research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of polymeric bis­­(3-amino-1H-pyrazole)­cadmium dibromide

crossmark logo

aDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Pr. 37, 03056, Kyiv, Ukraine, bInnovation Development Center ABN, Pirogov str. 2/37, 01030 Kyiv, Ukraine, cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and dDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 30 October 2023; accepted 8 November 2023; online 14 November 2023)

The reaction of cadmium bromide tetra­hydrate with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­bromido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N3:N2;κ2N2:N3], [CdBr2(C3H5N3)2]n or [CdBr2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, a bromide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two bromide anions and two 3-apz ligands, generating trans-CdN4Br2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and bromide anions of neighboring chains are linked through inter­chain hydrogen bonds into a two-dimensional network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.

1. Chemical context

Inorganic–organic coordination polymers, an active field of investigation in chemistry, attract attention for their intriguing structures and applications. Inorganic components may introduce magnetic, optical, and mechanical attributes, while organic ligands offer versatility and luminescence. Combining these attributes yields novel materials with diverse properties such as catalysis, separation, luminescence, spin transition and more (Seredyuk et al., 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.]; Piñeiro-López et al., 2021[Piñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317-1326.]). The formation of a coordination polymer involves the self-assembly of organic ligands and metal ions, driven by strong and directional inter­actions such as metal–ligand coordination bonds, as well as weaker hydrogen bonds, ππ stacking, halogen–halogen, and C—H⋯X inter­actions (X = O, N, halogen, etc.). Engineering polymeric networks is a challenge that demands further exploration of metal–organic inter­actions.

The pyrazole is known to be a good linker to bind metal ions and play a key role in the design of new functional coordination polymers. It can serve as a monodentate ligand or upon deprotonation as a bridging ligand, effectively linking metal ions into polynuclear or polymeric moieties (Parshad et al., 2024[Parshad, M., Kumar, D. & Verma, V. (2024). Inorg. Chim. Acta, 560, 121789.]). We have discovered that 3-amino­pyrazole (3-apz) can form coordination polymers without the need to deprotonate the pyrazole moiety, due to the participation of the amino group in the coordination of the metal ion. Having an inter­est in polymeric complexes formed by bridging ligands (Piñeiro-López et al., 2018[Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Bartual-Murgui, C., Muñoz, M. C. & Real, J. A. (2018). Eur. J. Inorg. Chem. pp. 289-296.], 2021[Piñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317-1326.]; Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]), we report here on the coordination polymer of the apz ligand with a Cd2+ cation and Br anions as co-ligands.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises half of the monomeric neutral unit [Cd(3-apz)2Br2], which is composed of a Cd2+ cation, two 3-apz bridging ligands and two Br anions, balancing the charge (Fig. 1[link]). The tautomerism of the ligand mol­ecule, which can inter­convert between 3- and 5-amino­pyrazole in solution, is blocked, and only the first form is observed in the structure. The coordination geometry around the central ion can be described as an elongated octa­hedron with the Br atoms being in axial positions [Cd—Br1 = 2.7379 (11) Å] and the amino nitro­gen atom of the 3-apz ligand [Cd—N1 = 2.358 (9) Å, Cd—N3 = 2.446 (9) Å] in the equatorial plane. The average trigonal distortion parameters Σ = Σ112(|90 – φi|), where φi is the angle N/Br—Cd—N′/Br′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 – θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) are 34.6 and 112.4°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 0.578 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The volume of the [CdN4Br2] coordination polyhedron is equal to 20.952 Å3. The 3-apz ligand is close to planarity with a maximum deviation of 0.19 (1) Å from the plane of the pyrazole ring for the amino N3 atom.

[Figure 1]
Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. The strong intra- and inter­chain N—H⋯Br hydrogen bonds are shown as dashed red and orange lines, respectively. Symmetry code: (i) 1 − x, −y, 1 − z.

3. Supra­molecular features

The [Cd(3-apz)2Br2] units are linked by alternating amino/pyrazole nitro­gen atoms of the 3-apz ligand to give an infinite one-dimensional linear chain propagating along the a-axis direction (Figs. 1[link] and 2[link]). The Cd⋯Cd distance separated by 5-amino­pyrazole within the chain is 5.051 (1) Å. The N2 atom and one hydrogen of the NH2 groups of pyrazole are involved in inter­actions within the coordination chain, forming intra-chain hydrogen bonds with the Br atom (Table 1[link]). The second hydrogen atom of the NH2 group forms a hydrogen bond with the Br atom of a neighboring chain. This inter­action expands the chains to a two-dimensional supra­molecular network (Fig. 2[link]). The planes stack along the c axis with no inter­actions below the van der Waals radii.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1i 0.86 2.80 3.377 (9) 126
N3—H3A⋯Br1ii 0.89 2.61 3.484 (9) 169
N3—H3B⋯Br1iii 0.89 2.79 3.640 (9) 160
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) x, y+1, z.
[Figure 2]
Figure 2
Fragment of the two-dimensional supra­molecular network formed by polymeric chains of {[CdBr2(3-apz)2]}n with intra­chain hydrogen bonds (green dashed lines) linked by inter­chain hydrogen bonds (red dashed lines).

4. Hirshfeld surface and two-dimensional fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.4941 (red) to 1.0389 (blue) a.u. (Fig. 3[link]a). Since the title compound is a coordination polymer, this analysis also includes the bonding information at the edge of the asymmetric unit. The overall two-dimensional fingerprint plot is depicted in Fig. 3[link]b decomposed into specific inter­actions. The central spike with the tip at (di, de) = (1.30, 1.41) directly represents the Cd—Br bond length with the relative contribution of 2.5%, while two other closely lying spikes with tips at (di, de) = (1.10, 1.30)/(1.30/1.10) correspond to the shorter Cd—N bond length with the contribution of 12.3%. The rest of the contacts belong to weak hydrogen bonds. At 37.5%, the largest contribution to the overall crystal packing is from Br⋯H/H⋯Br inter­actions, which form characteristic wings of the plot with tips at (di, de) = (0.90, 1.60)/(1.60/0.90). Other inter­actions, H⋯H (22.2%), H⋯C/C⋯H (9.3%) and H⋯N/N⋯H (10.6%), are mainly distributed in the middle part of the plot.

[Figure 3]
Figure 3
(a) A projection of dnorm mapped on the Hirshfeld surface onto a fragment of the polymeric chain in the asymmetric unit, visualizing intra- and inter­molecular inter­actions. Red/blue and white areas represent regions where contacts are shorter/longer than the sum and close to the sum of the van der Waals radii, respectively; (b) decomposition of the two-dimensional fingerprint plot into specific inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals one hit with the 3-apz bridging ligand in a binuclear Cu2+ complex TIXDAH with oxalyl anions as coligands (Świtlicka-Olszewska et al., 2014[Świtlicka-Olszewska, A., Machura, B., Mroziński, J., Kalińska, B., Kruszynski, R. & Penkala, M. (2014). New J. Chem. 38, 1611-1626.]). In the complex, the same coordination mode of the ligand is observed, but with a shorter inter­metallic separation (4.583 Å) than in the title compound, which is due to the different chemical nature and square-pyramidal coordination geometry of the central ion.

6. Synthesis and crystallization

CdBr2·4H2O and 3-apz were purchased from Sigma Aldrich and were used without further purification. Colourless crystals were obtained by the reaction of 1 mmol of CdBr2·4H2O (344 mg) and 2 mmol of 3-apz (166 mg) in 10 ml of ethanol (96%). The reaction mixture was left overnight in an open vial, leading to the formation of crystals suitable for single-crystal X-ray analysis. Elemental analysis calculated for C6H10Br2CdN6: C, 16.44; H, 2.30; N, 19.17. Found: C, 16.56; H, 2.18; N, 19.33. IR (KBr; cm−1): 3321(s) ν(NH); 1592(m), 1554(m) and 1528(s) ν(C=N/C3-apz).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were refined as riding [C—H = 0.83–0.92 Å with Uiso(H) = 1.2Ueq(C/N)].

Table 2
Experimental details

Crystal data
Chemical formula [CdBr2(C3H5N3)2]
Mr 438.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.0515 (2), 6.7912 (3), 8.7083 (6)
α, β, γ (°) 83.585 (4), 79.907 (4), 86.833 (3)
V3) 292.09 (3)
Z 1
Radiation type Cu Kα
μ (mm−1) 22.83
Crystal size (mm) 0.15 × 0.02 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.212, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5241, 1122, 1114
Rint 0.036
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.27
No. of reflections 1122
No. of parameters 71
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.84
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

catena-Poly[[dibromidocadmium(II)]-bis(µ-3-amino-1H-pyrazole)-κ2N3:N2;κ2N2:N3] top
Crystal data top
[CdBr2(C3H5N3)2]Z = 1
Mr = 438.42F(000) = 206
Triclinic, P1Dx = 2.492 Mg m3
a = 5.0515 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 6.7912 (3) ÅCell parameters from 4554 reflections
c = 8.7083 (6) Åθ = 5.2–76.6°
α = 83.585 (4)°µ = 22.83 mm1
β = 79.907 (4)°T = 293 K
γ = 86.833 (3)°Needle, clear light colourless
V = 292.09 (3) Å30.15 × 0.02 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1122 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1114 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 76.8°, θmin = 5.2°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 88
Tmin = 0.212, Tmax = 1.000l = 1010
5241 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0297P)2 + 5.2025P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.27Δρmax = 0.94 e Å3
1122 reflectionsΔρmin = 0.84 e Å3
71 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0028 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.0000000.5000000.5000000.0316 (4)
Br10.9072 (2)0.25426 (18)0.28787 (13)0.0413 (4)
N20.3030 (18)0.6427 (14)0.1530 (10)0.037 (2)
H20.1719820.5871610.1256400.044*
N10.3397 (17)0.6397 (13)0.3036 (10)0.0336 (19)
N30.6733 (17)0.7584 (13)0.4288 (11)0.0341 (19)
H3A0.5393370.7623020.5098820.041*
H3B0.7529340.8741840.4162280.041*
C30.491 (2)0.7406 (17)0.0522 (14)0.040 (2)
H30.5030930.7606300.0562130.048*
C20.664 (2)0.8068 (16)0.1397 (13)0.036 (2)
H2A0.8181890.8785150.1030400.043*
C10.559 (2)0.7436 (15)0.2937 (12)0.032 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0268 (6)0.0368 (6)0.0324 (6)0.0077 (4)0.0069 (4)0.0032 (4)
Br10.0427 (7)0.0449 (7)0.0387 (7)0.0148 (5)0.0056 (5)0.0109 (5)
N20.031 (5)0.048 (5)0.032 (5)0.007 (4)0.008 (4)0.003 (4)
N10.026 (4)0.040 (5)0.036 (5)0.010 (4)0.004 (4)0.002 (4)
N30.030 (4)0.033 (4)0.043 (5)0.009 (4)0.014 (4)0.003 (4)
C30.040 (6)0.042 (6)0.038 (6)0.006 (5)0.009 (5)0.001 (5)
C20.032 (5)0.035 (6)0.041 (6)0.007 (4)0.007 (5)0.003 (4)
C10.031 (5)0.035 (5)0.032 (5)0.000 (4)0.009 (4)0.002 (4)
Geometric parameters (Å, º) top
Cd1—Br1i2.7379 (11)N1—C11.332 (13)
Cd1—Br12.7379 (11)N3—H3A0.8900
Cd1—N1ii2.358 (9)N3—H3B0.8900
Cd1—N1iii2.358 (9)N3—C11.413 (13)
Cd1—N32.446 (9)C3—H30.9300
Cd1—N3i2.446 (9)C3—C21.380 (15)
N2—H20.8600C2—H2A0.9300
N2—N11.355 (12)C2—C11.382 (15)
N2—C31.326 (15)
Br1—Cd1—Br1i180.0N2—N1—Cd1iv117.1 (6)
N1iii—Cd1—Br1i92.6 (2)C1—N1—Cd1iv138.2 (7)
N1ii—Cd1—Br192.6 (2)C1—N1—N2104.1 (8)
N1ii—Cd1—Br1i87.4 (2)Cd1—N3—H3A107.7
N1iii—Cd1—Br187.4 (2)Cd1—N3—H3B107.7
N1ii—Cd1—N1iii180.0H3A—N3—H3B107.1
N1iii—Cd1—N3i88.8 (3)C1—N3—Cd1118.3 (7)
N1ii—Cd1—N388.8 (3)C1—N3—H3A107.7
N1ii—Cd1—N3i91.2 (3)C1—N3—H3B107.7
N1iii—Cd1—N391.2 (3)N2—C3—H3126.7
N3—Cd1—Br1i85.2 (2)N2—C3—C2106.5 (10)
N3i—Cd1—Br185.2 (2)C2—C3—H3126.7
N3i—Cd1—Br1i94.8 (2)C3—C2—H2A127.4
N3—Cd1—Br194.8 (2)C3—C2—C1105.1 (10)
N3i—Cd1—N3180.0C1—C2—H2A127.4
N1—N2—H2123.6N1—C1—N3120.3 (9)
C3—N2—H2123.6N1—C1—C2111.5 (9)
C3—N2—N1112.7 (9)C2—C1—N3127.8 (10)
Cd1iv—N1—C1—N314.7 (16)N2—C3—C2—C11.1 (13)
Cd1iv—N1—C1—C2172.3 (8)N1—N2—C3—C20.1 (13)
Cd1—N3—C1—N187.2 (11)C3—N2—N1—Cd1iv173.9 (7)
Cd1—N3—C1—C284.6 (12)C3—N2—N1—C10.9 (12)
N2—N1—C1—N3174.6 (9)C3—C2—C1—N11.7 (13)
N2—N1—C1—C21.6 (12)C3—C2—C1—N3174.1 (10)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br1iv0.862.803.377 (9)126
N3—H3A···Br1ii0.892.613.484 (9)169
N3—H3B···Br1v0.892.793.640 (9)160
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, °). top
D—H···AH···AD···AD—H···A
N2H···Bri3.377 (1)2.803 (1)125.63 (1)
N3–H···Brii3.848 (1)2.607 (1)168.92 (1)
N3–H···Briii3.640 (1)2.791 (1)159.89 (1)
Symmetry codes: (i) 1+x,y,z; (ii) 1-x,1-y,1-z; (iii) x,1+y,z

Acknowledgements

Author contributions are as follows: Conceptualization, VAP and IOF; methodology, OSV; formal analysis, SOM; synthesis, ISK, OSV; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), SOM, MS; visualization and calculations, MS; funding acquisition, MS, IOF.

Funding information

Funding for this research was provided by: the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04, 22BF037-09).

References

First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationParshad, M., Kumar, D. & Verma, V. (2024). Inorg. Chim. Acta, 560, 121789.  CrossRef Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Bartual-Murgui, C., Muñoz, M. C. & Real, J. A. (2018). Eur. J. Inorg. Chem. pp. 289–296.  Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317–1326.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwitlicka-Olszewska, A., Machura, B., Mroziński, J., Kalińska, B., Kruszynski, R. & Penkala, M. (2014). New J. Chem. 38, 1611–1626.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds