research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and redetermination of the crystal structure of NbF5

crossmark logo

aAnorganische Chemie, Fluorchemie, Philipps-Universität Marburg, Hans, Meerwein-Str. 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by Y. Ozawa, University of Hyogo, Japan (Received 16 October 2023; accepted 23 November 2023; online 30 November 2023)

Single crystals of NbF5, niobium(V) fluoride, have been obtained by the reaction of niobium metal in a stream of dilute elemental fluorine at 473 K and subsequent sublimation. The as-obtained bulk phase compound was shown to be pure by powder X-ray diffraction at 293 K and by IR and Raman spectroscopy. A single-crystal X-ray analysis was conducted at 100 K. In comparison to the previously reported structure model [Edwards (1964[Edwards, A. J. (1964). J. Chem. Soc. pp. 3714-3718.]). J. Chem. Soc. pp. 3714–3718], the lattice parameters and fractional atom coordinates were determined to much higher precision and individual, anisotropic displacement parameters were refined for all atoms.

1. Chemical context

NbF5 was first synthesized by Ruff and Schiller (Ruff, 1909[Ruff, O. (1909). Ber. Dtsch. Chem. Ges. 42, 492-497.]; Ruff & Schiller, 1911[Ruff, O. & Schiller, E. (1911). Z. Anorg. Chem. 72, 329-357.]) from the reaction of Nb metal with elemental fluorine or from the reaction of NbCl5 with anhydrous HF. By now, several alternative ways for its synthesis have also been described in the literature (Schäfer et al., 1965[Schäfer, H., Schnering, H. G., Niehues, K.-J. & Nieder-Vahrenholz, H. G. (1965). J. Less-Common Met. 9, 95-104.]; O'Donnell & Peel, 1976[O'Donnell, T. A. & Peel, T. A. (1976). J. Inorg. Nucl. Chem. 28, 61-62.]). Niobium penta­fluoride is a colorless, hygroscopic solid that melts at 352.1 K and has a boiling point of 506.5 K (Junkins et al., 1952[Junkins, J. H., Farrar, R. L., Barber, E. J. & Bernhardt, H. A. (1952). J. Am. Chem. Soc. 74, 3464-3466.]). The vapor pressure (Junkins et al., 1952[Junkins, J. H., Farrar, R. L., Barber, E. J. & Bernhardt, H. A. (1952). J. Am. Chem. Soc. 74, 3464-3466.]; Fairbrother & Frith, 1951[Fairbrother, F. & Frith, W. C. (1951). J. Chem. Soc. pp. 3051-3056.]), the enthalpy of fusion (Junkins et al., 1952[Junkins, J. H., Farrar, R. L., Barber, E. J. & Bernhardt, H. A. (1952). J. Am. Chem. Soc. 74, 3464-3466.]), and the electrical conductivity (Fairbrother et al., 1954[Fairbrother, F., Frith, W. C. & Woolf, A. A. (1954). J. Chem. Soc. pp. 1031-1033.]) of liquid NbF5 have also been determined. Infrared and Raman spectra of the solid were measured (Preiss & Reich, 1968[Preiss, H. & Reich, P. (1968). Z. Anorg. Allg. Chem. 362, 19-23.]; Beattie et al., 1969[Beattie, I. R., Livingston, K. M. S., Ozin, G. A. & Reynolds, D. J. (1969). J. Chem. Soc. A, pp. 958-965.]) and the structure of NbF5 in the (supercooled) liquid, glassy state and the gas phase have been investigated by Raman spectroscopy (Boghosian et al., 2005[Boghosian, S., Pavlatou, E. A. & Papatheodorou, G. N. (2005). Vib. Spectrosc. 37, 133-139.]; Papatheodorou et al., 2008[Papatheodorou, G. N., Kalampounias, A. G. & Yannopoulos, S. N. (2008). J. Non-Cryst. Solids, 354, 5521-5528.]). In a search for a suitable laboratory synthesis of NbF5, we investigated several methods for its preparation. During our efforts, single crystals of several millimeters in size were obtained when hot NbF5 re-sublimed at colder parts of our reaction setup (see Synthesis and crystallization). The former crystal structure published by Edwards (1964[Edwards, A. J. (1964). J. Chem. Soc. pp. 3714-3718.]) is of lower precision compared to structure determinations possible nowadays and displacement parameters had not been refined anisotropically.

2. Structural commentary

The lattice parameters obtained from powder X-ray diffraction at 293 K [a = 9.62749 (19), b = 14.4564 (3) c = 5.12831 (10) Å, β = 95.8243 (4)°] agree with those determined by Edwards (1964[Edwards, A. J. (1964). J. Chem. Soc. pp. 3714-3718.]) [a = 9.62 (1), b = 14.43 (2), c = 5.12 (1) Å, β = 96.1 (3)°]. Although the temperature was not explicitly stated in Edwards' work, it can be assumed that the structure was determined at room temperature. The powder X-ray diffraction pattern is shown in Fig. 1[link]; crystallographic details of the Rietveld refinement are given in Table 1[link] and the supporting information.

Table 1
Selected crystallographic details for NbF5 determined from single-crystal X-ray diffraction (SCXRD, middle column) and powder X-ray diffraction (PXRD, Rietveld refinement, right column)

  NbF5 (SCXRD) NbF5 (PXRD)
Empirical formula NbF5 NbF5
Empirical formula moiety Nb4F20 Nb4F20
Color and appearance colorless block colorless powder
Size (mm3); capillary diameter (mm) 0.180 × 0.050 × 0.050 0.3
Mol­ecular mass (g mol−1) 187.91 187.91
Crystal system monoclinic monoclinic
Space group (No.) C2/m (12) C2/m (12)
Pearson symbol mC48 mC48
a (Å) 9.4863 (12) 9.62749 (19)
b (Å) 14.2969 (12) 14.4564 (3)
c (Å) 4.9892 (6) 5.12831 (10)
β (°) 97.292 (10) 95.8243 (4)
V3) 671.19 (13) 710.07 (3)
Z 8 8
Z 2 2
ρcalc (g cm−3) 3.719 3.515
λ (Å) 0.71073 (Mo Kα) 1.540596 (Cu Kα1)
T (K) 100 293
μ (mm−1) 3.561 27.9495
2θ range measured (min, max, increment) 5.182, 60.76, – 6.885, 80.340, 0.015
2θ range refined (min, max) 10.005, 80.340
hklmax −13 ≤ h ≤ 13 0 ≤ h ≤ 8
  −18 ≤ k ≤ 18 0 ≤ k ≤ 12
  −7≤ l ≤7 −4≤ l ≤4
Absorption correction numerical cylindrical
Tmax, Tmin 0.7778, 0.7760
Rint, Rσ 0.0318, 0.0172
Completeness 0.994
No. of unique reflections 1048 240
No. of parameters 60 74
No. of restraints 0 0
No. of constraints 0 0
Background parameters 20
Profile parameters 12a
Rp, Rwp 0.0308, 0.0425
Rpb, Rwpb 0.0889, 0.0904
RBragg 0.0132
S (all data) 1.024 1.77
R(F) [I ≥ 2σ(I), all data] 0.0143, 0.0198
wR(F2) [I ≥ 2σ(I), all data] 0.0315, 0.0323
Δρmax, Δρmin (e Å−3) 0.544, −0.521
Notes: (a) refined profile parameters include spherical harmonics of order 4; (b) background-corrected R-factors.
[Figure 1]
Figure 1
Powder X-ray diffraction pattern and Rietveld refinement of NbF5: measured data points (black dots), calculated diffraction pattern (red line), background (green line) and difference curve (gray). The calculated reflection positions are indicated by the vertical bars at the bottom. Rp = 3.08, Rwp = 4.25%, RBragg = 1.32%, S = 1.77.

The single-crystal structure determination was performed at 100 K and thus resulted in smaller lattice parameters by about 1–3% compared to those determined at room temperature (see Table 1[link]). Otherwise, there are no significant structural differences compared to the RT structure. The slight contraction of the lattice parameters is mainly due to the shortening of the distances between the Nb4F20 mol­ecules, while the intra­molecular F—Nb distances determined at 100 K differ only insignificantly from those determined at room temperature.

NbF5 crystallizes in the space group C2/m (No. 12, Pearson code mC48, Wyckoff sequence j4i3h) with the lattice parameters a = 9.4863 (12), b = 14.2969 (12), c = 4.9892 (6) Å, β = 97.292 (10)°, Z = 8 at 100 K. NbF5 crystallizes in the MoF5 structure type (Edwards et al., 1962[Edwards, A. J., Peacock, R. D. & Small, R. W. H. (1962). J. Chem. Soc. pp. 4486-4491.]; Stene et al., 2018[Stene, R. E., Scheibe, B., Pietzonka, C., Karttunen, A. J., Petry, W. & Kraus, F. (2018). J. Fluor. Chem. 211, 171-179.]). The structure consists of NbF5 units forming tetra­meric mol­ecules that can be described by the Niggli (Niggli, 1945[Niggli, P. (1945). Grundlagen der Stereochemie. Basel: Springer Basel AG.]) formula 0{[NbF2/2F4/1]4}. The structure of the Nb4F20 mol­ecule in the solid and the crystal structure of the compound are shown in Figs. 2[link] and 3[link]. Two symmetry-independent niobium atoms reside on Wyckoff positions 4h (site symmetry 2, Nb1) and 4i (site symmetry m, Nb2) and are surrounded octa­hedron-like by six fluorine atoms. By edge-linking via two cis-positioned fluorine atoms, the NbF6 units form square-like mol­ecules. The atomic distance between the Nb1 atom and the μ-bridg­ing fluorine atoms F4 is 2.0669 (9) Å, while the Nb2—μ-F4 distance is 2.0685 (10). Thus, both Nb—μ-F4 bond lengths are identical within their tripled standard uncertainty. The Nb1—μ-F4—Nb2 bridge is slightly bent by 172.94 (5)°, with the bridging fluorine atoms pointing towards the ring center (Wyckoff position 2c, site symmetry 2/m) of the planar Nb4F20 rings. The distances between the Nb and the Ftrans atoms, Nb1—F6 and Nb2—F3, which are opposite to the μ-bridging F atoms, are 1.8157 (11) and 1.8121 (10) Å; also overlapping within the 3σ criterion. The μ-F—Nb—Ftrans angles measure 172.83 (4) and 171.95 (4)°. The terminally bound fluorine ligands in axial positions (F1, F2 and F5) show slightly longer Nb—F bonds of 1.8577 (14), 1.8378 (14), and 1.8468 (10) Å compared to those oriented equatorially (F3 and F6), showing Nb—F distances of 1.8121 (10) and 1.8157 (11) Å. This phenomenon was observed to a similar extent for the structure of MoF5 (Stene et al., 2018[Stene, R. E., Scheibe, B., Pietzonka, C., Karttunen, A. J., Petry, W. & Kraus, F. (2018). J. Fluor. Chem. 211, 171-179.]) and can be attributed to the structural trans effect (Coe & Glenwright, 2000[Coe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5-80.]; Shustorovich et al., 1975[Shustorovich, E. M., Porai-Koshits, M. A. & Buslaev, Yu. A. (1975). Coord. Chem. Rev. 17, 1-98.]). The Nb atoms in a mol­ecule lie in a flat, nearly square plane and the crystallographic point group of the Nb4F20 mol­ecule is 2/m (C2h). The intra­molecular Nb1⋯Nb2 distance is 4.1275 (4) Å while the Nb1⋯Nb2⋯Nb1 angle measures 89.62 (1)°. The distances between diagonally opposite Nb atoms in the ring are 5.8565 (8), and 5.8179 (6) Å. Thus, the four Nb atoms of the Nb4F20 mol­ecule do not form an ideal square. It is distorted in a diamond shape, which corresponds to a compression along the twofold axis of rotation. An overview of inter­atomic distances and angles in the structure of NbF5 is given in Tables 2[link] and 3[link]. The global crystal structure can be approximately described by a cubic close-packing of the fluorine atoms, in which 1/5th of the octa­hedral voids are occupied by Nb atoms in such a way that the Nb4F20 mol­ecules are obtained (Edwards, 1964[Edwards, A. J. (1964). J. Chem. Soc. pp. 3714-3718.]; Müller, 2009[Müller, U. (2009). Anorganische Strukturchemie. Wiesbaden: Vieweg + Teubner.]).

Table 2
Selected inter­atomic distances (Å) for the crystal structure of NbF5

Nb1—F4 2.0669 (9) Nb2—F3 1.8121 (10)
Nb1—F5 1.8468 (10) Nb2—F4 2.0685 (10)
Nb1—F6 1.8157 (11) Nb1—Nb2 4.1275 (4)
Nb2—F1 1.8577 (14) Nb1—Nb1iii 5.8179 (6)
Nb2—F2 1.8378 (14) Nb2—Nb2ii 5.8565 (8)
Symmetry codes: (i) x, −y, z; (ii) −x, y, 1 − z, (iii) −x, −y, 1 − z.

Table 3
Selected inter­atomic angles (°) for the crystal structure of NbF5

F6—Nb1—F6ii 97.52 (7) F3—Nb2—F3i 98.46 (7)
F6—Nb1—F5 95.18 (5) F3—Nb2—F2 96.78 (5)
F6i—Nb1—F5 95.61 (5) F3i—Nb2—F2 96.78 (5)
F6—Nb1—F5ii 95.61 (5) F3—Nb2—F1 94.53 (5)
F6ii—Nb1—F5ii 95.18 (5) F3i—Nb2—F1 94.53 (5)
F5—Nb1—F5ii 163.61 (7) F2—Nb2—F1 162.63 (6)
F6—Nb1—F4ii 172.83 (4) F3—Nb2—F4 89.47 (5)
F6ii—Nb1—F4ii 89.59 (4) F3i—Nb2—F4 171.95 (4)
F5—Nb1—F4ii 83.14 (5) F2—Nb2—F4 83.54 (5)
F5ii—Nb1—F4ii 84.63 (4) F1—Nb2—F4 83.43 (4)
F6—Nb1—F4 89.59 (4) F3—Nb2—F4i 171.95 (4)
F6ii—Nb1—F4 172.83 (4) F3i—Nb2—F4i 89.47 (5)
F5—Nb1—F4 84.62 (4) F2—Nb2—F4i 83.54 (5)
F5ii—Nb1—F4 83.14 (5) F1—Nb2—F4i 83.43 (4)
F4ii—Nb1—F4 83.32 (5) F4—Nb2—F4i 82.57 (5)
Nb1—Nb2—Nb1iii 89.62 (1) Nb1—F4—Nb2 172.94 (5)
Nb2—Nb1—Nb2ii 90.38 (1)    
Symmetry codes: (i) x, −y, z; (ii) −x, y, 1 − z, (iii) −x, −y, 1 − z.
[Figure 2]
Figure 2
Structure of the Nb4F20 mol­ecule as it appears in the crystal structure of NbF5. Atom labeling in accordance with Edwards et al. (1962[Edwards, A. J., Peacock, R. D. & Small, R. W. H. (1962). J. Chem. Soc. pp. 4486-4491.]). Displacement ellipsoids are shown at the 70% probability level at 100 K. [Symmetry codes: (i) x, −y, z; (ii) −x, y, 1 − z; (iii) −x, −y, 1 − z.]
[Figure 3]
Figure 3
Crystal structure of NbF5 viewed along the c axis. Displacement ellipsoids are shown at 70% probability level at 100 K.

In addition to X-ray powder diffraction, the bulk phase was also investigated by IR and Raman spectroscopy. The obtained spectra, which are given in the supporting information, agree with those reported in the literature (Preiss & Reich, 1968[Preiss, H. & Reich, P. (1968). Z. Anorg. Allg. Chem. 362, 19-23.]; Beattie et al., 1969[Beattie, I. R., Livingston, K. M. S., Ozin, G. A. & Reynolds, D. J. (1969). J. Chem. Soc. A, pp. 958-965.]; Papatheodorou et al., 2008[Papatheodorou, G. N., Kalampounias, A. G. & Yannopoulos, S. N. (2008). J. Non-Cryst. Solids, 354, 5521-5528.]), and indicate a phase pure sample.

3. Conclusion

NbF5 was synthesized from F2 and Nb metal and obtained as a colorless, phase-pure solid and by sublimation as single crystals. The previous structure model was significantly improved with much more precise atomic coordinates and all atoms refined anisotropically, giving much better bond lengths and angles for the Nb4F20 mol­ecules.

4. Synthesis and crystallization

Niobium penta­fluoride was synthesized from the elements directly using the apparatus sketched in Fig. 4[link]. Therein, niobium metal sheets (17.28g, 185.9mmol, TANIOBIS GmbH) were loaded in a corundum boat, which was placed inside a tube furnace. One side of the inner corundum tube of the furnace was connected to a metal Schlenk line via a PTFE sealed copper fitting, allowing control of the fluorine supply, as well as evacuating and purging the system with argon. The other side was connected to a U-shaped, 3/4-inch PFA tube via a copper pipe, followed by a PFA gas wash bottle filled with perfluoro polyether (Hostinert 216) and an absorber column filled with soda lime (Carl Roth). The copper pipe, all fittings and valves were surrounded by heating sleeves or wires and heated to 473 K to prevent resublimation of solid NbF5 inside. Before use, the apparatus was thoroughly baked out and passivated using diluted fluorine (F2/Ar, 20:80 v/v, Solvay). For the reaction a stream of diluted fluorine (F2/Ar, 20:80 v/v, approx. 36 mL min−1) was applied and the furnace temperature was set to 473 K. The first single crystals of resublimed NbF5 were obtained within several minutes in the U-shaped PFA tube. After 16 h the reaction was complete, giving 34.2 g (182.0 mmol, 98%) NbF5 as a colorless, crystalline solid (see Fig. 5[link]).

[Figure 4]
Figure 4
Scheme of the apparatus used for the synthesis of NbF5. (a) Connection to a metal Schlenk line for evacuation, purging with inert gas, and fluorine supply, (b) tube furnace, (c) copper pipe surrounded by a heating sleeve, (d) PFA U-trap for product collection equipped with Monel connectors and diaphragm valves (Hoke), (e) PFA gas wash bottle with steel fitting filled with perfluoro polyether, (f) outlet connected to the absorber.
[Figure 5]
Figure 5
Photo of colorless crystalline NbF5 accumulated in the U-shaped PFA tube during the reaction (left, photo was taken inside a glove box) and corundum boat containing niobium metal: before (top right) and during the reaction (bottom right).

5. Structure determination

5.1 Single crystal structure determination: A crystal of NbF5 was selected under pre-dried perfluorinated oil (Fomblin YR 1800) and mounted using a MiTeGen loop. Intensity data of a suitable crystal were recorded with an IPDS 2 diffractometer (Stoe & Cie). The diffractometer was operated with Mo Kα radiation (0.71073 Å, graphite monochromator) and equipped with an image plate detector. Evaluation, integration and reduction of the diffraction data was carried out using the X-AREA software suite (X-AREA V1.90; Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]). A numerical absorption correction was applied with the modules X-SHAPE and X-RED32 of the X-AREA software suite. The structures were solved with dual-space methods (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), and refined against F2 (SHELXL) within the ShelXle GUI (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]; Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). All atoms were refined with anisotropic displacement parameters. The highest residual electron density after the final refinement was 0.80 Å distant from atom F6. Representations of the crystal structures were created with the DIAMOND software (Brandenburg & Putz, 2022[Brandenburg, K. & Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

5.2 Powder X-ray diffraction: For powder X-ray diffraction, the sample was ground using a glassy carbon mortar and filled into a quartz capillary with a diameter of 0.3 mm. The powder X-ray pattern was recorded with a StadiMP diffractometer (Stoe & Cie) in Debye-Scherrer geometry. The diffractometer was operated with Cu Kα1 radiation (1.5406 Å, germanium monochromator) and equipped with a MYTHEN 1K detector.

Rietveld refinements (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) were performed using the TOPAS-Academic software (version 7; Coelho, 2018[Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.]). The structural model derived from single-crystal X-ray diffraction was used as the starting point for the refinement. A shifted Chebyshev polynomial was used to describe the background of the powder pattern, the peak profiles were fitted with a modified Thompson–Cox–Hastings pseudo-Voigt (`TCHZ') function as implemented in TOPAS, and the zero offset was refined. To account for absorption, an intensity correction for cylindrical samples was applied as implemented in TOPAS. A weak preferential orientation of the crystallites was taken into account by means of a fourth-order spherical-harmonics function. The final refinement cycles converged with free refinement of all background, profile, and lattice parameters, including the coordinates of all atoms, the isotropic displacement parameters of the F atoms and anisotropic displacement parameters of the Nb atoms. Further details concerning the Rietveld refinement are given in Table 1[link] and in the supporting information. Crystal data, data collection and structure refinement details are summarized in Table 4.[link]

Table 4
Experimental details

Crystal data
Chemical formula Nb4F20
Mr 187.91
Crystal system, space group Monoclinic, C2/m
Temperature (K) 100
a, b, c (Å) 9.4863 (12), 14.2969 (12), 4.9892 (6)
β (°) 97.292 (10)
V3) 671.19 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.56
Crystal size (mm) 0.18 × 0.05 × 0.05
 
Data collection
Diffractometer Stoe IPDSII
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe & Cie, Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.776, 0.778
No. of measured, independent and observed [I > 2σ(I)] reflections 5819, 1048, 903
Rint 0.032
(sin θ/λ)max−1) 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.032, 1.02
No. of reflections 1048
No. of parameters 60
Δρmax, Δρmin (e Å−3) 0.54, −0.52
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2020[Brandenburg, K. & Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Niobium(V) fluoride top
Crystal data top
Nb4F20F(000) = 688
Mr = 187.91Dx = 3.719 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 9.4863 (12) ÅCell parameters from 8094 reflections
b = 14.2969 (12) Åθ = 2.6–30.9°
c = 4.9892 (6) ŵ = 3.56 mm1
β = 97.292 (10)°T = 100 K
V = 671.19 (13) Å3Block, colorless
Z = 80.18 × 0.05 × 0.05 mm
Data collection top
Stoe IPDSII
diffractometer
1048 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus903 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.032
rotation method, ω scansθmax = 30.4°, θmin = 2.6°
Absorption correction: numerical
(X-RED32 and X-SHAPE; Stoe & Cie, Stoe & Cie, 2020)
h = 1313
Tmin = 0.776, Tmax = 0.778k = 1820
5819 measured reflectionsl = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.014Secondary atom site location: difference Fourier map
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0196P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1048 reflectionsΔρmax = 0.54 e Å3
60 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.0000000.20347 (2)0.5000000.01085 (6)
Nb20.26047 (2)0.0000000.24168 (4)0.01094 (6)
F10.34193 (16)0.0000000.6005 (3)0.0169 (3)
F20.13043 (15)0.0000000.0646 (3)0.0148 (3)
F30.36790 (12)0.09599 (7)0.1443 (2)0.0179 (2)
F40.12213 (11)0.09546 (6)0.3786 (2)0.01482 (19)
F50.10961 (12)0.18505 (7)0.17107 (19)0.0163 (2)
F60.11939 (13)0.28718 (7)0.3733 (2)0.0171 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.01143 (11)0.00957 (9)0.01173 (9)0.0000.00212 (7)0.000
Nb20.01106 (10)0.01044 (9)0.01157 (10)0.0000.00242 (7)0.000
F10.0168 (7)0.0195 (6)0.0141 (6)0.0000.0011 (5)0.000
F20.0145 (6)0.0152 (6)0.0145 (6)0.0000.0013 (5)0.000
F30.0177 (5)0.0169 (5)0.0196 (5)0.0046 (4)0.0043 (4)0.0012 (4)
F40.0150 (4)0.0130 (4)0.0170 (4)0.0021 (4)0.0039 (3)0.0013 (4)
F50.0176 (5)0.0163 (4)0.0146 (4)0.0003 (4)0.0008 (4)0.0004 (4)
F60.0175 (5)0.0152 (4)0.0189 (5)0.0026 (4)0.0036 (4)0.0018 (4)
Geometric parameters (Å, º) top
Nb1—F61.8157 (11)Nb2—F31.8121 (10)
Nb1—F6i1.8158 (10)Nb2—F3ii1.8122 (10)
Nb1—F51.8468 (10)Nb2—F21.8378 (14)
Nb1—F5i1.8468 (10)Nb2—F11.8577 (14)
Nb1—F4i2.0669 (9)Nb2—F42.0685 (10)
Nb1—F42.0669 (9)Nb2—F4ii2.0685 (10)
F6—Nb1—F6i97.52 (7)F3—Nb2—F296.78 (5)
F6—Nb1—F595.18 (5)F3ii—Nb2—F296.78 (5)
F6i—Nb1—F595.61 (5)F3—Nb2—F194.53 (5)
F6—Nb1—F5i95.61 (5)F3ii—Nb2—F194.53 (5)
F6i—Nb1—F5i95.18 (5)F2—Nb2—F1162.63 (6)
F5—Nb1—F5i163.61 (7)F3—Nb2—F489.47 (5)
F6—Nb1—F4i172.83 (4)F3ii—Nb2—F4171.95 (4)
F6i—Nb1—F4i89.59 (4)F2—Nb2—F483.54 (5)
F5—Nb1—F4i83.14 (5)F1—Nb2—F483.43 (4)
F5i—Nb1—F4i84.63 (4)F3—Nb2—F4ii171.95 (4)
F6—Nb1—F489.59 (4)F3ii—Nb2—F4ii89.47 (5)
F6i—Nb1—F4172.83 (4)F2—Nb2—F4ii83.54 (5)
F5—Nb1—F484.62 (4)F1—Nb2—F4ii83.43 (4)
F5i—Nb1—F483.14 (5)F4—Nb2—F4ii82.57 (5)
F4i—Nb1—F483.32 (5)Nb1—F4—Nb2172.94 (5)
F3—Nb2—F3ii98.46 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
Selected crystallographic details for NbF5 determined from single crystal X-ray diffraction (SCXRD, middle column) and powder X-ray diffraction (PXRD, Rietveld refinement, right column) top
NbF5 (SCXRD)NbF5 (PXRD)
Empirical formulaNbF5NbF5
Empirical formula moietyNb4F20Nb4F20
Color and appearancecolorless blockcolorless powder
Size (mm3); capillary diameter (mm)0.180 × 0.050 × 0.0500.3
Molecular mass (g mol–1)187.91187.91
Crystal systemmonoclinicmonoclinic
Space group (No.)C2/m (12)C2/m (12)
Pearson symbolmC48mC48
a (Å)9.4863 (12)9.62749 (19)
b (Å)14.2969 (12)14.4564 (3)
c (Å)4.9892 (6)5.12831 (10)
β (°)97.292 (10)95.8243 (4)
V3)671.19 (13)710.07 (3)
Z88
Z'22
ρcalc (g cm-3)3.7193.515
λ (Å)0.71073 (Mo Kα)1.540596 (Cu Kα1)
T (K)100293
µ (mm-1)3.56127.9495
2θ range measured (min, max, increment)5.182, 60.76, –6.885, 80.340, 0.015
2θ range refined (min, max)10.005, 80.340
hklmax-13 h 130 h 8
-18 k 180 k 12
-7 l 7-4 l 4
Absorption correctionnumericalcylindrical
Tmax, Tmin0.7778, 0.7760
Rint, Rσ0.0318, 0.0172
Completeness0.994
No. of unique reflections1048240
No. of parameters6074
No. of restraints00
No. of constraints00
Background parameters20
Profile parameters12a
Rp, Rwp0.0308, 0.0425
Rpb, Rwpb0.0889, 0.0904
RBragg0.0132
S (all data)1.0241.77
R(F) [I 2σ(I), all data]0.0143, 0.0198
wR(F2) [I 2σ(I), all data]0.0315, 0.0323
Δρmax, Δρmin (e Å-3)0.544, –0.521
Notes: (a) refined profile parameters include spherical harmonics of order 4; (b) background-corrected R-factors.
Selected interatomic distances (Å) for the crystal structure of NbF5 top
Nb1—F42.0669 (9)Nb2—F31.8121 (10)
Nb1—F51.8468 (10)Nb2—F42.0685 (10)
Nb1—F61.8157 (11)Nb1—Nb24.1275 (4)
Nb2—F11.8577 (14)Nb1—Nb1iii5.8179 (6)
Nb2—F21.8378 (14)Nb2—Nb2ii5.8565 (8)
Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z, (iii) -x, -y, 1 - z.
Selected interatomic angles (°) for the crystal structure of NbF5. top
F6—Nb1—F6ii97.52 (7)F3—Nb2—F3i98.46 (7)
F6—Nb1—F595.18 (5)F3—Nb2—F296.78 (5)
F6i—Nb1—F595.61 (5)F3i—Nb2—F296.78 (5)
F6—Nb1—F5ii95.61 (5)F3—Nb2—F194.53 (5)
F6ii—Nb1—F5ii95.18 (5)F3i—Nb2—F194.53 (5)
F5—Nb1—F5ii163.61 (7)F2—Nb2—F1162.63 (6)
F6—Nb1—F4ii172.83 (4)F3—Nb2—F489.47 (5)
F6ii—Nb1—F4ii89.59 (4)F3i—Nb2—F4171.95 (4)
F5—Nb1—F4ii83.14 (5)F2—Nb2—F483.54 (5)
F5ii—Nb1—F4ii84.63 (4)F1—Nb2—F483.43 (4)
F6—Nb1—F489.59 (4)F3—Nb2—F4i171.95 (4)
F6ii—Nb1—F4172.83 (4)F3i—Nb2—F4i89.47 (5)
F5—Nb1—F484.62 (4)F2—Nb2—F4i83.54 (5)
F5ii—Nb1—F483.14 (5)F1—Nb2—F4i83.43 (4)
F4ii—Nb1—F483.32 (5)F4—Nb2—F4i82.57 (5)
Nb1—Nb2—Nb1iii89.62 (1)Nb1—F4—Nb2172.94 (5)
Nb2—Nb1—Nb2ii90.38 (1)
Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z, (iii) -x, -y, 1 - z.
Selected interatomic angles (°) for the crystal structure of NbF5 top
F6i—Nb1—F595.61 (5)F3i—Nb2—F296.78 (5)
F6—Nb1—F6ii97.52 (7)F3—Nb2—F3i98.46 (7)
F6—Nb1—F595.18 (5)F3—Nb2—F296.78 (5)
F6i—Nb1—F595.61 (5)F3i—Nb2—F296.78 (5)
F6—Nb1—F5ii95.61 (5)F3—Nb2—F194.53 (5)
F6ii—Nb1—F5ii95.18 (5)F3i—Nb2—F194.53 (5)
F5—Nb1—F5ii163.61 (7)F2—Nb2—F1162.63 (6)
F6—Nb1—F4ii172.83 (4)F3—Nb2—F489.47 (5)
F6ii—Nb1—F4ii89.59 (4)F3i—Nb2—F4171.95 (4)
F5—Nb1—F4ii83.14 (5)F2—Nb2—F483.54 (5)
F5ii—Nb1—F4ii84.63 (4)F1—Nb2—F483.43 (4)
F6—Nb1—F489.59 (4)F3—Nb2—F4i171.95 (4)
F6ii—Nb1—F4172.83 (4)F3i—Nb2—F4i89.47 (5)
F5—Nb1—F484.62 (4)F2—Nb2—F4i83.54 (5)
F5ii—Nb1—F483.14 (5)F1—Nb2—F4i83.43 (4)
F4ii—Nb1—F483.32 (5)F4—Nb2—F4i82.57 (5)
Nb1—Nb2—Nb1iii89.62 (1)Nb1—F4—Nb2172.94 (5)
Nb2—Nb1—Nb2ii90.38 (1)
Symmetry codes: (i) x, -y, z; (ii) -x, y, 1 - z, (iii) -x, -y, 1 - z.

Acknowledgements

We thank the X-ray facilities of Dr Ivlev for their great service and TANIOBIS GmbH for the donation of niobium compounds. We thank Solvay for the kind donation of fluorine.

Funding information

Funding for this research was provided by: TANIOBIS GmbH.

References

First citationBeattie, I. R., Livingston, K. M. S., Ozin, G. A. & Reynolds, D. J. (1969). J. Chem. Soc. A, pp. 958–965.  CrossRef Google Scholar
First citationBoghosian, S., Pavlatou, E. A. & Papatheodorou, G. N. (2005). Vib. Spectrosc. 37, 133–139.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5–80.  Web of Science CrossRef CAS Google Scholar
First citationCoelho, A. A. (2018). J. Appl. Cryst. 51, 210–218.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, A. J. (1964). J. Chem. Soc. pp. 3714–3718.  CrossRef ICSD Web of Science Google Scholar
First citationEdwards, A. J., Peacock, R. D. & Small, R. W. H. (1962). J. Chem. Soc. pp. 4486–4491.  CrossRef Google Scholar
First citationFairbrother, F. & Frith, W. C. (1951). J. Chem. Soc. pp. 3051–3056.  CrossRef Google Scholar
First citationFairbrother, F., Frith, W. C. & Woolf, A. A. (1954). J. Chem. Soc. pp. 1031–1033.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJunkins, J. H., Farrar, R. L., Barber, E. J. & Bernhardt, H. A. (1952). J. Am. Chem. Soc. 74, 3464–3466.  CrossRef CAS Google Scholar
First citationMüller, U. (2009). Anorganische Strukturchemie. Wiesbaden: Vieweg + Teubner.  Google Scholar
First citationNiggli, P. (1945). Grundlagen der Stereochemie. Basel: Springer Basel AG.  Google Scholar
First citationO'Donnell, T. A. & Peel, T. A. (1976). J. Inorg. Nucl. Chem. 28, 61–62.  Google Scholar
First citationPapatheodorou, G. N., Kalampounias, A. G. & Yannopoulos, S. N. (2008). J. Non-Cryst. Solids, 354, 5521–5528.  CrossRef CAS Google Scholar
First citationPreiss, H. & Reich, P. (1968). Z. Anorg. Allg. Chem. 362, 19–23.  CrossRef CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRuff, O. (1909). Ber. Dtsch. Chem. Ges. 42, 492–497.  CrossRef Google Scholar
First citationRuff, O. & Schiller, E. (1911). Z. Anorg. Chem. 72, 329–357.  CrossRef Google Scholar
First citationSchäfer, H., Schnering, H. G., Niehues, K.-J. & Nieder-Vahrenholz, H. G. (1965). J. Less-Common Met. 9, 95–104.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShustorovich, E. M., Porai-Koshits, M. A. & Buslaev, Yu. A. (1975). Coord. Chem. Rev. 17, 1–98.  CrossRef CAS Google Scholar
First citationStene, R. E., Scheibe, B., Pietzonka, C., Karttunen, A. J., Petry, W. & Kraus, F. (2018). J. Fluor. Chem. 211, 171–179.  CrossRef CAS Google Scholar
First citationStoe & Cie (2020). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds