research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 10-hy­dr­oxy-2-(4-meth­­oxy­phen­yl)-3-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-9-thia-2-aza­cyclo­penta­[b]fluorene-4-carb­­oxy­lic acid di­methyl sulfoxide-d6 monosolvate

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, eDepartment of Synthesis of Biologically Active Compounds, Scientific Research Center, Azerbaijan Medical University, Samed Vurgun St. 167, Az 1022 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 27 October 2023; accepted 3 November 2023; online 10 November 2023)

In the title compound, C22H19NO5S·C2D6OS, the central six-membered ring has a slightly distorted boat conformation, while the fused pyrrolidine ring adopts an envelope conformation. These conformations are stabilized by O—H⋯O hydrogen bonds between the main compound and solvent mol­ecules. In addition, intra­molecular C—H⋯O hydrogen bonds in the main mol­ecule form two S(6) rings. Mol­ecules are connected by pairs of inter­molecular C—H⋯O hydrogen bonds, forming dimers with a R22(8) motif. These dimers form a three-dimensional network through O—H⋯O, O—H⋯S and C—H⋯O hydrogen bonds with each other directly and through solvent mol­ecules. In addition, weak ππ stacking inter­actions [centroid-to-centroid distances = 3.9937 (10) and 3.9936 (10) Å, slippages of 2.034 and 1.681 Å] are observed. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 41.7%, O⋯H/H⋯O 27.7%, C⋯H/H⋯C 17.0%, and S⋯H/H⋯S 7.5%.

1. Chemical context

Inter­molecular non-covalent inter­actions play a critical role in determining the crystal packing and orientation of organic and coordination compounds, leading to significant changes in their properties and actions (Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]; Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764-773.],c[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175-180.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Akbari Afkhami, F., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]). In fact, various types of non-covalent bond donors and acceptors determine the supra­molecular packing of heterocyclic and coordination compounds, which is a fundamental mol­ecular descriptor for predicting the oral bioavailability as well as biocatalytic activity of small drug candidates (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. Struct. 234, 1183-1185.]). This work is a continuation of studies of properties of vinyl­arene systems, previously obtained by the tandem acyl­ation/[4 + 2]-cyclo­addition between 3-(ar­yl)allyl­amines and maleic anhydrides as an example of an IMDAV (Intra Mol­ecular Diels–Alder Vinyl­arene) reaction. The IMDAV reaction is a useful tool for the one-step synthesis of benzo­furans, indoles and benzo­thio­phenes annalated with other carbo- or heterocycles (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.], 2017[Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103-4106.]; Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]; Nadirova et al., 2020[Nadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196-2223.]; Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]).

We report here the first case of a spontaneous oxidation reaction of an IMDAV adduct (Fig. 1[link]) in air in DMSO at room temperature. Presumably, the DMSO acts as a mild oxidant, as it is observed in a number of other oxidation reactions – Pfitzner-Moffatt, Corey–Kim, Swern, and Kornblum oxidation (Epstein et al., 1967[Epstein, W. W. & Sweat, F. W. (1967). Chem. Rev. 67, 247-260.]). The slow oxidation of (3aRS,9bRS,10RS,10aRS)-2-(4-meth­oxy­phen­yl)-1-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-benzo[4,5]thieno[2,3-f]iso­indole-10-carb­oxy­lic acid occurs under stirring of the solution in DMSO-d6 for a month. The title compound was isolated in 67% yield after a standard treatment of the reaction mixture. It should be noted that in this case, the reaction does not stop at the formation of an alcohol, but leads to the formation of an aromatic product as a result of proton migration.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 10-hy­droxy-2-(4-meth­oxy-phen­yl)-3-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-9-thia-2-aza-cyclo­penta­[b]fluorene-4-carb­oxy­lic acid.

2. Structural commentary

In the title compound (Fig. 2[link]), the central six-membered ring (C3A/C4B/C4A/C9B/C10/C10A) has a slightly distorted boat conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of QT = 0.5290 (17) Å, θ = 129.87 (18)° and φ = 156.7 (2)°. The fused pyrrolidine ring (N2/C1/C10A/C3A/C3) adopts an envelope conformation with the C3A atom as the flap [the puckering parameters are Q(2) = 0.3523 (17) Å and φ(2) = 290.0 (3)°], while the fused thio­phene ring (S5/C4A/C9B/C9A/C5A) is essentially planar (r.m.s. deviation = 0.002 Å). The mol­ecular conformation is stabilized by an O—H⋯O hydrogen bond (O3—H3⋯O6A) between the main compound and solvent mol­ecules, as well as two intra­molecular C—H⋯O hydrogen bonds (C17—H17A⋯O1 and C3A—H3AA⋯O2) in the main mol­ecule, which form S(6) rings (O1/C1/N2/C12/C17/H17A and O2/C11/C10/C10A/C3A/H3AA; Table 1[link]; Fig. 2[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). All bond lengths and angles in the main compound are comparable to those of the analogous compound ethyl 2-methyl-5,8-dioxo-6-phenyl-4a,5,6,7,7a,8-hexa­hydro-4H-furo[2,3-f]iso­indole-4-carboxyl­ate (CSD refcode OJIPUV; Zaytsev et al., 2021[Zaytsev, V. P., Chervyakova, L. V., Sorokina, E. A., Vasilyev, K. A., Çelikesir, S. T., Akkurt, M. & Bhattarai, A. (2021). Acta Cryst. E77, 86-90.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯S1A 0.84 2.72 3.4846 (15) 152
O3—H3⋯O6A 0.84 1.72 2.563 (2) 176
O3—H3⋯O6B 0.84 2.06 2.852 (16) 158
O5A—H5A⋯O1i 0.84 1.96 2.763 (2) 160
C3A—H3AA⋯O2 1.00 2.49 3.202 (2) 127
C3—H3A⋯O5B 0.99 2.54 2.887 (4) 100
C6—H6A⋯O6Aii 0.95 2.48 3.307 (3) 145
C14—H14A⋯O4iii 0.95 2.54 3.445 (2) 159
C17—H17A⋯O1 0.95 2.33 2.868 (2) 116
C17—H17A⋯O5Biv 0.95 2.46 3.289 (4) 146
C18—H18C⋯O5Bv 0.98 2.43 2.922 (4) 110
C20A—D20A⋯O6Avi 0.98 2.46 3.434 (3) 173
C20A—D20A⋯O6Bvi 0.98 1.87 2.839 (13) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, -y+1, -z+1]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered DMSO mol­ecule is shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structure of the title compound, mol­ecules are connected by pairs of inter­molecular C—H⋯O hydrogen bonds, forming dimers with an [R_{2}^{2}](8) motif (Table 1[link], Fig. 3[link]). These dimers form a three-dimensional network through O—H⋯O, O—H⋯S and C—H⋯O hydrogen bonds, directly with each other and through solvent mol­ecules (Table 1[link]). In addition, weak ππ stacking inter­actions are observed [Cg5⋯Cg6(x, 1 + y, z) = 3.9937 (10) Å with slippage of 2.034 Å and Cg6⋯Cg5(x, −1 + y, z) = 3.9936 (10) Å with slippage of 1.681 Å; Cg5 and Cg6 are the centroids of the C5A/C6/C7/C8/C9/C9A and C12–C17 benzene rings, respectively].

[Figure 3]
Figure 3
A view along the b-axis of the crystal packing of the title compound. The O—H⋯O, O—H⋯S and C—H⋯O hydrogen bonds are shown as dashed lines. Only the major component of the disordered DMSO mol­ecule is shown.

Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions, and were generated using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The 3D dnorm surfaces are plotted over a fixed color scale of −0.7960 (red) and 1.2965 (blue) a.u.

Two-dimensional fingerprint plots together with their percentage contributions are shown in Fig. 4[link]. The crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (41.7% contribution to the overall surface), followed by O⋯H/H⋯O, C⋯H/H⋯C and S⋯H/H⋯S inter­actions, which contribute to 27.7%, 17.0% and 7.5%, respectively. The other contacts (C⋯C 4.2%, N⋯C/C⋯N 1.3%, O⋯O 0.7%, N⋯H/H⋯N 0.1% and S⋯C/C⋯S 0.1%) only make a minor contribution to the crystal packing.

[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded six entries closely related to the title compound, viz. OJIPUV (Zaytsev et al., 2021[Zaytsev, V. P., Chervyakova, L. V., Sorokina, E. A., Vasilyev, K. A., Çelikesir, S. T., Akkurt, M. & Bhattarai, A. (2021). Acta Cryst. E77, 86-90.]), JOGYIP (Zhou et al., 2014[Zhou, L., Zhang, M., Li, W. & Zhang, J. (2014). Angew. Chem. Int. Ed. 53, 6542-6545.]), LESXIS (Horak et al., 2013[Horak, Y. I., Lytvyn, R. Z., Zubkov, F. I., Nikitina, E. V., Homza, Y. V., Lis, T., Kinzhybalo, V. & Obushak, M. D. (2013). Acta Cryst. E69, o273-o274.]), QAFSUO (Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]), QAFTAV (Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]) and QUKPAP (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.]).

In OJIPUV and JOGYIP, space group P[\overline{1}], mol­ecules are bonded by inter­molecular C—H⋯O hydrogen bonds, C—H⋯·π inter­actions, and ππ stacking inter­actions, forming three-dimensional networks. In the crystal of LESXIS (Pbca), which contains two similar mol­ecules per asymmetric unit, O—H⋯O hydrogen bonds connect the mol­ecules into chains parallel to the b-axis. There are also weak C—H⋯π inter­actions in the crystal. In the crystal structures of QAFSUO (P21/c) and QAFTAV (P21/n), the three-dimensional packings are stabilized by O—H⋯O hydrogen bonds, C—H⋯O contacts and C—H⋯π inter­actions. The asymmetric unit of QUKPAP (P21/c) comprises two similar mol­ecules, A and B, of the same chirality. The only considerable difference concerns the conformation of the allyl group. The carboxyl hydrogen atoms are involved in strong hydrogen bonds with the carbonyl atoms of neighboring mol­ecules, giving rise to (AB⋯)n chains.

In the six structures, the different groups bonded to the central twelve-membered ring systems account for the distinct inter­molecular inter­actions in the crystals.

5. Synthesis and crystallization

A solution of (3aRS,9bRS,10RS,10aRS)-2-(4-meth­oxy­phen­yl)-1-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-benzo[4,5]thieno[2,3-f]iso­indole-10-carb­oxy­lic acid (30.0 mg, 0.08 mmol) in 0.5 ml of DMSO-d6 was stirred for 30 days in an open flask. The reaction mixture was concentrated, diluted with EtOH (0.5 mL), and the solid was filtered, washed with Et2O (3 × 1 mL), and air dried. The title compound was obtained as a colorless powder, yield 67%, 25.2 mg; m.p. > 523 K (with decomp.). IR (KBr), ν (cm−1): 1722 (CO2), 1644 (N—C=O), 1514. 1H NMR (700.2 MHz, DMSO-d6): δ (J, Hz) there are no OH peaks 12.78 (s, 1H, CO2H), 8.04 (d, J = 7.6, 1H, H Ar), 7.92 (d, J = 7.6, 1H, H Ar), 7.59 (d, J = 9.1, 2H, H Ar), 7.42 (t, J = 7.6, 1H, H Ar), 7.34 (t, J = 7.6, 1H, H Ar), 6.97 (d, J = 9.1, 2H, H Ar), 2.47–2.44 (m, 1H, H-4) 4.28 (d, J = 4.8, 1H, H-10), 4.00 (t, J = 8.7, 1H, H-3A), 3.75 (s, 3H, CH3), 3.73 (t, J = 8.7, 1H, H-3B), 3.40–3.37 (m, 1H, H-3a), 3.21 (dd, J = 16.0, 4.8, 1H, H-10a). 13C{1H} NMR (176.1 MHz, DMSO-d6): δ 172.7, 172.2, 156.1, 139.6, 138.8, 138.4, 133.5, 126.7, 124.7, 124.6, 122.9, 122.7, 121.1 (2C), 114.3 (2C), 68.2, 55.7, 52.2, 47.8, 40.5, 32.7. MS (ESI) m/z: [M + H]+ 494. Elemental analysis calculated (%) for C22H19NO5S·C2D6OS: C 58.40, H 6.33, N 2.84, S 12.99; found: C 58.13, H 6.47, N 3.07, S 13.20.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the OH groups were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). H atoms bound to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The dimethyl sulfoxide solvent mol­ecule exhibits disorder at two positions in the ratio 0.8903 (18):0.1097 (18). All the methyl hydrogen atoms of the solvent mol­ecule were assigned as deuterium and refined. The C4B and C4C atoms of the two parts of the disordered solvent mol­ecule were refined using EADP and EXYZ commands, and other similar bond lengths of the disordered solvent mol­ecule were refined using SADI.

Table 2
Experimental details

Crystal data
Chemical formula C22H19NO5S·C2D6OS
Mr 493.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.3178 (4), 9.2747 (2), 14.8720 (4)
β (°) 93.771 (1)
V3) 2245.89 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.40 × 0.28 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.847, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 69078, 6531, 5693
Rint 0.032
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.12
No. of reflections 6531
No. of parameters 324
No. of restraints 15
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.47
Computer programs: APEX4 and SAINT (Bruker, 2008[Bruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

10-Hydroxy-2-(4-methoxyphenyl)-3-oxo-2,3,3a,4,10,10a-hexahydro-1H-9-thia-2-azacyclopenta[b]fluorene-4-carboxylic acid dimethyl sulfoxide-d6 monosolvate top
Crystal data top
C22H19NO5S·C2D6OSF(000) = 1024
Mr = 493.61Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.3178 (4) ÅCell parameters from 9765 reflections
b = 9.2747 (2) Åθ = 2.6–30.1°
c = 14.8720 (4) ŵ = 0.28 mm1
β = 93.771 (1)°T = 100 K
V = 2245.89 (10) Å3Fragment, colourless
Z = 40.40 × 0.28 × 0.22 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5693 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 4.2°
Tmin = 0.847, Tmax = 0.941h = 2222
69078 measured reflectionsk = 1313
6531 independent reflectionsl = 2020
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.8241P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
6531 reflectionsΔρmax = 0.54 e Å3
324 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.06873 (3)0.67027 (5)0.20351 (4)0.03201 (16)0.8903 (18)
S1B0.0094 (3)0.7350 (5)0.2022 (3)0.0386 (13)*0.1097 (18)
S50.21789 (3)1.16195 (5)0.65744 (3)0.03355 (13)
O10.36715 (8)0.72156 (13)0.33936 (8)0.0253 (3)
O20.14801 (9)0.83115 (17)0.39946 (10)0.0367 (3)
O30.20598 (9)0.93552 (15)0.28380 (8)0.0338 (3)
H30.1657070.8991400.2538550.041*
O40.47133 (8)0.05607 (13)0.38739 (8)0.0275 (3)
O5A0.25163 (15)0.8579 (2)0.70428 (13)0.0338 (6)0.637 (4)
H5A0.2837550.8134230.7410120.041*0.637 (4)
O5B0.3604 (2)0.9025 (4)0.6728 (2)0.0282 (9)0.363 (4)
H5B0.3584020.8674060.7246660.034*0.363 (4)
O6A0.08659 (10)0.82728 (16)0.18542 (11)0.0337 (4)0.8903 (18)
O6B0.0447 (10)0.8676 (13)0.2106 (10)0.044 (3)*0.1097 (18)
N20.35684 (8)0.60178 (14)0.47516 (9)0.0193 (3)
C10.35193 (10)0.71814 (17)0.41916 (10)0.0193 (3)
C3A0.29022 (10)0.77925 (18)0.55483 (10)0.0218 (3)
H3AA0.2320170.7526570.5369850.026*
C30.34047 (11)0.64061 (18)0.56878 (10)0.0231 (3)
H3A0.3921130.6582850.6058670.028*
H3B0.3085910.5645250.5974920.028*
C4B0.29054 (12)0.8898 (2)0.63036 (11)0.0302 (4)0.637 (4)
H4A0.3491580.9107970.6498080.036*0.637 (4)
C4C0.29054 (12)0.8898 (2)0.63036 (11)0.0302 (4)0.363 (4)
H4B0.2517340.8538780.6746100.036*0.363 (4)
C4A0.25370 (11)1.02578 (19)0.58966 (11)0.0258 (3)
C5A0.19138 (11)1.26951 (19)0.56388 (11)0.0264 (3)
C60.15675 (13)1.4072 (2)0.56345 (14)0.0338 (4)
H6A0.1439221.4525190.6180550.041*
C70.14169 (12)1.4755 (2)0.48199 (14)0.0331 (4)
H7A0.1174041.5686650.4804190.040*
C80.16150 (12)1.41029 (19)0.40123 (13)0.0295 (4)
H8A0.1517071.4602840.3458100.035*
C9B0.24595 (10)1.06021 (17)0.50055 (10)0.0204 (3)
C9A0.21054 (10)1.20072 (17)0.48381 (11)0.0213 (3)
C90.19531 (10)1.27320 (18)0.40184 (11)0.0238 (3)
H9A0.2080821.2286700.3469610.029*
C10A0.32805 (9)0.84675 (16)0.47404 (10)0.0187 (3)
H10A0.3802480.8943150.4971930.022*
C100.27474 (9)0.96355 (16)0.42751 (10)0.0184 (3)
H10B0.3094921.0215070.3879810.022*
C110.20217 (10)0.90191 (17)0.36979 (11)0.0216 (3)
C120.38481 (9)0.46286 (16)0.45148 (10)0.0189 (3)
C130.42078 (10)0.37136 (18)0.51699 (11)0.0218 (3)
H13A0.4267190.4022320.5779750.026*
C140.44797 (10)0.23566 (18)0.49391 (11)0.0224 (3)
H14A0.4711770.1731020.5393200.027*
C150.44140 (10)0.19057 (16)0.40438 (11)0.0206 (3)
C160.40420 (10)0.28012 (17)0.33900 (11)0.0227 (3)
H16A0.3983530.2491900.2780210.027*
C170.37553 (10)0.41479 (17)0.36268 (10)0.0214 (3)
H17A0.3492710.4749210.3177990.026*
C180.46796 (13)0.0111 (2)0.29506 (13)0.0319 (4)
H18A0.4909090.0861810.2912090.048*
H18B0.4107330.0107250.2705320.048*
H18C0.4999470.0780070.2602860.048*
C19A0.02185 (17)0.6061 (3)0.0999 (2)0.0471 (7)0.8903 (18)
D19A0.0081390.5038110.1059230.071*0.8903 (18)
D19B0.0283870.6611650.0845720.071*0.8903 (18)
D19C0.0599290.6178920.0521920.071*0.8903 (18)
C20A0.01808 (16)0.6679 (3)0.26878 (19)0.0470 (6)0.8903 (18)
D20A0.0322510.5679420.2824010.070*0.8903 (18)
D20B0.0055250.7205400.3251540.070*0.8903 (18)
D20C0.0645530.7139670.2349520.070*0.8903 (18)
C19B0.0423 (13)0.6018 (18)0.2686 (12)0.049 (4)*0.1097 (18)
D19D0.0100740.5125430.2659390.074*0.1097 (18)
D19E0.0962870.5836600.2456460.074*0.1097 (18)
D19F0.0493350.6350240.3312000.074*0.1097 (18)
C20B0.0041 (16)0.666 (2)0.0930 (9)0.049 (4)*0.1097 (18)
D20D0.0295370.5791590.0829900.074*0.1097 (18)
D20E0.0127750.7388250.0477620.074*0.1097 (18)
D20F0.0620470.6417170.0878190.074*0.1097 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0229 (2)0.0222 (2)0.0503 (3)0.00093 (17)0.0028 (2)0.0081 (2)
S50.0489 (3)0.0338 (2)0.01792 (19)0.0139 (2)0.00149 (17)0.00626 (16)
O10.0395 (7)0.0201 (5)0.0168 (5)0.0014 (5)0.0053 (5)0.0001 (4)
O20.0332 (7)0.0444 (8)0.0314 (7)0.0135 (6)0.0070 (6)0.0084 (6)
O30.0458 (8)0.0352 (7)0.0188 (6)0.0119 (6)0.0097 (5)0.0031 (5)
O40.0368 (7)0.0202 (6)0.0260 (6)0.0073 (5)0.0066 (5)0.0023 (4)
O5A0.0472 (13)0.0372 (12)0.0179 (9)0.0081 (9)0.0094 (8)0.0081 (8)
O5B0.0288 (18)0.036 (2)0.0193 (16)0.0038 (14)0.0041 (12)0.0009 (13)
O6A0.0408 (9)0.0232 (7)0.0346 (8)0.0094 (6)0.0158 (7)0.0074 (6)
N20.0236 (6)0.0192 (6)0.0149 (5)0.0026 (5)0.0004 (5)0.0004 (5)
C10.0218 (7)0.0183 (7)0.0174 (6)0.0003 (5)0.0009 (5)0.0003 (5)
C3A0.0264 (7)0.0258 (7)0.0131 (6)0.0056 (6)0.0004 (5)0.0014 (5)
C30.0288 (8)0.0258 (8)0.0146 (6)0.0067 (6)0.0007 (6)0.0018 (6)
C4B0.0406 (10)0.0370 (9)0.0127 (7)0.0155 (8)0.0008 (6)0.0016 (6)
C4C0.0406 (10)0.0370 (9)0.0127 (7)0.0155 (8)0.0008 (6)0.0016 (6)
C4A0.0320 (8)0.0278 (8)0.0172 (7)0.0080 (7)0.0010 (6)0.0045 (6)
C5A0.0312 (8)0.0256 (8)0.0222 (7)0.0038 (7)0.0006 (6)0.0037 (6)
C60.0391 (10)0.0281 (9)0.0345 (10)0.0060 (8)0.0054 (8)0.0086 (7)
C70.0355 (9)0.0217 (8)0.0424 (11)0.0042 (7)0.0044 (8)0.0021 (7)
C80.0324 (9)0.0221 (8)0.0337 (9)0.0021 (7)0.0005 (7)0.0032 (7)
C9B0.0212 (7)0.0220 (7)0.0179 (7)0.0023 (6)0.0005 (5)0.0041 (5)
C9A0.0196 (7)0.0221 (7)0.0218 (7)0.0002 (5)0.0009 (5)0.0037 (6)
C90.0249 (7)0.0215 (7)0.0249 (8)0.0006 (6)0.0014 (6)0.0008 (6)
C10A0.0212 (7)0.0193 (7)0.0153 (6)0.0022 (5)0.0004 (5)0.0011 (5)
C100.0213 (7)0.0192 (7)0.0144 (6)0.0011 (5)0.0015 (5)0.0012 (5)
C110.0248 (7)0.0186 (7)0.0205 (7)0.0014 (6)0.0047 (6)0.0001 (5)
C120.0187 (6)0.0182 (7)0.0196 (7)0.0002 (5)0.0009 (5)0.0014 (5)
C130.0233 (7)0.0239 (7)0.0177 (7)0.0020 (6)0.0023 (5)0.0015 (6)
C140.0217 (7)0.0228 (7)0.0224 (7)0.0036 (6)0.0015 (6)0.0049 (6)
C150.0197 (7)0.0176 (7)0.0248 (7)0.0006 (5)0.0033 (6)0.0018 (6)
C160.0289 (8)0.0196 (7)0.0195 (7)0.0010 (6)0.0013 (6)0.0004 (6)
C170.0261 (7)0.0186 (7)0.0188 (7)0.0000 (6)0.0026 (6)0.0018 (5)
C180.0453 (11)0.0226 (8)0.0289 (9)0.0050 (7)0.0111 (8)0.0007 (7)
C19A0.0414 (14)0.0399 (14)0.0605 (17)0.0108 (11)0.0066 (12)0.0198 (12)
C20A0.0358 (12)0.0560 (16)0.0497 (15)0.0034 (11)0.0075 (11)0.0072 (12)
Geometric parameters (Å, º) top
S1A—O6A1.5127 (15)C7—C81.401 (3)
S1A—C20A1.769 (3)C7—H7A0.9500
S1A—C19A1.777 (3)C8—C91.386 (2)
S1B—O6B1.515 (12)C8—H8A0.9500
S1B—C19B1.762 (12)C9B—C9A1.441 (2)
S1B—C20B1.774 (13)C9B—C101.507 (2)
S5—C4A1.7407 (17)C9A—C91.400 (2)
S5—C5A1.7434 (18)C9—H9A0.9500
O1—C11.2288 (19)C10A—C101.526 (2)
O2—C111.207 (2)C10A—H10A1.0000
O3—C111.322 (2)C10—C111.527 (2)
O3—H30.8400C10—H10B1.0000
O4—C151.3692 (19)C12—C131.392 (2)
O4—C181.433 (2)C12—C171.393 (2)
O5A—C4B1.338 (3)C13—C141.385 (2)
O5A—H5A0.8400C13—H13A0.9500
O5B—C4C1.271 (4)C14—C151.393 (2)
O5B—H5B0.8400C14—H14A0.9500
N2—C11.362 (2)C15—C161.388 (2)
N2—C121.419 (2)C16—C171.387 (2)
N2—C31.479 (2)C16—H16A0.9500
C1—C10A1.511 (2)C17—H17A0.9500
C3A—C4C1.521 (2)C18—H18A0.9800
C3A—C4B1.521 (2)C18—H18B0.9800
C3A—C10A1.521 (2)C18—H18C0.9800
C3A—C31.532 (2)C19A—D19A0.9800
C3A—H3AA1.0000C19A—D19B0.9800
C3—H3A0.9900C19A—D19C0.9800
C3—H3B0.9900C20A—D20A0.9800
C4B—C4A1.507 (2)C20A—D20B0.9800
C4B—H4A1.0000C20A—D20C0.9800
C4C—C4A1.507 (2)C19B—D19D0.9800
C4C—H4B1.0000C19B—D19E0.9800
C4A—C9B1.361 (2)C19B—D19F0.9800
C5A—C61.396 (3)C20B—D20D0.9800
C5A—C9A1.404 (2)C20B—D20E0.9800
C6—C71.375 (3)C20B—D20F0.9800
C6—H6A0.9500
O6A—S1A—C20A106.26 (13)C8—C9—C9A119.61 (16)
O6A—S1A—C19A104.20 (12)C8—C9—H9A120.2
C20A—S1A—C19A99.03 (13)C9A—C9—H9A120.2
O6B—S1B—C19B105.6 (8)C1—C10A—C3A103.55 (12)
O6B—S1B—C20B105.2 (8)C1—C10A—C10118.36 (12)
C19B—S1B—C20B100.2 (9)C3A—C10A—C10113.66 (13)
C4A—S5—C5A91.61 (8)C1—C10A—H10A106.9
C11—O3—H3109.5C3A—C10A—H10A106.9
C15—O4—C18116.77 (13)C10—C10A—H10A106.9
C4B—O5A—H5A109.5C9B—C10—C10A106.90 (12)
C4C—O5B—H5B109.5C9B—C10—C11111.15 (13)
C1—N2—C12125.06 (13)C10A—C10—C11112.76 (13)
C1—N2—C3112.06 (13)C9B—C10—H10B108.6
C12—N2—C3122.38 (13)C10A—C10—H10B108.6
O1—C1—N2127.11 (15)C11—C10—H10B108.6
O1—C1—C10A125.25 (14)O2—C11—O3124.33 (15)
N2—C1—C10A107.58 (13)O2—C11—C10123.87 (15)
C4C—C3A—C10A108.91 (14)O3—C11—C10111.81 (14)
C4B—C3A—C10A108.91 (14)C13—C12—C17118.87 (14)
C4C—C3A—C3119.35 (13)C13—C12—N2120.50 (14)
C4B—C3A—C3119.35 (13)C17—C12—N2120.62 (13)
C10A—C3A—C3102.18 (12)C14—C13—C12120.51 (15)
C4B—C3A—H3AA108.6C14—C13—H13A119.7
C10A—C3A—H3AA108.6C12—C13—H13A119.7
C3—C3A—H3AA108.6C13—C14—C15120.25 (14)
N2—C3—C3A101.83 (12)C13—C14—H14A119.9
N2—C3—H3A111.4C15—C14—H14A119.9
C3A—C3—H3A111.4O4—C15—C16124.11 (15)
N2—C3—H3B111.4O4—C15—C14116.36 (14)
C3A—C3—H3B111.4C16—C15—C14119.51 (14)
H3A—C3—H3B109.3C17—C16—C15120.02 (15)
O5A—C4B—C4A108.46 (16)C17—C16—H16A120.0
O5A—C4B—C3A118.61 (19)C15—C16—H16A120.0
C4A—C4B—C3A106.60 (13)C16—C17—C12120.76 (14)
O5A—C4B—H4A107.6C16—C17—H17A119.6
C4A—C4B—H4A107.6C12—C17—H17A119.6
C3A—C4B—H4A107.6O4—C18—H18A109.5
O5B—C4C—C4A116.3 (2)O4—C18—H18B109.5
O5B—C4C—C3A112.9 (2)H18A—C18—H18B109.5
C4A—C4C—C3A106.60 (13)O4—C18—H18C109.5
O5B—C4C—H4B106.9H18A—C18—H18C109.5
C4A—C4C—H4B106.9H18B—C18—H18C109.5
C3A—C4C—H4B106.9S1A—C19A—D19A109.5
C9B—C4A—C4C126.63 (15)S1A—C19A—D19B109.5
C9B—C4A—C4B126.63 (15)D19A—C19A—D19B109.5
C9B—C4A—S5112.36 (13)S1A—C19A—D19C109.5
C4C—C4A—S5120.99 (12)D19A—C19A—D19C109.5
C4B—C4A—S5120.99 (12)D19B—C19A—D19C109.5
C6—C5A—C9A121.61 (17)S1A—C20A—D20A109.5
C6—C5A—S5127.31 (14)S1A—C20A—D20B109.5
C9A—C5A—S5111.07 (13)D20A—C20A—D20B109.5
C7—C6—C5A118.33 (17)S1A—C20A—D20C109.5
C7—C6—H6A120.8D20A—C20A—D20C109.5
C5A—C6—H6A120.8D20B—C20A—D20C109.5
C6—C7—C8121.20 (17)S1B—C19B—D19D109.5
C6—C7—H7A119.4S1B—C19B—D19E109.5
C8—C7—H7A119.4D19D—C19B—D19E109.5
C9—C8—C7120.31 (17)S1B—C19B—D19F109.5
C9—C8—H8A119.8D19D—C19B—D19F109.5
C7—C8—H8A119.8D19E—C19B—D19F109.5
C4A—C9B—C9A113.02 (14)S1B—C20B—D20D109.5
C4A—C9B—C10123.29 (14)S1B—C20B—D20E109.5
C9A—C9B—C10123.65 (14)D20D—C20B—D20E109.5
C9—C9A—C5A118.92 (15)S1B—C20B—D20F109.5
C9—C9A—C9B129.13 (15)D20D—C20B—D20F109.5
C5A—C9A—C9B111.94 (15)D20E—C20B—D20F109.5
C12—N2—C1—O13.3 (3)C10—C9B—C9A—C90.6 (3)
C3—N2—C1—O1175.30 (16)C4A—C9B—C9A—C5A0.6 (2)
C12—N2—C1—C10A174.00 (13)C10—C9B—C9A—C5A178.18 (15)
C3—N2—C1—C10A1.96 (18)C7—C8—C9—C9A0.8 (3)
C1—N2—C3—C3A23.14 (17)C5A—C9A—C9—C80.3 (2)
C12—N2—C3—C3A164.58 (14)C9B—C9A—C9—C8179.02 (17)
C4C—C3A—C3—N2154.00 (15)O1—C1—C10A—C3A162.34 (16)
C4B—C3A—C3—N2154.00 (15)N2—C1—C10A—C3A20.34 (16)
C10A—C3A—C3—N233.89 (15)O1—C1—C10A—C1035.5 (2)
C10A—C3A—C4B—O5A172.66 (17)N2—C1—C10A—C10147.14 (14)
C3—C3A—C4B—O5A70.7 (2)C4C—C3A—C10A—C1160.51 (13)
C10A—C3A—C4B—C4A50.03 (19)C4B—C3A—C10A—C1160.51 (13)
C3—C3A—C4B—C4A166.67 (15)C3—C3A—C10A—C133.35 (15)
C10A—C3A—C4C—O5B78.8 (2)C4C—C3A—C10A—C1069.78 (17)
C3—C3A—C4C—O5B37.8 (3)C4B—C3A—C10A—C1069.78 (17)
C10A—C3A—C4C—C4A50.03 (19)C3—C3A—C10A—C10163.06 (13)
C3—C3A—C4C—C4A166.67 (15)C4A—C9B—C10—C10A12.4 (2)
O5B—C4C—C4A—C9B107.8 (3)C9A—C9B—C10—C10A165.01 (14)
C3A—C4C—C4A—C9B19.0 (3)C4A—C9B—C10—C11111.08 (18)
O5B—C4C—C4A—S570.3 (3)C9A—C9B—C10—C1171.54 (19)
C3A—C4C—C4A—S5162.82 (13)C1—C10A—C10—C9B168.32 (13)
O5A—C4B—C4A—C9B147.8 (2)C3A—C10A—C10—C9B46.52 (17)
C3A—C4B—C4A—C9B19.0 (3)C1—C10A—C10—C1145.88 (19)
O5A—C4B—C4A—S534.0 (2)C3A—C10A—C10—C1175.93 (17)
C3A—C4B—C4A—S5162.82 (13)C9B—C10—C11—O257.9 (2)
C5A—S5—C4A—C9B0.01 (15)C10A—C10—C11—O262.1 (2)
C5A—S5—C4A—C4C178.43 (16)C9B—C10—C11—O3122.07 (15)
C5A—S5—C4A—C4B178.43 (16)C10A—C10—C11—O3117.90 (15)
C4A—S5—C5A—C6179.43 (19)C1—N2—C12—C13152.25 (16)
C4A—S5—C5A—C9A0.33 (14)C3—N2—C12—C1319.0 (2)
C9A—C5A—C6—C70.2 (3)C1—N2—C12—C1728.8 (2)
S5—C5A—C6—C7178.84 (16)C3—N2—C12—C17159.92 (15)
C5A—C6—C7—C80.9 (3)C17—C12—C13—C141.0 (2)
C6—C7—C8—C91.4 (3)N2—C12—C13—C14179.89 (15)
C4C—C4A—C9B—C9A178.00 (17)C12—C13—C14—C151.6 (2)
C4B—C4A—C9B—C9A178.00 (17)C18—O4—C15—C164.1 (2)
S5—C4A—C9B—C9A0.3 (2)C18—O4—C15—C14177.49 (15)
C4C—C4A—C9B—C100.4 (3)C13—C14—C15—O4178.70 (15)
C4B—C4A—C9B—C100.4 (3)C13—C14—C15—C162.8 (2)
S5—C4A—C9B—C10177.93 (13)O4—C15—C16—C17179.86 (15)
C6—C5A—C9A—C90.8 (3)C14—C15—C16—C171.5 (2)
S5—C5A—C9A—C9178.38 (13)C15—C16—C17—C121.1 (2)
C6—C5A—C9A—C9B179.71 (17)C13—C12—C17—C162.3 (2)
S5—C5A—C9A—C9B0.55 (19)N2—C12—C17—C16178.78 (15)
C4A—C9B—C9A—C9178.24 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···S1A0.842.723.4846 (15)152
O3—H3···O6A0.841.722.563 (2)176
O3—H3···O6B0.842.062.852 (16)158
O5A—H5A···O1i0.841.962.763 (2)160
C3A—H3AA···O21.002.493.202 (2)127
C3—H3A···O5B0.992.542.887 (4)100
C6—H6A···O6Aii0.952.483.307 (3)145
C14—H14A···O4iii0.952.543.445 (2)159
C17—H17A···O10.952.332.868 (2)116
C17—H17A···O5Biv0.952.463.289 (4)146
C18—H18C···O5Bv0.982.432.922 (4)110
C20A—D20A···O6Avi0.982.463.434 (3)173
C20A—D20A···O6Bvi0.981.872.839 (13)168
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+5/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y+1, z+1; (vi) x, y1/2, z+1/2.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, EY, PE and ANA; X-ray analysis, MG, ZA, GZM and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, EY and PE; supervision, MA and AB. This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-23-00179/).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEpstein, W. W. & Sweat, F. W. (1967). Chem. Rev. 67, 247–260.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Zubkov, F. I., Nikitina, E. V., Homza, Y. V., Lis, T., Kinzhybalo, V. & Obushak, M. D. (2013). Acta Cryst. E69, o273–o274.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Akbari Afkhami, F., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationNadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196–2223.  CAS Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaytsev, V. P., Chervyakova, L. V., Sorokina, E. A., Vasilyev, K. A., Çelikesir, S. T., Akkurt, M. & Bhattarai, A. (2021). Acta Cryst. E77, 86–90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, L., Zhang, M., Li, W. & Zhang, J. (2014). Angew. Chem. Int. Ed. 53, 6542–6545.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds