research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and computational analysis of 2,7-bis­­(4-chloro­phen­yl)-3,3-di­methyl-1,4-diazepan-5-one

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bDepartment of Chemistry, St. John's College, Palayamkottai 627 002, Tamil Nadu, India, cPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamil Nadu, India, and dPG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela (Received 6 October 2023; accepted 23 November 2023; online 30 November 2023)

In the title compound, C19H20Cl2N2O, the seven-membered 1,4-diazepane ring adopts a chair conformation while the 4-chloro­phenyl substituents adopt equatorial orientations. The chloro­phenyl ring at position 7 is disordered over two positions [site occupancies 0.480 (16):0.520 (16)]. The dihedral angle between the two benzene rings is 63.0 (4)°. The methyl groups at position 3 have an axial and an equatorial orientation. The compound exists as a dimer exhibiting inter­molecular N—H⋯O hydrogen bonding with R22(8) graph-set motifs. The crystal structure is further stabilized by C—H⋯O hydrogen bonds together with two C—Cl⋯π (ring) inter­actions. The geometry was optimized by DFT using the B3LYP/6–31 G(d,p) level basis set. In addition, the HOMO and LUMO energies, chemical reactivity parameters and mol­ecular electrostatic potential were calculated at the same level of theory. Hirshfeld surface analysis indicated that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) inter­actions. Analysis of the inter­action energies showed that the dispersion energy is greater than the electrostatic energy. A crystal void volume of 237.16 Å3 is observed. A mol­ecular docking study with the human oestrogen receptor 3ERT protein revealed good docking with a score of −8.9 kcal mol−1.

1. Chemical context

Quite a few reports have long established that 1,4-diazepane derivatives (Sethuvasan et al., 2016[Sethuvasan, S., Sugumar, P., Maheshwaran, V., Ponnuswamy, M. N. & Ponnuswamy, S. (2016). J. Mol. Struct. 1116, 188-199.]; Maheshwaran et al., 2015[Maheshwaran, V., Sethuvasan, S., Ravichandran, K., Ponnuswamy, S., Sugumar, P. & Ponnuswamy, M. N. (2015). Chem. Cent. J. 9, 1-10.]) are chemically (Baliah et al., 1978[Baliah, V., Lakshmanan, M. R. & Pandiarajan, K. (1978). Indian J. Chem. 16B, 72-73.]; Thennarasu & Perumal, 2002[Thennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487-493.]) and biologically (Murthy & Knaus, 1999[Murthy, K. S. K. & Knaus, E. E. (1999). Drug Dev. Res. 46, 155-162.]; Wolkinger et al., 2009[Wolkinger, V., Weis, R., Belaj, F., Kaiser, M., Brun, R., Saf, R. & Seebacher, W. (2009). Aust. J. Chem. 62, 1166-1172.]) significant motifs. In the view of widespread applications of 1,4-diazepane in the synthetic and medicinal fields, we report here the synthesis, crystal structure and computational analysis of 2,7-bis­(4-chloro­phen­yl)-3,3-dimethyl-1,4-diazepan-5-one (I)[link].

2. Structural commentary

In the title compound, which crystallizes in the monoclinic crystal system, space group P21/n, with Z = 4 (Fig. 1[link]), the seven-membered 1,4-diazepane (N1/C2/C3/N4/C5/C6/C7) ring is in a chair conformation and exhibits puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.721 (2) Å, q2 = 0.259 (2) Å, q3 = 0.673 (2) Å, φ(2) = −157.2 (4)° and φ(3) = 5.16 (14)°. The spherical polar angle θ(2) = 21.09 (13)°. The displacements of atoms N1, C2, C3, N4, C5, C6, and C7 from the least-squares plane defined by C2/C3/C6/C7 are −0.7164 (20), −0.0283 (9), 0.0226 (7), 0.9539 (26), 0.8620 (28), −0.0232 (8) and 0.0288 (9) Å, respectively, confirming the chair conformation of the 1,4-diazepane ring. The dihedral angles between the best plane of the diazepane ring (C2/C3/C6/C7) and the planar 4-chloro­phenyl rings [C21–C26 and C71B–C76B] are 88.1 (1)° and 82.7 (3)°, respectively. The sum of the bond angles at the nitro­gen atom N1 is 332.2°, indicating a pyramidal geometry at N1. The sum of the bond angles at N4 is 356.2°, indicating a planar configuration at N4. As evident from torsion angles N4—C3—C2—C21 [−166.89 (13)°] and C5—C6—C7—C71B[163.1 (4)°], the 4-chloro­phenyl rings at C2 and C7 both occupy the equatorial positions of the 1,4-diazepane chair ring. One of the methyl groups at C3, occupies the axial position [N1—C2—C3—C31 = −52.76 (19)°] while the other methyl [N1—C2—C3—C32 = −174.79 (15)°] occupies the equatorial position. The 4-chloro­phenyl ring at C7 is disordered over two positions [C71A–C76A (minor) and C71B–C76B (major) components with an inter­planar angle of 12.2 (4)°; refined occupancy ratio of 0.480 (16):0.520 (16)]. The main residue disorder is 29%.

[Scheme 1]
[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). The minor component of the disorder is not shown for clarity.

3. Supra­molecular features

In the crystal, N4—H4⋯O5i hydrogen-bonding inter­actions (Fig. 2[link], Table 1[link]) form dimers with an R22(8) graph-set motif. The mol­ecules are further linked by C32—H32A⋯O5i and C73B—H73B⋯O5ii hydrogen bonds and C—Cl⋯π inter­actions [C24—Cl2⋯Cg3(−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z): C24—Cl2 = 1.744 (2) Å, Cl2⋯Cg3 = 3.641 (5) Å, C24⋯Cg3 = 4.946 (8) Å and C24—Cl2⋯Cg3 = 129.99 (11)°; C74A—Cl7ACg1(1 − x, 1 − y, 1 − z): C74A—Cl7A = 1.756 (12) Å, Cl7ACg1 = 3.772 (8) Å, C74ACg1 = 5.467 (12) Å and C74A—Cl7ACg1 = 161.7 (6)°; Cg1 and Cg3 are the centroids of the C21–C26 and C71A–C76A rings, respectively]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32A⋯O5i 0.96 2.57 3.253 (3) 129
C73B—H73B⋯O5ii 0.93 2.65 3.515 (13) 155
N4—H4⋯O5i 0.86 (2) 2.06 (2) 2.914 (2) 171.7 (17)
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram of the title compound viewed along the a axis showing the C—H⋯O and N—H⋯O hydrogen-bond inter­actions (dashed lines).

4. DFT Studies

The theoretical optimized structure of (I)[link] for the disordered mol­ecule with higher site occupancy in the gas phase was computed using Gaussian 09W, Revision A.02 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA.]) by applying the B3LYP/6-31G(d,p) level basis set. The optimized structure, HOMO and LUMO energies, and mol­ecular electrostatic potential were generated using GaussView 5.0 (Dennington et al., 2009[Dennington, R. D. II, Keith, T. A. & Millam, J. M. (2009). GaussView 5.0. Semichem Inc., Shawnee Mission, KS.]). Comparison of calculated geometrical parameters with those of the experimental results revealed that they are generally in good agreement (Table 2[link]). The slight variations between the geometrical parameters observed for the gas phase (theoretical) and those of the solid phase (experimental) are quite explicable.

Table 2
Comparison of selected (X-ray and DFT) bond lengths, angles and torsion angles (Å, °)

  X-ray B3LYP/6–31G(d,p)
N1—C2 1.470 (2) 1.470
C2—C3 1.564 (2) 1.575
C3—N4 1.483 (2) 1.479
N4—C5 1.344 (2) 1.372
C5—O5 1.232 (2) 1.227
C5—C6 1.514 (2) 1.522
C6—C7 1.535 (2) 1.544
C2—C21 1.525 (2) 1.524
C7—C71B 1.565 (10) 1.521
O5—C5—N4 120.56 (15) 120.0
O5—C5—C6 119.01 (15) 120.8
C7—N1—C2 115.87 (12) 117.0
N1—C2—C21 108.29 (12) 107.9
N1—C7—C71B 106.3 (4) 109.0
C21—C2—C3—N4 −166.89 (13) −164.9
C5—C6—C7—C71B 163.1 (4) 164.0
N1—C2—C3—C31 −52.76 (19) −52.2
N1—C2—C3—C32 −174.79 (15) −173.8

The electron density in highest occupied mol­ecular orbital and lowest unoccupied mol­ecular orbital computed are shown in Fig. 3[link]. In the HOMO, the electron density largely resides over the diazepanone ring and the phenyl ring at C7 whereas in the LUMO, the electron density is delocalized and largely resides over the phenyl ring at C2. The energies of frontier mol­ecular orbitals EHOMO and ELUMO are −6.4148 eV and −0.7333 eV, respectively. The energy gap ΔE (ELUMO - EHOMO) is 5.6815 eV. The electron affinity (A = -ELUMO = 0.7333 eV) and ionization potential (IP = -EHOMO = 6.4148 eV) were used to calculate the electronegativity (χ = 3.5740 eV), chemical hardness (η = 2.8407 eV) and chemical softness (S = 0.1760 eV). From the values of chemical hardness and the high energy gap, it is understood that the mol­ecule is chemically hard and less polarizable.

[Figure 3]
Figure 3
HOMO and LUMO of (I)[link].

The mol­ecular electrostatic potential (MEP) surface (Fig. 4[link]) provides information about the reactive sites of (I)[link]. The red region on the MEP surface over the carbonyl oxygen atom indicates an electron-rich centre with partial negative charge, which is vulnerable to electrophilic attack, whereas the yellow region over both the chlorine atoms shows a less electron-rich region and the pale-blue region spread all over the mol­ecule indicates the less electron-deficient region (Politzer & Murray, 2002[Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134-142.]).

[Figure 4]
Figure 4
Mol­ecular electrostatic potential surface diagram of (I)[link].

5. Hirshfeld surface and two-dimensional fingerprint plots

The Hirshfeld surface and two-dimensional fingerprint plots including all orientations of the disordered mol­ecule were generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to study the mol­ecular inter­actions with enhanced details (see also Fig. S1 in the supporting information). The Hirshfeld surface plotted over dnorm in the range −0.5371 to 1.5160 a.u. is shown in Fig. 5[link]. The intense red spots indicating contacts shorter than the sum of van der Waals radii seen between N—H⋯O represent the shortest inter­molecular contacts between nearest mol­ecules while the other red spots indicated the inter­actions between C—H⋯O. The blue region denotes the longest inter­actions and the white medium-length inter­actions.

[Figure 5]
Figure 5
Hirshfeld surface for (I)[link] showing hydrogen-bonding inter­actions with a neighbouring mol­ecule. The minor component of the disorder is not shown for clarity.

The two-dimensional-fingerprint plots (Fig. 6[link]) indicate that the most important contributions to the crystal packing are from H⋯H (45.6%), Cl⋯H/H⋯Cl (23.8%), H⋯C/C⋯H (12.6%), H⋯O/O⋯H (8.7%) and C⋯Cl/Cl⋯C (7.1%) inter­actions.

[Figure 6]
Figure 6
Two-dimensional-fingerprint plots for (I)[link].

6. Crystal void analysis

The effectiveness of the packing of mol­ecules in the unit cell of the crystal can be assessed with void analysis. The crystal void surfaces, i.e. the empty region of the crystal structure, define the isosurface of the procrystal electron density, and are generally calculated for the whole unit cell (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The spatial void volume of the crystal of (I)[link] (Fig. 7[link], see also Fig. S2 in the supporting information) in the unit cell was calculated (including all the orientations of the disordered mol­ecule with partial site occupancies) to be 237.16 Å3, i.e., 12.46%, of the crystal volume, which shows the mechanical strength of the crystal is high.

[Figure 7]
Figure 7
Crystal voids in (I)[link].

7. Inter­action energies and Energy frame works

The inter­molecular inter­action energies were calculated for the disordered model with the higher site occupancy using CE-HF/6-31G(d,p) energy model in CrystalExplorer (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]; Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). A cluster of mol­ecules is generated with respect to a selected central mol­ecule within a radius of 3.8 Å and the inter­action energies computed (see also Fig. S3 in the supporting information). The calculated inter­action energies are shown in the form of the graphical-cylindrical representation known as energy frameworks (Fig. 8[link]). The frameworks constructed for Eele (red cylinders), Edis (green cylinders) and Etotal (blue cylinders) help to visualize the supra­molecular architecture of (I)[link]. From the energy framework representation, it is evident that the dispersion energy of the title compound is greater than the electrostatic energy.

[Figure 8]
Figure 8
Graphical representation of energy frameworks of (I)[link]: (a) electrostatic energy, (b) dispersion energy, (c) total energy and (d) colour-coded diagram of (I)[link].

8. Mol­ecular docking study

A mol­ecular docking study was performed to examine the binding affinity of the title ligand with the human oestrogen receptor alpha (hER alpha) protein, for which the structural coordinates were retrieved from the Protein Data Bank (https://www.rcsb.org; PDB ID: 3ERT) in CIF format. The input file for the ligand was obtained by converting the CIF file (containing only the major component of the disorder) to pdb format using Mercury (version 2023.2.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and the docking studies carried out using the PyRx virtual screening tool (version 1.0; Dallakyan & Olson, 2015[Dallakyan, S. & Olson, A. J. (2015). Chem. Biol. 1263, 243-250.]) and the results viewed using Discovery Studio Visualizer (v21.1.0.20298; Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.]) software. The mol­ecular docking of (I)[link] with 3ERT protein is shown in Fig. 9[link], revealing a good binding affinity, with a score of −8.9 kcal mol−1.

[Figure 9]
Figure 9
Mol­ecular docking: (a) three-dimensional and (b) two-dimensional views of the inter­action of (I)[link] with 3ERT protein.

9. Database survey

A search using CCDC ConQuest of the Cambridge Structural Database (CSD, Version 5.44, updated to June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the mol­ecular moiety (II) depicted in Fig. 10[link] for the basic skeleton of (I)[link], omitting aromatic-H, methyl-H, methyl­ene-H, methine-H and Cl atoms gave five hits, viz. 3,3-dimethyl-1-nitroso-2,7-diphenyl-1,4-diazepan-5-one (CSD refcode KUZBUE; Ponnuswamy et al., 2016[Ponnuswamy, S., Akila, A., Kiruthiga devi, D., Maheshwaran, V. & Ponnuswamy, M. N. (2016). J. Mol. Struct. 1110, 53-64.]), c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one (PUGZAT; Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Sethuvasan, S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2884.]), 3,3-dimethyl-2,7-bis­(4-methyl­phen­yl)-1,4-diazepan-5-one (QADRUL; Sethuvasan et al., 2016[Sethuvasan, S., Sugumar, P., Maheshwaran, V., Ponnuswamy, M. N. & Ponnuswamy, S. (2016). J. Mol. Struct. 1116, 188-199.]), 2,7-bis­(2-chloro­phen­yl)-3,3-dimethyl-1,4-diazepan-5-one (QAD­SAS; Sethuvasan et al., 2016[Sethuvasan, S., Sugumar, P., Maheshwaran, V., Ponnuswamy, M. N. & Ponnuswamy, S. (2016). J. Mol. Struct. 1116, 188-199.]) and 2,7-bis­(4-chloro­phen­yl)-3,3-dimethyl-1-nitroso-1,4-diazepan-5-one (WUPNED; Sethuvasan et al., 2021[Sethuvasan, S., Sugumar, P., Ponnuswamy, M. N. & Ponnuswamy, S. (2021). J. Mol. Struct. pp. 1223 article No. 129002.]).

[Figure 10]
Figure 10
The mol­ecular moiety (II) used for the CSD database search.

The KUZBUE compound also has a chair conformation of the 1,4-diazepane group with diaxial phenyl groups. The structure of PUGZAT is closely related to that of the title compound having phenyl groups in place of the chloro­phenyl groups. In QADRUL, the planar 4-methyl­phenyl rings substituted at the C2 and C7 positions of the 1,4-diazepane ring, in a chair conformation, are in an equatorial orientation, as are the planar 2-chloro­phenyl rings substituted at these positions in QADSAS. On the other hand, in WUPNED, which is closely related to the title compound, both chloro­phenyl rings are in axial positions on the 1,4-diazepane chair ring. This makes a difference with the reported structure, where these substituents are in equatorial positions.

10. Synthesis and crystallization

The parent 2,6-bis­(4-chloro­phen­yl)-3,3-di­methyl­piperidin-4-one was prepared by double Mannich condensation of ethyl methyl ketone, 4-chloro­benzaldehyde and ammonium acetate in a 1:2:1 ratio following a previously reported procedure (Noller & Baliah, 1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). The title compound was obtained from the parent piperidin-4-one using a literature procedure (Thennarasu & Perumal, 2002[Thennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487-493.]). The compound was purified and single crystals suitable for X-ray analysis obtained by recrystallization from methanol using the slow evaporation technique (yield: 89%; m.p. 465 K).

11. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in calculated positions (C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methyl­ene and methine H atoms, respectively) and were included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2 and 1.5Ueq(C). The H atoms attached to N1 and N4 were freely refined with N1—H1 = 0.854 (18) and N4—H4 = 0.86 (2) Å. The 4-chloro­phenyl ring at C7 is disordered over two positions with a refined occupancy ratio of 0.480 (16):0.520 (16) with an inter planar angle of 12.2 (4)°. Attempts to refine this model, including some geometric/ADP restraints (SAME, RIGU, SIMU and FLAT) were successful.

Table 3
Experimental details

Crystal data
Chemical formula C19H20Cl2N2O
Mr 363.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 303
a, b, c (Å) 12.364 (7), 11.148 (5), 13.898 (7)
β (°) 96.500 (19)
V3) 1903.2 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.33 × 0.25 × 0.21
 
Data collection
Diffractometer Bruker D8 Quest XRD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.675, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26662, 5490, 3378
Rint 0.037
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.03
No. of reflections 5490
No. of parameters 292
No. of restraints 308
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2,7-Bis(4-chlorophenyl)-3,3-dimethyl-1,4-diazepan-5-one top
Crystal data top
C19H20Cl2N2ODx = 1.268 Mg m3
Mr = 363.27Melting point: 465 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.364 (7) ÅCell parameters from 7149 reflections
b = 11.148 (5) Åθ = 2.3–27.9°
c = 13.898 (7) ŵ = 0.35 mm1
β = 96.500 (19)°T = 303 K
V = 1903.2 (17) Å3Block, colourless
Z = 40.33 × 0.25 × 0.21 mm
F(000) = 760
Data collection top
Bruker D8 Quest XRD
diffractometer
3378 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.037
ω and Phi Scans scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.675, Tmax = 0.746k = 1515
26662 measured reflectionsl = 1919
5490 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.5139P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5490 reflectionsΔρmax = 0.27 e Å3
292 parametersΔρmin = 0.35 e Å3
308 restraintsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained planarity Cl7A, C71A, C72A, C73A, C74A, C75A, C76A with sigma of 0.1 Cl7B, C71B, C72B, C73B, C74B, C75B, C76B with sigma of 0.1 3. Uiso/Uaniso restraints and constraints C71A ~ C72A ~ C73A ~ C74A ~ C75A ~ C76A ~ C71B ~ C72B ~ C73B ~ C74B ~ C75B ~ C76B: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08 within 2A 4. Rigid body (RIGU) restrains Cl7A, C71A, C72A, C73A, C74A, C75A, C76A, Cl7B, C71B, C72B, C73B, C74B, C75B, C76B with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004 5. Same fragment restrains {C21, C22, C23, C24, C25, C26} sigma for 1-2: 0.02, 1-3: 0.04 as in {C71B, C72B, C73B, C74B, C75B, C76B} {C21, C22, C23, C24, C25, C26} sigma for 1-2: 0.02, 1-3: 0.04 as in {C71A, C72A, C73A, C74A, C75A, C76A} 6. Others Sof(H7B)=Sof(Cl7B)=Sof(C71B)=Sof(C72B)=Sof(H72B)=Sof(C73B)=Sof(H73B)= Sof(C74B)=Sof(C75B)=Sof(H75B)=Sof(C76B)=Sof(H76B)=1-FVAR(1) Sof(H7A)=Sof(Cl7A)=Sof(C71A)=Sof(C72A)=Sof(H72A)=Sof(C73A)=Sof(H73A)= Sof(C74A)=Sof(C75A)=Sof(H75A)=Sof(C76A)=Sof(H76A)=FVAR(1) 7.a Ternary CH refined with riding coordinates: C2(H2), C7(H7A), C7(H7B) 7.b Secondary CH2 refined with riding coordinates: C6(H6A,H6B) 7.c Aromatic/amide H refined with riding coordinates: C22(H22), C23(H23), C25(H25), C26(H26), C72A(H72A), C73A(H73A), C75A(H75A), C76A(H76A), C72B(H72B), C73B(H73B), C75B(H75B), C76B(H76B) 7.d Idealised Me refined as rotating group: C31(H31A,H31B,H31C), C32(H32A,H32B,H32C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.42678 (13)0.06408 (14)0.29663 (12)0.0505 (4)
H20.4975270.0243720.3106200.061*
C30.37908 (15)0.02934 (14)0.19124 (12)0.0563 (4)
C50.50869 (14)0.14605 (14)0.09427 (12)0.0531 (4)
C60.50994 (15)0.25904 (14)0.15484 (12)0.0572 (4)
H6A0.4389540.2966820.1428410.069*
H6B0.5625450.3139990.1324700.069*
C70.53706 (13)0.24325 (13)0.26467 (12)0.0514 (4)
H7A0.6003940.1905810.2783990.062*0.472 (16)
H7B0.5974210.1861240.2759030.062*0.528 (16)
C210.35432 (13)0.02263 (14)0.37199 (11)0.0500 (4)
C220.38037 (16)0.07966 (16)0.42716 (13)0.0618 (4)
H220.4433320.1220560.4185100.074*
C230.31446 (17)0.11953 (18)0.49463 (13)0.0692 (5)
H230.3325550.1885050.5305280.083*
C240.22178 (16)0.05607 (18)0.50812 (13)0.0649 (5)
C250.19441 (16)0.04635 (17)0.45575 (14)0.0652 (5)
H250.1319430.0890070.4655440.078*
C260.26095 (15)0.08526 (15)0.38826 (13)0.0578 (4)
H260.2427270.1547630.3531050.069*
C310.27622 (16)0.0998 (2)0.15445 (14)0.0735 (6)
H31A0.2915340.1841810.1581050.110*
H31B0.2193790.0812520.1937350.110*
H31C0.2533160.0780170.0884450.110*
C320.3536 (2)0.10543 (17)0.18778 (15)0.0826 (7)
H32A0.3308650.1288920.1221330.124*
H32B0.2963090.1220570.2271010.124*
H32C0.4175560.1496530.2119500.124*
N10.44413 (11)0.19400 (12)0.30811 (11)0.0522 (3)
N40.46228 (13)0.04530 (13)0.12336 (11)0.0594 (4)
O50.55447 (11)0.14660 (11)0.01998 (9)0.0699 (4)
Cl20.13826 (6)0.10582 (7)0.59300 (5)0.1053 (3)
Cl7A0.6660 (5)0.7404 (5)0.4033 (8)0.1180 (17)0.472 (16)
C71A0.5662 (9)0.3684 (10)0.2958 (6)0.0400 (14)0.472 (16)
C72A0.6732 (10)0.3967 (13)0.3197 (9)0.066 (3)0.472 (16)
H72A0.7260640.3383290.3148370.079*0.472 (16)
C73A0.7046 (12)0.5102 (14)0.3510 (11)0.069 (3)0.472 (16)
H73A0.7781740.5289120.3627740.083*0.472 (16)
C74A0.6290 (9)0.5946 (11)0.3646 (8)0.063 (2)0.472 (16)
C75A0.5212 (7)0.5719 (8)0.3382 (9)0.081 (2)0.472 (16)
H75A0.4690220.6312000.3422520.097*0.472 (16)
C76A0.4918 (7)0.4573 (7)0.3050 (9)0.070 (2)0.472 (16)
H76A0.4183630.4405370.2882740.084*0.472 (16)
Cl7B0.6571 (4)0.7280 (4)0.4386 (5)0.0942 (12)0.528 (16)
C71B0.5707 (8)0.3609 (9)0.3218 (6)0.0416 (13)0.528 (16)
C72B0.6760 (9)0.4015 (10)0.3337 (8)0.055 (2)0.528 (16)
H72B0.7307140.3522970.3149400.066*0.528 (16)
C73B0.7039 (10)0.5132 (11)0.3726 (10)0.0600 (19)0.528 (16)
H73B0.7763770.5367460.3840690.072*0.528 (16)
C74B0.6232 (8)0.5870 (9)0.3936 (7)0.0609 (18)0.528 (16)
C75B0.5194 (7)0.5475 (7)0.3872 (9)0.088 (2)0.528 (16)
H75B0.4657140.5966900.4076040.105*0.528 (16)
C76B0.4918 (6)0.4342 (7)0.3506 (8)0.076 (2)0.528 (16)
H76B0.4198750.4083390.3457280.092*0.528 (16)
H10.4518 (14)0.2083 (16)0.3689 (14)0.061 (5)*
H40.4644 (15)0.0126 (17)0.0823 (14)0.067 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0524 (9)0.0428 (8)0.0567 (9)0.0010 (7)0.0076 (7)0.0071 (7)
C30.0688 (11)0.0474 (8)0.0540 (9)0.0144 (8)0.0131 (8)0.0106 (7)
C50.0575 (10)0.0459 (8)0.0556 (9)0.0056 (7)0.0058 (8)0.0080 (7)
C60.0704 (11)0.0412 (8)0.0605 (10)0.0080 (7)0.0101 (8)0.0074 (7)
C70.0502 (9)0.0421 (8)0.0616 (10)0.0035 (7)0.0053 (7)0.0109 (7)
C210.0551 (10)0.0450 (8)0.0493 (8)0.0037 (7)0.0040 (7)0.0086 (6)
C220.0653 (11)0.0609 (10)0.0590 (10)0.0084 (8)0.0058 (8)0.0021 (8)
C230.0839 (14)0.0688 (12)0.0542 (10)0.0009 (10)0.0049 (10)0.0092 (9)
C240.0713 (12)0.0744 (12)0.0500 (9)0.0124 (10)0.0112 (8)0.0072 (9)
C250.0648 (12)0.0652 (11)0.0678 (11)0.0005 (9)0.0164 (9)0.0125 (9)
C260.0650 (11)0.0471 (9)0.0620 (10)0.0029 (8)0.0103 (8)0.0062 (7)
C310.0649 (12)0.0900 (14)0.0633 (11)0.0162 (10)0.0020 (9)0.0043 (10)
C320.1246 (19)0.0556 (11)0.0731 (13)0.0334 (11)0.0353 (12)0.0190 (9)
N10.0568 (8)0.0451 (7)0.0548 (8)0.0063 (6)0.0077 (6)0.0136 (6)
N40.0808 (11)0.0431 (7)0.0574 (8)0.0107 (7)0.0220 (7)0.0142 (6)
O50.0867 (9)0.0602 (7)0.0673 (8)0.0183 (6)0.0290 (7)0.0156 (6)
Cl20.1109 (5)0.1293 (6)0.0826 (4)0.0138 (4)0.0409 (4)0.0141 (4)
Cl7A0.1099 (17)0.0723 (13)0.175 (4)0.0380 (12)0.029 (2)0.060 (2)
C71A0.050 (2)0.048 (2)0.021 (3)0.0042 (17)0.000 (3)0.004 (3)
C72A0.060 (4)0.052 (4)0.089 (6)0.015 (3)0.019 (4)0.023 (4)
C73A0.059 (4)0.064 (4)0.083 (7)0.017 (3)0.005 (4)0.017 (4)
C74A0.070 (3)0.054 (3)0.065 (5)0.025 (2)0.016 (3)0.027 (3)
C75A0.062 (3)0.057 (3)0.126 (7)0.007 (2)0.024 (4)0.037 (4)
C76A0.046 (2)0.056 (3)0.108 (6)0.009 (2)0.009 (4)0.029 (3)
Cl7B0.0812 (15)0.0640 (11)0.133 (3)0.0084 (10)0.0070 (13)0.0489 (14)
C71B0.055 (2)0.044 (2)0.024 (3)0.0014 (15)0.003 (2)0.005 (2)
C72B0.048 (3)0.050 (4)0.067 (3)0.001 (3)0.002 (2)0.000 (3)
C73B0.055 (3)0.057 (3)0.066 (4)0.016 (2)0.004 (3)0.014 (3)
C74B0.066 (3)0.055 (3)0.060 (4)0.002 (2)0.002 (3)0.022 (3)
C75B0.063 (3)0.067 (4)0.132 (7)0.002 (2)0.009 (4)0.046 (4)
C76B0.054 (2)0.060 (3)0.115 (6)0.006 (2)0.009 (4)0.036 (4)
Geometric parameters (Å, º) top
C2—N11.470 (2)C31—H31B0.9600
C2—C211.525 (2)C31—H31C0.9600
C2—C31.564 (2)C32—H32A0.9600
C2—H20.9800C32—H32B0.9600
C3—N41.483 (2)C32—H32C0.9600
C3—C311.532 (3)N1—H10.854 (18)
C3—C321.535 (2)N4—H40.86 (2)
C5—O51.232 (2)Cl7A—C74A1.756 (12)
C5—N41.344 (2)C71A—C72A1.364 (10)
C5—C61.514 (2)C71A—C76A1.369 (9)
C6—C71.535 (2)C72A—C73A1.379 (10)
C6—H6A0.9700C72A—H72A0.9300
C6—H6B0.9700C73A—C74A1.355 (10)
C7—N11.464 (2)C73A—H73A0.9300
C7—C71A1.493 (11)C74A—C75A1.365 (9)
C7—C71B1.565 (10)C75A—C76A1.392 (8)
C7—H7A0.9800C75A—H75A0.9300
C7—H7B0.9800C76A—H76A0.9300
C21—C261.389 (2)Cl7B—C74B1.726 (11)
C21—C221.391 (2)C71B—C76B1.367 (8)
C22—C231.383 (3)C71B—C72B1.371 (9)
C22—H220.9300C72B—C73B1.386 (9)
C23—C241.377 (3)C72B—H72B0.9300
C23—H230.9300C73B—C74B1.351 (9)
C24—C251.376 (3)C73B—H73B0.9300
C24—Cl21.744 (2)C74B—C75B1.350 (8)
C25—C261.385 (2)C75B—C76B1.390 (7)
C25—H250.9300C75B—H75B0.9300
C26—H260.9300C76B—H76B0.9300
C31—H31A0.9600
N1—C2—C21108.29 (12)H31A—C31—H31B109.5
N1—C2—C3112.36 (14)C3—C31—H31C109.5
C21—C2—C3112.31 (13)H31A—C31—H31C109.5
N1—C2—H2107.9H31B—C31—H31C109.5
C21—C2—H2107.9C3—C32—H32A109.5
C3—C2—H2107.9C3—C32—H32B109.5
N4—C3—C31109.60 (15)H32A—C32—H32B109.5
N4—C3—C32104.62 (14)C3—C32—H32C109.5
C31—C3—C32109.34 (17)H32A—C32—H32C109.5
N4—C3—C2110.54 (14)H32B—C32—H32C109.5
C31—C3—C2113.34 (14)C7—N1—C2115.87 (12)
C32—C3—C2109.02 (15)C7—N1—H1109.4 (12)
O5—C5—N4120.56 (15)C2—N1—H1106.9 (12)
O5—C5—C6119.01 (15)C5—N4—C3129.94 (14)
N4—C5—C6120.38 (15)C5—N4—H4112.3 (13)
C5—C6—C7116.40 (14)C3—N4—H4114.0 (12)
C5—C6—H6A108.2C72A—C71A—C76A117.0 (9)
C7—C6—H6A108.2C72A—C71A—C7118.9 (9)
C5—C6—H6B108.2C76A—C71A—C7124.1 (8)
C7—C6—H6B108.2C71A—C72A—C73A121.3 (11)
H6A—C6—H6B107.3C71A—C72A—H72A119.4
N1—C7—C71A114.0 (4)C73A—C72A—H72A119.4
N1—C7—C6111.08 (14)C74A—C73A—C72A120.5 (11)
C71A—C7—C6101.5 (4)C74A—C73A—H73A119.7
N1—C7—C71B106.3 (4)C72A—C73A—H73A119.7
C6—C7—C71B115.1 (3)C73A—C74A—C75A120.1 (9)
N1—C7—H7A110.0C73A—C74A—Cl7A121.7 (9)
C71A—C7—H7A110.0C75A—C74A—Cl7A117.8 (9)
C6—C7—H7A110.0C74A—C75A—C76A118.0 (8)
N1—C7—H7B108.0C74A—C75A—H75A121.0
C6—C7—H7B108.0C76A—C75A—H75A121.0
C71B—C7—H7B108.0C71A—C76A—C75A122.8 (8)
C26—C21—C22117.83 (16)C71A—C76A—H76A118.6
C26—C21—C2121.54 (15)C75A—C76A—H76A118.6
C22—C21—C2120.63 (15)C76B—C71B—C72B117.9 (8)
C23—C22—C21121.29 (17)C76B—C71B—C7119.5 (7)
C23—C22—H22119.4C72B—C71B—C7122.1 (7)
C21—C22—H22119.4C71B—C72B—C73B122.3 (9)
C24—C23—C22119.35 (18)C71B—C72B—H72B118.9
C24—C23—H23120.3C73B—C72B—H72B118.9
C22—C23—H23120.3C74B—C73B—C72B118.4 (10)
C25—C24—C23120.86 (17)C74B—C73B—H73B120.8
C25—C24—Cl2119.52 (16)C72B—C73B—H73B120.8
C23—C24—Cl2119.62 (16)C75B—C74B—C73B120.4 (9)
C24—C25—C26119.25 (17)C75B—C74B—Cl7B120.8 (7)
C24—C25—H25120.4C73B—C74B—Cl7B118.5 (8)
C26—C25—H25120.4C74B—C75B—C76B120.9 (7)
C25—C26—C21121.39 (17)C74B—C75B—H75B119.6
C25—C26—H26119.3C76B—C75B—H75B119.6
C21—C26—H26119.3C71B—C76B—C75B119.8 (7)
C3—C31—H31A109.5C71B—C76B—H76B120.1
C3—C31—H31B109.5C75B—C76B—H76B120.1
N1—C2—C3—N470.74 (17)C31—C3—N4—C558.5 (2)
C21—C2—C3—N4166.89 (13)C32—C3—N4—C5175.64 (19)
N1—C2—C3—C3152.76 (19)C2—C3—N4—C567.1 (2)
C21—C2—C3—C3169.62 (18)N1—C7—C71A—C72A135.9 (6)
N1—C2—C3—C32174.79 (15)C6—C7—C71A—C72A104.6 (6)
C21—C2—C3—C3252.41 (19)N1—C7—C71A—C76A42.0 (7)
O5—C5—C6—C7134.43 (18)C6—C7—C71A—C76A77.5 (6)
N4—C5—C6—C742.8 (2)C76A—C71A—C72A—C73A0.5 (9)
C5—C6—C7—N176.04 (18)C7—C71A—C72A—C73A178.5 (8)
C5—C6—C7—C71A162.5 (4)C71A—C72A—C73A—C74A4.2 (14)
C5—C6—C7—C71B163.1 (4)C72A—C73A—C74A—C75A6.7 (16)
N1—C2—C21—C2645.9 (2)C72A—C73A—C74A—Cl7A179.4 (7)
C3—C2—C21—C2678.75 (19)C73A—C74A—C75A—C76A5.3 (13)
N1—C2—C21—C22133.83 (16)Cl7A—C74A—C75A—C76A178.3 (5)
C3—C2—C21—C22101.51 (18)C72A—C71A—C76A—C75A0.8 (9)
C26—C21—C22—C231.4 (3)C7—C71A—C76A—C75A177.1 (6)
C2—C21—C22—C23178.88 (16)C74A—C75A—C76A—C71A1.5 (10)
C21—C22—C23—C240.6 (3)N1—C7—C71B—C76B38.5 (6)
C22—C23—C24—C250.3 (3)C6—C7—C71B—C76B85.0 (6)
C22—C23—C24—Cl2179.97 (15)N1—C7—C71B—C72B150.0 (6)
C23—C24—C25—C260.4 (3)C6—C7—C71B—C72B86.5 (6)
Cl2—C24—C25—C26179.84 (14)C76B—C71B—C72B—C73B0.5 (8)
C24—C25—C26—C210.4 (3)C7—C71B—C72B—C73B171.1 (7)
C22—C21—C26—C251.2 (3)C71B—C72B—C73B—C74B4.4 (12)
C2—C21—C26—C25179.01 (15)C72B—C73B—C74B—C75B7.6 (13)
C71A—C7—N1—C2167.4 (4)C72B—C73B—C74B—Cl7B178.0 (7)
C6—C7—N1—C278.68 (18)C73B—C74B—C75B—C76B6.0 (12)
C71B—C7—N1—C2155.4 (4)Cl7B—C74B—C75B—C76B179.7 (5)
C21—C2—N1—C7161.36 (14)C72B—C71B—C76B—C75B2.3 (8)
C3—C2—N1—C774.02 (19)C7—C71B—C76B—C75B169.6 (6)
O5—C5—N4—C3161.09 (18)C74B—C75B—C76B—C71B0.9 (10)
C6—C5—N4—C321.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32A···O5i0.962.573.253 (3)129
C73B—H73B···O5ii0.932.653.515 (13)155
N4—H4···O5i0.86 (2)2.06 (2)2.914 (2)171.7 (17)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2.
Comparison of selected (X-ray and DFT) bond lengths, angles and torsion angles (Å, °) top
X-rayB3LYP/6-31G(d,p)
N1—C21.470 (2)1.470
C2—C31.564 (2)1.575
C3—N41.483 (2)1.479
N4—C51.344 (2)1.372
C5—O51.232 (2)1.227
C5—C61.514 (2)1.522
C6—C71.535 (2)1.544
C2—C211.525 (2)1.524
C7—C71B1.565 (10)1.521
O5—C5—N4120.56 (15)120.0
O5—C5—C6119.01 (15)120.8
C7—N1—C2115.87 (12)117.0
N1—C2—C21108.29 (12)107.9
N1—C7—C71B106.3 (4)109.0
C21—C2—C3—N4-166.89 (13)-164.9
C5—C6—C7—C71B163.1 (4)164.0
N1—C2—C3—C31-52.76 (19)-52.2
N1—C2—C3—C32-174.79 (15)-173.8
 

Footnotes

Additional correspondence author, e-mail: rraajjii2006@gmail.com.

Acknowledgements

The authors thank the DST PURSE Phase II, Department of Chemistry, Annamalai University, for support of the single-crystal XRD data collection.

References

First citationBaliah, V., Lakshmanan, M. R. & Pandiarajan, K. (1978). Indian J. Chem. 16B, 72–73.  CAS Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.  Google Scholar
First citationBruker (2017). APEX3, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDallakyan, S. & Olson, A. J. (2015). Chem. Biol. 1263, 243–250.  CrossRef CAS Google Scholar
First citationDennington, R. D. II, Keith, T. A. & Millam, J. M. (2009). GaussView 5.0. Semichem Inc., Shawnee Mission, KS.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaheshwaran, V., Sethuvasan, S., Ravichandran, K., Ponnuswamy, S., Sugumar, P. & Ponnuswamy, M. N. (2015). Chem. Cent. J. 9, 1–10.  PubMed Google Scholar
First citationMurthy, K. S. K. & Knaus, E. E. (1999). Drug Dev. Res. 46, 155–162.  CrossRef CAS Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPolitzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142.  Web of Science CrossRef CAS Google Scholar
First citationPonnuswamy, S., Akila, A., Kiruthiga devi, D., Maheshwaran, V. & Ponnuswamy, M. N. (2016). J. Mol. Struct. 1110, 53–64.  CrossRef CAS Google Scholar
First citationRavichandran, K., Ramesh, P., Sethuvasan, S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSethuvasan, S., Sugumar, P., Maheshwaran, V., Ponnuswamy, M. N. & Ponnuswamy, S. (2016). J. Mol. Struct. 1116, 188–199.  CrossRef CAS Google Scholar
First citationSethuvasan, S., Sugumar, P., Ponnuswamy, M. N. & Ponnuswamy, S. (2021). J. Mol. Struct. pp. 1223 article No. 129002.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThennarasu, S. & Perumal, P. T. (2002). Molecules, 7, 487–493.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolkinger, V., Weis, R., Belaj, F., Kaiser, M., Brun, R., Saf, R. & Seebacher, W. (2009). Aust. J. Chem. 62, 1166–1172.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds