371 to 1.5160 a.u. is shown in Fig. 5. The intense red spots indicating contacts shorter than the sum of van der Waals radii seen between N—H⋯O represent the shortest intermolecular contacts between nearest molecules while the other red spots indicated the interactions between C—H⋯O. The blue region denotes the longest interactions and the white medium-length interactions.
The two-dimensional-fingerprint plots (Fig. 6) indicate that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) interactions.
6. Crystal void analysis
The effectiveness of the packing of molecules in the i.e. the empty region of the define the isosurface of the procrystal electron density, and are generally calculated for the whole (Turner et al., 2011). The spatial void volume of the crystal of (I) (Fig. 7, see also Fig. S2 in the supporting information) in the was calculated (including all the orientations of the disordered molecule with partial site occupancies) to be 237.16 Å3, i.e., 12.46%, of the crystal volume, which shows the mechanical strength of the crystal is high.
of the crystal can be assessed with void analysis. The crystal void surfaces,7. Interaction energies and Energy frame works
The intermolecular interaction energies were calculated for the disordered model with the higher site occupancy using CE-HF/6-31G(d,p) energy model in CrystalExplorer (Mackenzie et al., 2017; Turner et al., 2015). A cluster of molecules is generated with respect to a selected central molecule within a radius of 3.8 Å and the interaction energies computed (see also Fig. S3 in the supporting information). The calculated interaction energies are shown in the form of the graphical-cylindrical representation known as energy frameworks (Fig. 8). The frameworks constructed for Eele (red cylinders), Edis (green cylinders) and Etotal (blue cylinders) help to visualize the supramolecular architecture of (I). From the energy framework representation, it is evident that the dispersion energy of the title compound is greater than the electrostatic energy.
8. Molecular docking study
A molecular docking study was performed to examine the binding affinity of the title ligand with the human oestrogen receptor alpha (hER alpha) protein, for which the structural coordinates were retrieved from the Protein Data Bank (https://www.rcsb.org; PDB ID: 3ERT) in Mercury (version 2023.2.0; Macrae et al., 2020) and the carried out using the PyRx virtual screening tool (version 1.0; Dallakyan & Olson, 2015) and the results viewed using Discovery Studio Visualizer (v21.1.0.20298; Biovia, 2017) software. The molecular docking of (I) with 3ERT protein is shown in Fig. 9, revealing a good binding affinity, with a score of −8.9 kcal mol−1.
format. The input file for the ligand was obtained by converting the file (containing only the major component of the disorder) to pdb format using9. Database survey
A search using CCDC ConQuest of the Cambridge Structural Database (CSD, Version 5.44, updated to June 2023; Groom et al., 2016) using the molecular moiety (II) depicted in Fig. 10 for the basic skeleton of (I), omitting aromatic-H, methyl-H, methylene-H, methine-H and Cl atoms gave five hits, viz. 3,3-dimethyl-1-nitroso-2,7-diphenyl-1,4-diazepan-5-one (CSD refcode KUZBUE; Ponnuswamy et al., 2016), c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one (PUGZAT; Ravichandran et al., 2009), 3,3-dimethyl-2,7-bis(4-methylphenyl)-1,4-diazepan-5-one (QADRUL; Sethuvasan et al., 2016), 2,7-bis(2-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-one (QADSAS; Sethuvasan et al., 2016) and 2,7-bis(4-chlorophenyl)-3,3-dimethyl-1-nitroso-1,4-diazepan-5-one (WUPNED; Sethuvasan et al., 2021).
The KUZBUE compound also has a chair conformation of the 1,4-diazepane group with diaxial phenyl groups. The structure of PUGZAT is closely related to that of the title compound having phenyl groups in place of the chlorophenyl groups. In QADRUL, the planar 4-methylphenyl rings substituted at the C2 and C7 positions of the 1,4-diazepane ring, in a chair conformation, are in an equatorial orientation, as are the planar 2-chlorophenyl rings substituted at these positions in QADSAS. On the other hand, in WUPNED, which is closely related to the title compound, both chlorophenyl rings are in axial positions on the 1,4-diazepane chair ring. This makes a difference with the reported structure, where these substituents are in equatorial positions.
10. Synthesis and crystallization
The parent 2,6-bis(4-chlorophenyl)-3,3-dimethylpiperidin-4-one was prepared by double Mannich condensation of ethyl methyl ketone, 4-chlorobenzaldehyde and ammonium acetate in a 1:2:1 ratio following a previously reported procedure (Noller & Baliah, 1948). The title compound was obtained from the parent piperidin-4-one using a literature procedure (Thennarasu & Perumal, 2002). The compound was purified and single crystals suitable for X-ray analysis obtained by recrystallization from methanol using the slow evaporation technique (yield: 89%; m.p. 465 K).
11. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions (C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H atoms, respectively) and were included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2 and 1.5Ueq(C). The H atoms attached to N1 and N4 were freely refined with N1—H1 = 0.854 (18) and N4—H4 = 0.86 (2) Å. The 4-chlorophenyl ring at C7 is disordered over two positions with a refined occupancy ratio of 0.480 (16):0.520 (16) with an inter planar angle of 12.2 (4)°. Attempts to refine this model, including some geometric/ADP restraints (SAME, RIGU, SIMU and FLAT) were successful.
details are summarized in Table 3Supporting information
CCDC reference: 2166707
https://doi.org/10.1107/S2056989023010162/jw2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023010162/jw2001Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023010162/jw2001Isup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989023010162/jw2001sup5.png
Supporting information file. DOI: https://doi.org/10.1107/S2056989023010162/jw2001sup6.png
Supporting information file. DOI: https://doi.org/10.1107/S2056989023010162/jw2001sup7.png
Supporting information file. DOI: https://doi.org/10.1107/S2056989023010162/jw2001Isup7.cml
C19H20Cl2N2O | Dx = 1.268 Mg m−3 |
Mr = 363.27 | Melting point: 465 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.364 (7) Å | Cell parameters from 7149 reflections |
b = 11.148 (5) Å | θ = 2.3–27.9° |
c = 13.898 (7) Å | µ = 0.35 mm−1 |
β = 96.500 (19)° | T = 303 K |
V = 1903.2 (17) Å3 | Block, colourless |
Z = 4 | 0.33 × 0.25 × 0.21 mm |
F(000) = 760 |
Bruker D8 Quest XRD diffractometer | 3378 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.037 |
ω and Phi Scans scans | θmax = 30.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.675, Tmax = 0.746 | k = −15→15 |
26662 measured reflections | l = −19→19 |
5490 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.5139P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
5490 reflections | Δρmax = 0.27 e Å−3 |
292 parameters | Δρmin = −0.35 e Å−3 |
308 restraints | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.009 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained planarity Cl7A, C71A, C72A, C73A, C74A, C75A, C76A with sigma of 0.1 Cl7B, C71B, C72B, C73B, C74B, C75B, C76B with sigma of 0.1 3. Uiso/Uaniso restraints and constraints C71A ~ C72A ~ C73A ~ C74A ~ C75A ~ C76A ~ C71B ~ C72B ~ C73B ~ C74B ~ C75B ~ C76B: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08 within 2A 4. Rigid body (RIGU) restrains Cl7A, C71A, C72A, C73A, C74A, C75A, C76A, Cl7B, C71B, C72B, C73B, C74B, C75B, C76B with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004 5. Same fragment restrains {C21, C22, C23, C24, C25, C26} sigma for 1-2: 0.02, 1-3: 0.04 as in {C71B, C72B, C73B, C74B, C75B, C76B} {C21, C22, C23, C24, C25, C26} sigma for 1-2: 0.02, 1-3: 0.04 as in {C71A, C72A, C73A, C74A, C75A, C76A} 6. Others Sof(H7B)=Sof(Cl7B)=Sof(C71B)=Sof(C72B)=Sof(H72B)=Sof(C73B)=Sof(H73B)= Sof(C74B)=Sof(C75B)=Sof(H75B)=Sof(C76B)=Sof(H76B)=1-FVAR(1) Sof(H7A)=Sof(Cl7A)=Sof(C71A)=Sof(C72A)=Sof(H72A)=Sof(C73A)=Sof(H73A)= Sof(C74A)=Sof(C75A)=Sof(H75A)=Sof(C76A)=Sof(H76A)=FVAR(1) 7.a Ternary CH refined with riding coordinates: C2(H2), C7(H7A), C7(H7B) 7.b Secondary CH2 refined with riding coordinates: C6(H6A,H6B) 7.c Aromatic/amide H refined with riding coordinates: C22(H22), C23(H23), C25(H25), C26(H26), C72A(H72A), C73A(H73A), C75A(H75A), C76A(H76A), C72B(H72B), C73B(H73B), C75B(H75B), C76B(H76B) 7.d Idealised Me refined as rotating group: C31(H31A,H31B,H31C), C32(H32A,H32B,H32C) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C2 | 0.42678 (13) | 0.06408 (14) | 0.29663 (12) | 0.0505 (4) | |
H2 | 0.497527 | 0.024372 | 0.310620 | 0.061* | |
C3 | 0.37908 (15) | 0.02934 (14) | 0.19124 (12) | 0.0563 (4) | |
C5 | 0.50869 (14) | 0.14605 (14) | 0.09427 (12) | 0.0531 (4) | |
C6 | 0.50994 (15) | 0.25904 (14) | 0.15484 (12) | 0.0572 (4) | |
H6A | 0.438954 | 0.296682 | 0.142841 | 0.069* | |
H6B | 0.562545 | 0.313999 | 0.132470 | 0.069* | |
C7 | 0.53706 (13) | 0.24325 (13) | 0.26467 (12) | 0.0514 (4) | |
H7A | 0.600394 | 0.190581 | 0.278399 | 0.062* | 0.472 (16) |
H7B | 0.597421 | 0.186124 | 0.275903 | 0.062* | 0.528 (16) |
C21 | 0.35432 (13) | 0.02263 (14) | 0.37199 (11) | 0.0500 (4) | |
C22 | 0.38037 (16) | −0.07966 (16) | 0.42716 (13) | 0.0618 (4) | |
H22 | 0.443332 | −0.122056 | 0.418510 | 0.074* | |
C23 | 0.31446 (17) | −0.11953 (18) | 0.49463 (13) | 0.0692 (5) | |
H23 | 0.332555 | −0.188505 | 0.530528 | 0.083* | |
C24 | 0.22178 (16) | −0.05607 (18) | 0.50812 (13) | 0.0649 (5) | |
C25 | 0.19441 (16) | 0.04635 (17) | 0.45575 (14) | 0.0652 (5) | |
H25 | 0.131943 | 0.089007 | 0.465544 | 0.078* | |
C26 | 0.26095 (15) | 0.08526 (15) | 0.38826 (13) | 0.0578 (4) | |
H26 | 0.242727 | 0.154763 | 0.353105 | 0.069* | |
C31 | 0.27622 (16) | 0.0998 (2) | 0.15445 (14) | 0.0735 (6) | |
H31A | 0.291534 | 0.184181 | 0.158105 | 0.110* | |
H31B | 0.219379 | 0.081252 | 0.193735 | 0.110* | |
H31C | 0.253316 | 0.078017 | 0.088445 | 0.110* | |
C32 | 0.3536 (2) | −0.10543 (17) | 0.18778 (15) | 0.0826 (7) | |
H32A | 0.330865 | −0.128892 | 0.122133 | 0.124* | |
H32B | 0.296309 | −0.122057 | 0.227101 | 0.124* | |
H32C | 0.417556 | −0.149653 | 0.211950 | 0.124* | |
N1 | 0.44413 (11) | 0.19400 (12) | 0.30811 (11) | 0.0522 (3) | |
N4 | 0.46228 (13) | 0.04530 (13) | 0.12336 (11) | 0.0594 (4) | |
O5 | 0.55447 (11) | 0.14660 (11) | 0.01998 (9) | 0.0699 (4) | |
Cl2 | 0.13826 (6) | −0.10582 (7) | 0.59300 (5) | 0.1053 (3) | |
Cl7A | 0.6660 (5) | 0.7404 (5) | 0.4033 (8) | 0.1180 (17) | 0.472 (16) |
C71A | 0.5662 (9) | 0.3684 (10) | 0.2958 (6) | 0.0400 (14) | 0.472 (16) |
C72A | 0.6732 (10) | 0.3967 (13) | 0.3197 (9) | 0.066 (3) | 0.472 (16) |
H72A | 0.726064 | 0.338329 | 0.314837 | 0.079* | 0.472 (16) |
C73A | 0.7046 (12) | 0.5102 (14) | 0.3510 (11) | 0.069 (3) | 0.472 (16) |
H73A | 0.778174 | 0.528912 | 0.362774 | 0.083* | 0.472 (16) |
C74A | 0.6290 (9) | 0.5946 (11) | 0.3646 (8) | 0.063 (2) | 0.472 (16) |
C75A | 0.5212 (7) | 0.5719 (8) | 0.3382 (9) | 0.081 (2) | 0.472 (16) |
H75A | 0.469022 | 0.631200 | 0.342252 | 0.097* | 0.472 (16) |
C76A | 0.4918 (7) | 0.4573 (7) | 0.3050 (9) | 0.070 (2) | 0.472 (16) |
H76A | 0.418363 | 0.440537 | 0.288274 | 0.084* | 0.472 (16) |
Cl7B | 0.6571 (4) | 0.7280 (4) | 0.4386 (5) | 0.0942 (12) | 0.528 (16) |
C71B | 0.5707 (8) | 0.3609 (9) | 0.3218 (6) | 0.0416 (13) | 0.528 (16) |
C72B | 0.6760 (9) | 0.4015 (10) | 0.3337 (8) | 0.055 (2) | 0.528 (16) |
H72B | 0.730714 | 0.352297 | 0.314940 | 0.066* | 0.528 (16) |
C73B | 0.7039 (10) | 0.5132 (11) | 0.3726 (10) | 0.0600 (19) | 0.528 (16) |
H73B | 0.776377 | 0.536746 | 0.384069 | 0.072* | 0.528 (16) |
C74B | 0.6232 (8) | 0.5870 (9) | 0.3936 (7) | 0.0609 (18) | 0.528 (16) |
C75B | 0.5194 (7) | 0.5475 (7) | 0.3872 (9) | 0.088 (2) | 0.528 (16) |
H75B | 0.465714 | 0.596690 | 0.407604 | 0.105* | 0.528 (16) |
C76B | 0.4918 (6) | 0.4342 (7) | 0.3506 (8) | 0.076 (2) | 0.528 (16) |
H76B | 0.419875 | 0.408339 | 0.345728 | 0.092* | 0.528 (16) |
H1 | 0.4518 (14) | 0.2083 (16) | 0.3689 (14) | 0.061 (5)* | |
H4 | 0.4644 (15) | −0.0126 (17) | 0.0823 (14) | 0.067 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0524 (9) | 0.0428 (8) | 0.0567 (9) | −0.0010 (7) | 0.0076 (7) | −0.0071 (7) |
C3 | 0.0688 (11) | 0.0474 (8) | 0.0540 (9) | −0.0144 (8) | 0.0131 (8) | −0.0106 (7) |
C5 | 0.0575 (10) | 0.0459 (8) | 0.0556 (9) | −0.0056 (7) | 0.0058 (8) | −0.0080 (7) |
C6 | 0.0704 (11) | 0.0412 (8) | 0.0605 (10) | −0.0080 (7) | 0.0101 (8) | −0.0074 (7) |
C7 | 0.0502 (9) | 0.0421 (8) | 0.0616 (10) | −0.0035 (7) | 0.0053 (7) | −0.0109 (7) |
C21 | 0.0551 (10) | 0.0450 (8) | 0.0493 (8) | −0.0037 (7) | 0.0040 (7) | −0.0086 (6) |
C22 | 0.0653 (11) | 0.0609 (10) | 0.0590 (10) | 0.0084 (8) | 0.0058 (8) | 0.0021 (8) |
C23 | 0.0839 (14) | 0.0688 (12) | 0.0542 (10) | −0.0009 (10) | 0.0049 (10) | 0.0092 (9) |
C24 | 0.0713 (12) | 0.0744 (12) | 0.0500 (9) | −0.0124 (10) | 0.0112 (8) | −0.0072 (9) |
C25 | 0.0648 (12) | 0.0652 (11) | 0.0678 (11) | 0.0005 (9) | 0.0164 (9) | −0.0125 (9) |
C26 | 0.0650 (11) | 0.0471 (9) | 0.0620 (10) | 0.0029 (8) | 0.0103 (8) | −0.0062 (7) |
C31 | 0.0649 (12) | 0.0900 (14) | 0.0633 (11) | −0.0162 (10) | −0.0020 (9) | −0.0043 (10) |
C32 | 0.1246 (19) | 0.0556 (11) | 0.0731 (13) | −0.0334 (11) | 0.0353 (12) | −0.0190 (9) |
N1 | 0.0568 (8) | 0.0451 (7) | 0.0548 (8) | −0.0063 (6) | 0.0077 (6) | −0.0136 (6) |
N4 | 0.0808 (11) | 0.0431 (7) | 0.0574 (8) | −0.0107 (7) | 0.0220 (7) | −0.0142 (6) |
O5 | 0.0867 (9) | 0.0602 (7) | 0.0673 (8) | −0.0183 (6) | 0.0290 (7) | −0.0156 (6) |
Cl2 | 0.1109 (5) | 0.1293 (6) | 0.0826 (4) | −0.0138 (4) | 0.0409 (4) | 0.0141 (4) |
Cl7A | 0.1099 (17) | 0.0723 (13) | 0.175 (4) | −0.0380 (12) | 0.029 (2) | −0.060 (2) |
C71A | 0.050 (2) | 0.048 (2) | 0.021 (3) | −0.0042 (17) | 0.000 (3) | −0.004 (3) |
C72A | 0.060 (4) | 0.052 (4) | 0.089 (6) | −0.015 (3) | 0.019 (4) | −0.023 (4) |
C73A | 0.059 (4) | 0.064 (4) | 0.083 (7) | −0.017 (3) | 0.005 (4) | −0.017 (4) |
C74A | 0.070 (3) | 0.054 (3) | 0.065 (5) | −0.025 (2) | 0.016 (3) | −0.027 (3) |
C75A | 0.062 (3) | 0.057 (3) | 0.126 (7) | −0.007 (2) | 0.024 (4) | −0.037 (4) |
C76A | 0.046 (2) | 0.056 (3) | 0.108 (6) | −0.009 (2) | 0.009 (4) | −0.029 (3) |
Cl7B | 0.0812 (15) | 0.0640 (11) | 0.133 (3) | −0.0084 (10) | −0.0070 (13) | −0.0489 (14) |
C71B | 0.055 (2) | 0.044 (2) | 0.024 (3) | −0.0014 (15) | −0.003 (2) | −0.005 (2) |
C72B | 0.048 (3) | 0.050 (4) | 0.067 (3) | 0.001 (3) | 0.002 (2) | 0.000 (3) |
C73B | 0.055 (3) | 0.057 (3) | 0.066 (4) | −0.016 (2) | −0.004 (3) | −0.014 (3) |
C74B | 0.066 (3) | 0.055 (3) | 0.060 (4) | −0.002 (2) | −0.002 (3) | −0.022 (3) |
C75B | 0.063 (3) | 0.067 (4) | 0.132 (7) | −0.002 (2) | 0.009 (4) | −0.046 (4) |
C76B | 0.054 (2) | 0.060 (3) | 0.115 (6) | −0.006 (2) | 0.009 (4) | −0.036 (4) |
C2—N1 | 1.470 (2) | C31—H31B | 0.9600 |
C2—C21 | 1.525 (2) | C31—H31C | 0.9600 |
C2—C3 | 1.564 (2) | C32—H32A | 0.9600 |
C2—H2 | 0.9800 | C32—H32B | 0.9600 |
C3—N4 | 1.483 (2) | C32—H32C | 0.9600 |
C3—C31 | 1.532 (3) | N1—H1 | 0.854 (18) |
C3—C32 | 1.535 (2) | N4—H4 | 0.86 (2) |
C5—O5 | 1.232 (2) | Cl7A—C74A | 1.756 (12) |
C5—N4 | 1.344 (2) | C71A—C72A | 1.364 (10) |
C5—C6 | 1.514 (2) | C71A—C76A | 1.369 (9) |
C6—C7 | 1.535 (2) | C72A—C73A | 1.379 (10) |
C6—H6A | 0.9700 | C72A—H72A | 0.9300 |
C6—H6B | 0.9700 | C73A—C74A | 1.355 (10) |
C7—N1 | 1.464 (2) | C73A—H73A | 0.9300 |
C7—C71A | 1.493 (11) | C74A—C75A | 1.365 (9) |
C7—C71B | 1.565 (10) | C75A—C76A | 1.392 (8) |
C7—H7A | 0.9800 | C75A—H75A | 0.9300 |
C7—H7B | 0.9800 | C76A—H76A | 0.9300 |
C21—C26 | 1.389 (2) | Cl7B—C74B | 1.726 (11) |
C21—C22 | 1.391 (2) | C71B—C76B | 1.367 (8) |
C22—C23 | 1.383 (3) | C71B—C72B | 1.371 (9) |
C22—H22 | 0.9300 | C72B—C73B | 1.386 (9) |
C23—C24 | 1.377 (3) | C72B—H72B | 0.9300 |
C23—H23 | 0.9300 | C73B—C74B | 1.351 (9) |
C24—C25 | 1.376 (3) | C73B—H73B | 0.9300 |
C24—Cl2 | 1.744 (2) | C74B—C75B | 1.350 (8) |
C25—C26 | 1.385 (2) | C75B—C76B | 1.390 (7) |
C25—H25 | 0.9300 | C75B—H75B | 0.9300 |
C26—H26 | 0.9300 | C76B—H76B | 0.9300 |
C31—H31A | 0.9600 | ||
N1—C2—C21 | 108.29 (12) | H31A—C31—H31B | 109.5 |
N1—C2—C3 | 112.36 (14) | C3—C31—H31C | 109.5 |
C21—C2—C3 | 112.31 (13) | H31A—C31—H31C | 109.5 |
N1—C2—H2 | 107.9 | H31B—C31—H31C | 109.5 |
C21—C2—H2 | 107.9 | C3—C32—H32A | 109.5 |
C3—C2—H2 | 107.9 | C3—C32—H32B | 109.5 |
N4—C3—C31 | 109.60 (15) | H32A—C32—H32B | 109.5 |
N4—C3—C32 | 104.62 (14) | C3—C32—H32C | 109.5 |
C31—C3—C32 | 109.34 (17) | H32A—C32—H32C | 109.5 |
N4—C3—C2 | 110.54 (14) | H32B—C32—H32C | 109.5 |
C31—C3—C2 | 113.34 (14) | C7—N1—C2 | 115.87 (12) |
C32—C3—C2 | 109.02 (15) | C7—N1—H1 | 109.4 (12) |
O5—C5—N4 | 120.56 (15) | C2—N1—H1 | 106.9 (12) |
O5—C5—C6 | 119.01 (15) | C5—N4—C3 | 129.94 (14) |
N4—C5—C6 | 120.38 (15) | C5—N4—H4 | 112.3 (13) |
C5—C6—C7 | 116.40 (14) | C3—N4—H4 | 114.0 (12) |
C5—C6—H6A | 108.2 | C72A—C71A—C76A | 117.0 (9) |
C7—C6—H6A | 108.2 | C72A—C71A—C7 | 118.9 (9) |
C5—C6—H6B | 108.2 | C76A—C71A—C7 | 124.1 (8) |
C7—C6—H6B | 108.2 | C71A—C72A—C73A | 121.3 (11) |
H6A—C6—H6B | 107.3 | C71A—C72A—H72A | 119.4 |
N1—C7—C71A | 114.0 (4) | C73A—C72A—H72A | 119.4 |
N1—C7—C6 | 111.08 (14) | C74A—C73A—C72A | 120.5 (11) |
C71A—C7—C6 | 101.5 (4) | C74A—C73A—H73A | 119.7 |
N1—C7—C71B | 106.3 (4) | C72A—C73A—H73A | 119.7 |
C6—C7—C71B | 115.1 (3) | C73A—C74A—C75A | 120.1 (9) |
N1—C7—H7A | 110.0 | C73A—C74A—Cl7A | 121.7 (9) |
C71A—C7—H7A | 110.0 | C75A—C74A—Cl7A | 117.8 (9) |
C6—C7—H7A | 110.0 | C74A—C75A—C76A | 118.0 (8) |
N1—C7—H7B | 108.0 | C74A—C75A—H75A | 121.0 |
C6—C7—H7B | 108.0 | C76A—C75A—H75A | 121.0 |
C71B—C7—H7B | 108.0 | C71A—C76A—C75A | 122.8 (8) |
C26—C21—C22 | 117.83 (16) | C71A—C76A—H76A | 118.6 |
C26—C21—C2 | 121.54 (15) | C75A—C76A—H76A | 118.6 |
C22—C21—C2 | 120.63 (15) | C76B—C71B—C72B | 117.9 (8) |
C23—C22—C21 | 121.29 (17) | C76B—C71B—C7 | 119.5 (7) |
C23—C22—H22 | 119.4 | C72B—C71B—C7 | 122.1 (7) |
C21—C22—H22 | 119.4 | C71B—C72B—C73B | 122.3 (9) |
C24—C23—C22 | 119.35 (18) | C71B—C72B—H72B | 118.9 |
C24—C23—H23 | 120.3 | C73B—C72B—H72B | 118.9 |
C22—C23—H23 | 120.3 | C74B—C73B—C72B | 118.4 (10) |
C25—C24—C23 | 120.86 (17) | C74B—C73B—H73B | 120.8 |
C25—C24—Cl2 | 119.52 (16) | C72B—C73B—H73B | 120.8 |
C23—C24—Cl2 | 119.62 (16) | C75B—C74B—C73B | 120.4 (9) |
C24—C25—C26 | 119.25 (17) | C75B—C74B—Cl7B | 120.8 (7) |
C24—C25—H25 | 120.4 | C73B—C74B—Cl7B | 118.5 (8) |
C26—C25—H25 | 120.4 | C74B—C75B—C76B | 120.9 (7) |
C25—C26—C21 | 121.39 (17) | C74B—C75B—H75B | 119.6 |
C25—C26—H26 | 119.3 | C76B—C75B—H75B | 119.6 |
C21—C26—H26 | 119.3 | C71B—C76B—C75B | 119.8 (7) |
C3—C31—H31A | 109.5 | C71B—C76B—H76B | 120.1 |
C3—C31—H31B | 109.5 | C75B—C76B—H76B | 120.1 |
N1—C2—C3—N4 | 70.74 (17) | C31—C3—N4—C5 | 58.5 (2) |
C21—C2—C3—N4 | −166.89 (13) | C32—C3—N4—C5 | 175.64 (19) |
N1—C2—C3—C31 | −52.76 (19) | C2—C3—N4—C5 | −67.1 (2) |
C21—C2—C3—C31 | 69.62 (18) | N1—C7—C71A—C72A | 135.9 (6) |
N1—C2—C3—C32 | −174.79 (15) | C6—C7—C71A—C72A | −104.6 (6) |
C21—C2—C3—C32 | −52.41 (19) | N1—C7—C71A—C76A | −42.0 (7) |
O5—C5—C6—C7 | −134.43 (18) | C6—C7—C71A—C76A | 77.5 (6) |
N4—C5—C6—C7 | 42.8 (2) | C76A—C71A—C72A—C73A | −0.5 (9) |
C5—C6—C7—N1 | −76.04 (18) | C7—C71A—C72A—C73A | −178.5 (8) |
C5—C6—C7—C71A | 162.5 (4) | C71A—C72A—C73A—C74A | 4.2 (14) |
C5—C6—C7—C71B | 163.1 (4) | C72A—C73A—C74A—C75A | −6.7 (16) |
N1—C2—C21—C26 | 45.9 (2) | C72A—C73A—C74A—Cl7A | −179.4 (7) |
C3—C2—C21—C26 | −78.75 (19) | C73A—C74A—C75A—C76A | 5.3 (13) |
N1—C2—C21—C22 | −133.83 (16) | Cl7A—C74A—C75A—C76A | 178.3 (5) |
C3—C2—C21—C22 | 101.51 (18) | C72A—C71A—C76A—C75A | −0.8 (9) |
C26—C21—C22—C23 | 1.4 (3) | C7—C71A—C76A—C75A | 177.1 (6) |
C2—C21—C22—C23 | −178.88 (16) | C74A—C75A—C76A—C71A | −1.5 (10) |
C21—C22—C23—C24 | −0.6 (3) | N1—C7—C71B—C76B | −38.5 (6) |
C22—C23—C24—C25 | −0.3 (3) | C6—C7—C71B—C76B | 85.0 (6) |
C22—C23—C24—Cl2 | 179.97 (15) | N1—C7—C71B—C72B | 150.0 (6) |
C23—C24—C25—C26 | 0.4 (3) | C6—C7—C71B—C72B | −86.5 (6) |
Cl2—C24—C25—C26 | −179.84 (14) | C76B—C71B—C72B—C73B | −0.5 (8) |
C24—C25—C26—C21 | 0.4 (3) | C7—C71B—C72B—C73B | 171.1 (7) |
C22—C21—C26—C25 | −1.2 (3) | C71B—C72B—C73B—C74B | −4.4 (12) |
C2—C21—C26—C25 | 179.01 (15) | C72B—C73B—C74B—C75B | 7.6 (13) |
C71A—C7—N1—C2 | −167.4 (4) | C72B—C73B—C74B—Cl7B | −178.0 (7) |
C6—C7—N1—C2 | 78.68 (18) | C73B—C74B—C75B—C76B | −6.0 (12) |
C71B—C7—N1—C2 | −155.4 (4) | Cl7B—C74B—C75B—C76B | 179.7 (5) |
C21—C2—N1—C7 | 161.36 (14) | C72B—C71B—C76B—C75B | 2.3 (8) |
C3—C2—N1—C7 | −74.02 (19) | C7—C71B—C76B—C75B | −169.6 (6) |
O5—C5—N4—C3 | −161.09 (18) | C74B—C75B—C76B—C71B | 0.9 (10) |
C6—C5—N4—C3 | 21.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C32—H32A···O5i | 0.96 | 2.57 | 3.253 (3) | 129 |
C73B—H73B···O5ii | 0.93 | 2.65 | 3.515 (13) | 155 |
N4—H4···O5i | 0.86 (2) | 2.06 (2) | 2.914 (2) | 171.7 (17) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+3/2, y+1/2, −z+1/2. |
X-ray | B3LYP/6-31G(d,p) | |
N1—C2 | 1.470 (2) | 1.470 |
C2—C3 | 1.564 (2) | 1.575 |
C3—N4 | 1.483 (2) | 1.479 |
N4—C5 | 1.344 (2) | 1.372 |
C5—O5 | 1.232 (2) | 1.227 |
C5—C6 | 1.514 (2) | 1.522 |
C6—C7 | 1.535 (2) | 1.544 |
C2—C21 | 1.525 (2) | 1.524 |
C7—C71B | 1.565 (10) | 1.521 |
O5—C5—N4 | 120.56 (15) | 120.0 |
O5—C5—C6 | 119.01 (15) | 120.8 |
C7—N1—C2 | 115.87 (12) | 117.0 |
N1—C2—C21 | 108.29 (12) | 107.9 |
N1—C7—C71B | 106.3 (4) | 109.0 |
C21—C2—C3—N4 | -166.89 (13) | -164.9 |
C5—C6—C7—C71B | 163.1 (4) | 164.0 |
N1—C2—C3—C31 | -52.76 (19) | -52.2 |
N1—C2—C3—C32 | -174.79 (15) | -173.8 |
Footnotes
‡Additional correspondence author, e-mail: rraajjii2006@gmail.com.
Acknowledgements
The authors thank the DST PURSE Phase II, Department of Chemistry, Annamalai University, for support of the single-crystal XRD data collection.
References
Baliah, V., Lakshmanan, M. R. & Pandiarajan, K. (1978). Indian J. Chem. 16B, 72–73. CAS Google Scholar
Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA. Google Scholar
Bruker (2017). APEX3, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dallakyan, S. & Olson, A. J. (2015). Chem. Biol. 1263, 243–250. CrossRef CAS Google Scholar
Dennington, R. D. II, Keith, T. A. & Millam, J. M. (2009). GaussView 5.0. Semichem Inc., Shawnee Mission, KS. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maheshwaran, V., Sethuvasan, S., Ravichandran, K., Ponnuswamy, S., Sugumar, P. & Ponnuswamy, M. N. (2015). Chem. Cent. J. 9, 1–10. PubMed Google Scholar
Murthy, K. S. K. & Knaus, E. E. (1999). Drug Dev. Res. 46, 155–162. CrossRef CAS Google Scholar
Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855. CrossRef PubMed CAS Web of Science Google Scholar
Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142. Web of Science CrossRef CAS Google Scholar
Ponnuswamy, S., Akila, A., Kiruthiga devi, D., Maheshwaran, V. & Ponnuswamy, M. N. (2016). J. Mol. Struct. 1110, 53–64. CrossRef CAS Google Scholar
Ravichandran, K., Ramesh, P., Sethuvasan, S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2884. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sethuvasan, S., Sugumar, P., Maheshwaran, V., Ponnuswamy, M. N. & Ponnuswamy, S. (2016). J. Mol. Struct. 1116, 188–199. CrossRef CAS Google Scholar
Sethuvasan, S., Sugumar, P., Ponnuswamy, M. N. & Ponnuswamy, S. (2021). J. Mol. Struct. pp. 1223 article No. 129002. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487–493. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolkinger, V., Weis, R., Belaj, F., Kaiser, M., Brun, R., Saf, R. & Seebacher, W. (2009). Aust. J. Chem. 62, 1166–1172. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.