research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and anti­mycobacterial evaluation of 2-(cyclo­hexyl­meth­yl)-7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one1

crossmark logo

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 November 2023; accepted 22 November 2023; online 30 November 2023)

The title compound, C15H15F3N2O3S, crystallizes in the monoclinic system, space group I2/a, with Z = 8. As expected, the nine-membered heterobicyclic system is virtually planar and the cyclo­hexyl group adopts a chair conformation. There is structural evidence for intra­molecular N—S⋯O chalcogen bonding between the benziso­thia­zolinone S atom and one O atom of the nitro group, approximately aligned along the extension of the covalent N—S bond [N—S⋯O = 162.7 (1)°]. In the crystal, the mol­ecules form centrosymmetric dimers through C—H⋯O weak hydrogen bonding between a C—H group of the electron-deficient benzene ring and the benzo­thia­zolinone carbonyl O atom with an R22(10) motif. In contrast to the previously described N-acyl 7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-ones, the title N-cyclo­hexyl­methyl analogue does not inhibit growth of Mycobacterium aurum and Mycobacterium smegmatis in vitro.

1. Chemical context

Benziso­thia­zolinones (BITs) are known to exhibit broad-spectrum anti­microbial effects (Gopinath et al., 2017[Gopinath, P., Yadav, R. K., Shukla, P. K., Srivastava, K., Puri, S. K. & Muraleedharan, K. M. (2017). Bioorg. Med. Chem. Lett. 27, 1291-1295.]). The unsubstituted BIT and other iso­thia­zolinones are widely used as biocides (Silva et al., 2020[Silva, V., Silva, C., Soares, P., Garrido, E. M., Borges, F. & Garrido, J. (2020). Molecules, 25, 991.]). In the course of our quest for new anti­mycobacterial agents, we recently reported the N-acyl BITs 1a and 1b (Fig. 1[link]). They displayed in vitro activity against mycobacteria including Mycobacterium tuberculosis (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]), the major etiological agent of tuberculosis. Together with the corresponding S-oxides, they were originally discovered by chance in an attempt to oxidize benzo­thia­zinones at the S atom (BTZs; Eckhardt et al., 2020[Eckhardt, T., Goddard, R., Lehmann, C., Richter, A., Sahile, H. A., Liu, R., Tiwari, R., Oliver, A. G., Miller, M. J., Seidel, R. W. & Imming, P. (2020). Acta Cryst. C76, 907-913.]). BTZs, in particular 8-NO2-BTZs, are a promising class of anti­tuberculosis drug candidates (Seidel et al., 2023[Seidel, R. W., Richter, A., Goddard, R. & Imming, P. (2023). Chem. Commun. 59, 4697-4715.]), two of which have progressed to clinical studies, viz. BTZ-043 and PBTZ-169 (Fig. 1[link]; Makarov & Mikušová, 2020[Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.]). The pyridine-1-carbonyl spiro ketal side chain appended to the N atom in 2-position of the BIT scaffold in 1b is inspired by that of BTZ-043. In an attempt to synthesize the analogous BIT 3 bearing the PBTZ-169-inspired piperazin-1-carbonyl side chain from the precursor 2 and cyclo­hexyl­methyl bromide, we unintentionally obtained 4, the title compound (Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
Chemical diagrams of previously reported BITs 1a and 1b exhibiting in vitro anti­mycobacterial activity (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]) and anti­tubercular BTZs that have advanced to clinical studies (Makarov & Mikušová, 2020[Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.]).
[Figure 2]
Figure 2
Unintentional formation of 4, the title compound, from the 2-(piperazine-1-carbon­yl)-BIT 2 and cyclo­hexyl­methyl bromide.

2. Structural commentary

Fig. 3[link] shows the mol­ecular structure of 4 in the crystal, and Table 1[link] lists selected bond lengths and angles. The nine-membered heterobicyclic system is virtually planar with a r.m.s. deviation of 0.0294 Å. The C—C—C bond angles within the benzene ring alternate in magnitude by ca ±2°, with the larger angles being associated with the C atoms bonded to electron-withdrawing groups, viz. C(=O)N, NO2 and CF3. The somewhat long C3—O1 distance of 1.226 (3) Å is consistent with the relatively low wavenumber of the carbonyl band at 1630 cm−1 in the IR spectrum (see supporting information), which is typical of amides. The dihedral angle between the BIT mean plane and the plane defined by the three atoms of the nitro group is 11.4 (3)°. The intra­molecular S1⋯O2 distance of 2.603 (2) Å and the N2—S1⋯O2 angle of 162.74 (8)° suggest the existence of an intra­molecular chalcogen bond on the extension of the covalent N—S bond (Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]; Vogel et al., 2019[Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880-1891.]; Pizzi et al., 2023[Pizzi, A., Daolio, A., Beccaria, R., Demitri, N., Viani, F. & Resnati, G. (2023). Chem. A Eur. J. 29, e202300571.]). The orientation of the BIT moiety and the cyclo­hexyl­methyl group to one another renders the mol­ecule axially chiral, although the centrosymmetric crystal structure contains both enanti­omeric conformers. The cyclo­hexyl group adopts a low-energy chair conformation with the C—C—C bond angles being close to the ideal tetra­hedral angle (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

C3—O1 1.226 (3) C5—C6 1.395 (3)
C3—N2 1.366 (3) C5—C8 1.488 (3)
C3—C3A 1.463 (3) C6—C7 1.374 (3)
C3A—C4 1.384 (3) C7—C7A 1.391 (3)
C3A—C7A 1.402 (3) C7—N1 1.448 (3)
C4—C5 1.388 (3) C7A—S1 1.706 (2)
       
N2—C3—C3A 108.44 (19) C12—C11—C10 111.2 (2)
C4—C3A—C7A 121.2 (2) C13—C12—C11 111.3 (2)
C4—C3A—C3 126.9 (2) C12—C13—C14 110.9 (2)
C7A—C3A—C3 112.0 (2) C15—C14—C13 111.2 (2)
C6—C7—C7A 121.8 (2) C14—C15—C10 111.6 (2)
C7—C7A—C3A 118.1 (2) C3—N2—S1 116.46 (16)
C3A—C7A—S1 112.84 (18) C9—N2—S1 121.45 (16)
C15—C10—C11 110.53 (19) C7A—S1—N2 90.24 (10)
[Figure 3]
Figure 3
Mol­ecular structure of 4. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radius.

3. Supra­molecular features

The most prominent supra­molecular feature of the crystal structure of 4 is weak inter­molecular C—H⋯O hydrogen bonding. As shown in Fig. 4[link], the mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between the C4—H4 moiety of the benzene ring and the carbonyl O atom of an adjacent symmetry-related mol­ecule. The C4—H4 group is likely activated for weak hydrogen bonding through the electron-withdrawing effect exerted by the C(=O)N and CF3 groups in ortho positions and the NO2 group in the para position. The graph-set descriptor for the hydrogen-bond motif is [R_{2}^{2}](10) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Table 2[link] lists the corresponding geometric parameters, which are typical of weak hydrogen bonds (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25-48. Oxford: Elsevier.]). The dominance of the short O⋯H contacts is also revealed by a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), as shown in Fig. 5[link]. In addition, H⋯H contacts, mostly resulting from close packing of the cyclo­hexyl groups, as shown in Fig. 6[link], are evident. The packing index (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.]) of the crystal structure, as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), is 71.6%. Notably, the crystal structure also features a short inter­molecular O⋯N contact (2.87 Å) between adjacent mol­ecules related by 21 screw symmetry. Inter­molecular F⋯F contacts between CF3 groups are not encountered.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.25 3.193 (3) 175
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Centrosymmetric C—H⋯O hydrogen-bonded dimer of 4 in the crystal, viewed along the b-axis direction towards the origin. Dashed lines represent hydrogen bonds. Colour scheme: C, grey; H, white; F, green; N, blue; O, red; S, yellow. Symmetry code: (i) −x + [{1\over 2}], −y − [{1\over 2}], −z + [{1\over 2}].
[Figure 5]
Figure 5
(a) Hirshfeld surface mapped with dnorm (white areas indicate van der Waals contacts, red areas shorter-than and blue areas longer-than van der Waals contacts) and (b) the corresponding two-dimensional fingerprint plot; di and de are the respective inter­ior and exterior distances of the nearest atom to the Hirshfeld surface over the range 0.4–2.6 Å (blue, few points; green, moderate fraction; red, many points). The figure was generated with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).
[Figure 6]
Figure 6
Packing diagram of 4, viewed along the b-axis direction. H atoms have been omitted for clarity. Colour scheme: C, grey; F, green; N, blue; O, red; S, yellow.

4. Database survey

As of November 2023, a search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals more than 50 crystal structures containing a BIT scaffold. Specifically, two 7-NO2-5-CF3-BITs with 2-(piperidine-1-carbon­yl) side chains and their benziso­thia­zol-3-ol constitutional isomers (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]) as well as the corresponding BIT 1-oxides (Eckhardt et al., 2020[Eckhardt, T., Goddard, R., Lehmann, C., Richter, A., Sahile, H. A., Liu, R., Tiwari, R., Oliver, A. G., Miller, M. J., Seidel, R. W. & Imming, P. (2020). Acta Cryst. C76, 907-913.]) have previously been structurally characterized by us. Of note, the centrosymmetric C—H⋯O weak hydrogen-bond-dimer motif encountered in the crystal structure of 4 is not found in the BIT structures contained in the CSD. For a data-mining survey of the CSD for a statistical assessment of the chalcogen bond ability of the sulfur atom in BITs and related compounds, we direct the inter­ested reader to the recent publication by Pizzi et al. (2023[Pizzi, A., Daolio, A., Beccaria, R., Demitri, N., Viani, F. & Resnati, G. (2023). Chem. A Eur. J. 29, e202300571.]).

5. Anti­mycobacterial evaluation

Compound 4 was subjected to in vitro testing against Mycobacterium aurum and Mycobacterium smegmatis using the broth microdilution method, as described previously (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]). The generally considered non-pathogenic mycobacterial species M. aurum (Gupta et al., 2009[Gupta, A., Bhakta, S., Kundu, S., Gupta, M., Srivastava, B. S. & Srivastava, R. (2009). J. Antimicrob. Chemother. 64, 774-781.]; Namouchi et al., 2017[Namouchi, A., Cimino, M., Favre-Rochex, S., Charles, P. & Gicquel, B. (2017). BMC Genomics, 18, 530.]; Phelan et al., 2015[Phelan, J., Maitra, A., McNerney, R., Nair, M., Gupta, A., Coll, F., Pain, A., Bhakta, S. & Clark, T. G. (2015). Int. J. Mycobacteriol. 4, 207-216.]) and M. smegmatis (Sundarsingh et al., 2020[Sundarsingh, J. A. T., Ranjitha, J., Rajan, A. & Shankar, V. (2020). J. Infect. Public Health, 13, 1255-1264.]) have been used as surrogate bacteria in early-stage anti­tuberculosis drug discovery. Using Middlebrook 7H9 liquid growth medium supplemented with 10% ADS [5% (m/v) bovine serum albumin fraction V, 0.81% (m/v) sodium chloride and 2% (m/v) dextrose in purified water] and 0.05% polysorbate 80, we found no in vitro activity of 4 against M. aurum DSM 43999 and M. smegmatis mc2 155 up to 100 μM. The findings essentially confirm that, similar to anti­tubercular BTZs (Seidel et al., 2023[Seidel, R. W., Richter, A., Goddard, R. & Imming, P. (2023). Chem. Commun. 59, 4697-4715.]), the nature of the side chain appended to the N atom in position 2 of the BIT scaffold has a crucial bearing on the anti­mycobacterial activity (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]).

6. Synthesis and crystallization

General: Chemicals were of reagent-grade quality and used as received. 7-Nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one was prepared as described previously (Richter et al., 2022[Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302-1310.]). Solvents were distilled prior to use and stored over 4 Å mol­ecular sieves. Flash chromatography was performed on an Inter­chim puriFlash 430 instrument. NMR spectra were recorded on an Agilent Technologies VNMRS 400 MHz or a Varian INOVA 500 MHz NMR spectrometer. 1H and 13C chemical shifts are reported relative to the residual solvent signal of CDCl3 (δH = 7.26 ppm; δC = 77.10 ppm) or CD3OD (δH = 4.78 ppm). The 19F chemical shifts are reported relative to the signal of CFCl3 (δF = 0 ppm) as an external standard. HPLC analysis was conducted with a Shimadzu instrument with a CBM-40 control unit, two LC-40D pumps and an SPD-M40 PDA UV detector, using an Agilent Poroshell 120, EC-C18, 3.0 × 50 mm, 2.7 µm column at a flow rate of 1.2 mL min−1, eluting with water/aceto­nitrile. APCI mass spectrometry was carried out on an Advion Expression compact mass spectrometer using the direct analysis probe method. The ESI mass spectrum was measured on a Thermo Scientific Q ExactiveTM Plus Orbitrap mass spectrometer and the EI mass spectrum on a Finnigan MAT 95 mass spectrometer. The IR spectrum was recorded on a Bruker Tensor II Platinum ATR spectrometer at a resolution of 4 cm−1, accumulating 16 scans.

Synthesis of 2-(4-Boc-piperazine-1-carbon­yl)-7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one: 7-Nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one (600 mg, 2.27 mmol) and 4-Boc-1-piperazinecarbonyl chloride were dissolved in 35 mL of di­chloro­methane. Pyridine (1.83 mL, 22.7 mmol, 10.0 eq.) was added and the reaction mixture was stirred for 24 h at room temperature. After removal of the solvent in vacuo, the product was isolated as a yellow solid by flash chromatography on silica gel (ethyl acetate/heptane gradient), eluting after the O-acyl­ated constitutional isomer major product (vide infra). Yield: 152 mg (0.32 mmol, 14%). 1H NMR (500 MHz, CDCl3): δ 8.79 (m, J = 0.9 Hz, 1H), 8.57 (m, J = 1.0 Hz, 1H), 3.61 (s, 8H), 1.49 (s, 9H) ppm. 13C NMR (101 MHz, CDCl3): δ 161.1, 154.6, 150.0, 142.3, 140.5, 130.5 (q, 3J = 3.7 Hz), 129.9 (q, 2J = 35 Hz), 128.3, 125.8 (q, 3J = 4 Hz), 122.5 (q, 1J = 273 Hz), 80.7, 46.8, 43.5, 28.5. 19F NMR (376 MHz, CDCl3): δ −62.18 ppm. MS(APCI+): m/z calculated for C18H20F3N4O6S+: 477.1; found: 476.9 [M+H+]. The con­sti­tutional isomer 7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3-yl 4-Boc-piperazine-1-carboxyl­ate was isolated as major product in 76% yield (823 mg, 1.72 mmol). 1H NMR (500 MHz, CDCl3): δ 8.73 (m, 1H), 8.42 (m, 1H), 3.76 (m, 2H), 3.67–3.52 (m, 6H), 1.50 (s, 9H) ppm. 13C NMR (126 MHz, CDCl3): δ 156.9, 154.6, 151.0, 149.5, 141.4, 129.9, 129.4 (q, 2J = 35 Hz), 126.9 (q, 3J = 4 Hz), 122.8 (q, 1J = 273 Hz), 121.9 (q, 3J = 3 Hz), 80.8, 45.2, 44.5, 43.4, 28.5 ppm. 19F NMR (470 MHz, CDCl3): δ −61.59 ppm. MS(APCI+): m/z calculated for C18H20F3N4O6S+: 477.1; found: 476.9 [M+H+].

Synthesis of 4-(7-nitro-3-oxo-5-(tri­fluoro­meth­yl)-2,3-di­hydro­benzo[d]iso­thia­zole-2-carbon­yl)piperazin-1-ium chlor­ide (2): 2-(4-Boc-piperazine-1-carbon­yl)-7-nitro-5-(tri­fluorometh­yl)benzo[d]iso­thia­zol-3(2H)-one was dissolved in 1 mL of 4 M HCl in 1,4-dioxane. After stirring overnight at room temperature, compound 2 was collected by filtration to yield 86 mg (0.21 mmol, 65%). 1H NMR (400 MHz, CD3OD): δ 8.93 (m, 1H), 8.62 (m, 1H), 3.90–3.85 (m, 4H), 3.46–3.40 (m, 4H). MS(APCI+): m/z calculated for C13H12F3N4O4S+: 377.1; found: 376.9 [M+H+].

Synthesis of 2-(cyclo­hexyl­meth­yl)-7-nitro-5-(tri­fluoro­meth­yl)benzo[d]iso­thia­zol-3(2H)-one (4): Compound 2 (50 mg, 0.12 mmol), cyclo­hexyl­methyl bromide (18 µL, 0.13 mmol, 1.1 eq.), potassium iodide (∼1 mg) and potassium carbonate (20 mg, 0.14 mmol, 1.2 eq.) were suspended in 5 mL of aceto­nitrile. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. After the starting material had been consumed, the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica gel (chloro­form/heptane gradient) to yield 4 as a yellow powder (14 mg, 0.04 mmol, 33%, HPLC purity >97%). 1H NMR (400 MHz, CDCl3): δ 8.70 (m, 1H), 8.48 (m, 1H), 4.39 (d, J = 6.4 Hz, 2H), 2.00–1.88 (m, 3H), 1.84–1.71 (m, 3H), 1.38–1.24 (m, 3H), 1.18–1.08 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 163.3, 149.4, 141.2, 129.1, 128.6 (q, 2JC,F = 35 Hz), 126.7 (q, 3JC,F = 4 Hz), 124.4 (q, 1JC,F = 273 Hz), 122.0 (q, 3JC,F = 4 Hz), 75.3, 37.5, 29.8, 26.5, 25.8. HRMS(ESI+): m/z calculated for C15H16F3N2O3S+: 361.08282; found: 361.08264 [M+H]+. MS(EI+): m/z calculated for C15H15F3N2O3S+: 360; found: 360 [M+]. IR(ATR): ν~ 1630 (C=O). Yellow needles of 4 suitable for single-crystal X-ray diffraction analysis were obtained when a chloro­form/heptane solution of the compound slowly evaporated to dryness at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are given in Table 3[link]. H atoms were placed in geometrically calculated positions and refined using the appropriate riding model, with Caromatic—H = 0.95 Å, Cmethyl­ene—H = 0.99 Å, Cmethine—H = 1.00 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C15H15F3N2O3S
Mr 360.35
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 21.9709 (15), 5.1271 (4), 27.022 (2)
β (°) 93.633 (4)
V3) 3037.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.20 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.967, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 61976, 2836, 2243
Rint 0.100
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.04
No. of reflections 2836
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.33
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2-(Cyclohexylmethyl)-7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one top
Crystal data top
C15H15F3N2O3SF(000) = 1488
Mr = 360.35Dx = 1.576 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 21.9709 (15) ÅCell parameters from 9947 reflections
b = 5.1271 (4) Åθ = 2.5–28.4°
c = 27.022 (2) ŵ = 0.27 mm1
β = 93.633 (4)°T = 100 K
V = 3037.8 (4) Å3Needle, yellow
Z = 80.20 × 0.06 × 0.06 mm
Data collection top
Bruker Kappa Mach3 APEXII
diffractometer
2836 independent reflections
Radiation source: microfocus X-ray source2243 reflections with I > 2σ(I)
Incoatec Helios mirrors monochromatorRint = 0.100
Detector resolution: 66.67 pixels mm-1θmax = 25.5°, θmin = 1.5°
φ and ω scansh = 2626
Absorption correction: gaussian
(SADABS; Krause et al., 2015)
k = 66
Tmin = 0.967, Tmax = 0.992l = 3232
61976 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2 + 5.9357P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.18859 (9)0.1371 (5)0.21632 (9)0.0197 (5)
C3A0.15790 (10)0.1247 (5)0.26275 (8)0.0183 (5)
C40.16991 (10)0.0481 (5)0.30149 (9)0.0197 (5)
H40.2016550.1732150.3001010.024*
C50.13485 (10)0.0359 (5)0.34241 (9)0.0198 (5)
C60.08669 (10)0.1406 (5)0.34402 (9)0.0202 (5)
H60.0617160.1427090.3714600.024*
C70.07599 (10)0.3113 (5)0.30523 (9)0.0196 (5)
C7A0.11180 (9)0.3127 (5)0.26458 (8)0.0186 (5)
C80.14904 (10)0.2056 (5)0.38629 (9)0.0217 (5)
C90.18439 (10)0.4007 (5)0.13941 (8)0.0207 (5)
H9A0.2277840.3506270.1381290.025*
H9B0.1814970.5914800.1341700.025*
C100.14732 (10)0.2631 (5)0.09739 (8)0.0209 (5)
H100.1417600.0772990.1074400.025*
C110.08388 (10)0.3832 (5)0.08715 (9)0.0234 (5)
H11A0.0607850.3702550.1173430.028*
H11B0.0881250.5702270.0789660.028*
C120.04881 (10)0.2450 (6)0.04447 (9)0.0278 (6)
H12A0.0410060.0621570.0539960.033*
H12B0.0089230.3319370.0376430.033*
C130.08402 (11)0.2483 (6)0.00212 (9)0.0283 (6)
H13A0.0882920.4304400.0135810.034*
H13B0.0611070.1494980.0286970.034*
C140.14704 (11)0.1280 (6)0.00764 (9)0.0278 (6)
H14A0.1427280.0593950.0155610.033*
H14B0.1699750.1419240.0226190.033*
C150.18246 (10)0.2642 (5)0.05047 (9)0.0245 (6)
H15A0.1907770.4466720.0409810.029*
H15B0.2221090.1753010.0572400.029*
N10.02611 (9)0.4958 (4)0.30532 (8)0.0226 (5)
N20.16422 (8)0.3389 (4)0.18865 (7)0.0207 (5)
O10.22911 (7)0.0059 (4)0.20281 (6)0.0246 (4)
O20.02475 (7)0.6650 (3)0.27241 (6)0.0258 (4)
O30.01168 (8)0.4766 (4)0.33673 (7)0.0300 (4)
F10.18323 (6)0.4115 (3)0.37631 (5)0.0285 (4)
F20.17958 (7)0.0767 (3)0.42334 (5)0.0310 (4)
F30.09820 (6)0.2979 (3)0.40528 (5)0.0289 (4)
S10.10703 (2)0.51050 (12)0.21373 (2)0.02003 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0068 (10)0.0277 (13)0.0242 (13)0.0001 (10)0.0013 (9)0.0037 (10)
C3A0.0076 (10)0.0246 (13)0.0222 (12)0.0019 (9)0.0016 (9)0.0043 (10)
C40.0064 (10)0.0272 (14)0.0252 (12)0.0005 (9)0.0017 (9)0.0032 (10)
C50.0092 (11)0.0281 (14)0.0216 (12)0.0024 (9)0.0023 (9)0.0037 (10)
C60.0071 (10)0.0309 (14)0.0225 (12)0.0028 (10)0.0006 (9)0.0050 (10)
C70.0069 (10)0.0263 (13)0.0254 (12)0.0007 (9)0.0005 (9)0.0052 (10)
C7A0.0079 (10)0.0250 (13)0.0223 (12)0.0004 (9)0.0043 (9)0.0048 (10)
C80.0114 (11)0.0308 (14)0.0231 (12)0.0011 (10)0.0029 (9)0.0044 (11)
C90.0098 (11)0.0313 (14)0.0211 (12)0.0002 (10)0.0018 (9)0.0016 (10)
C100.0089 (10)0.0295 (14)0.0240 (12)0.0012 (10)0.0011 (9)0.0017 (10)
C110.0081 (11)0.0362 (14)0.0258 (13)0.0000 (10)0.0005 (9)0.0032 (11)
C120.0101 (11)0.0443 (17)0.0287 (13)0.0033 (11)0.0020 (10)0.0013 (12)
C130.0143 (12)0.0441 (17)0.0259 (13)0.0040 (11)0.0035 (10)0.0006 (12)
C140.0178 (12)0.0401 (16)0.0253 (13)0.0008 (11)0.0008 (10)0.0029 (12)
C150.0112 (11)0.0374 (15)0.0249 (13)0.0014 (10)0.0009 (9)0.0005 (11)
N10.0092 (10)0.0306 (12)0.0275 (11)0.0023 (8)0.0015 (8)0.0055 (10)
N20.0100 (9)0.0278 (11)0.0243 (11)0.0004 (8)0.0002 (8)0.0002 (9)
O10.0121 (8)0.0344 (10)0.0277 (9)0.0061 (7)0.0051 (7)0.0018 (8)
O20.0152 (8)0.0298 (10)0.0319 (10)0.0052 (7)0.0024 (7)0.0004 (8)
O30.0132 (9)0.0445 (12)0.0331 (10)0.0060 (8)0.0074 (8)0.0038 (9)
F10.0221 (7)0.0346 (9)0.0291 (8)0.0088 (6)0.0047 (6)0.0042 (7)
F20.0263 (8)0.0426 (9)0.0229 (7)0.0050 (7)0.0073 (6)0.0018 (7)
F30.0131 (7)0.0415 (9)0.0326 (8)0.0026 (6)0.0060 (6)0.0070 (7)
S10.0096 (3)0.0265 (3)0.0238 (3)0.0017 (2)0.0003 (2)0.0008 (3)
Geometric parameters (Å, º) top
C3—O11.226 (3)C10—C151.526 (3)
C3—N21.366 (3)C10—C111.533 (3)
C3—C3A1.463 (3)C10—H101.0000
C3A—C41.384 (3)C11—C121.521 (3)
C3A—C7A1.402 (3)C11—H11A0.9900
C4—C51.388 (3)C11—H11B0.9900
C4—H40.9500C12—C131.519 (3)
C5—C61.395 (3)C12—H12A0.9900
C5—C81.488 (3)C12—H12B0.9900
C6—C71.374 (3)C13—C141.523 (3)
C6—H60.9500C13—H13A0.9900
C7—C7A1.391 (3)C13—H13B0.9900
C7—N11.448 (3)C14—C151.523 (3)
C7A—S11.706 (2)C14—H14A0.9900
C8—F11.333 (3)C14—H14B0.9900
C8—F21.343 (3)C15—H15A0.9900
C8—F31.345 (3)C15—H15B0.9900
C9—N21.464 (3)N1—O31.228 (3)
C9—C101.528 (3)N1—O21.241 (3)
C9—H9A0.9900N2—S11.709 (2)
C9—H9B0.9900
O1—C3—N2123.8 (2)C11—C10—H10107.8
O1—C3—C3A127.7 (2)C12—C11—C10111.2 (2)
N2—C3—C3A108.44 (19)C12—C11—H11A109.4
C4—C3A—C7A121.2 (2)C10—C11—H11A109.4
C4—C3A—C3126.9 (2)C12—C11—H11B109.4
C7A—C3A—C3112.0 (2)C10—C11—H11B109.4
C3A—C4—C5119.0 (2)H11A—C11—H11B108.0
C3A—C4—H4120.5C13—C12—C11111.3 (2)
C5—C4—H4120.5C13—C12—H12A109.4
C4—C5—C6121.0 (2)C11—C12—H12A109.4
C4—C5—C8120.6 (2)C13—C12—H12B109.4
C6—C5—C8118.4 (2)C11—C12—H12B109.4
C7—C6—C5118.9 (2)H12A—C12—H12B108.0
C7—C6—H6120.6C12—C13—C14110.9 (2)
C5—C6—H6120.6C12—C13—H13A109.5
C6—C7—C7A121.8 (2)C14—C13—H13A109.5
C6—C7—N1120.5 (2)C12—C13—H13B109.5
C7A—C7—N1117.6 (2)C14—C13—H13B109.5
C7—C7A—C3A118.1 (2)H13A—C13—H13B108.0
C7—C7A—S1129.07 (18)C15—C14—C13111.2 (2)
C3A—C7A—S1112.84 (18)C15—C14—H14A109.4
F1—C8—F2106.21 (18)C13—C14—H14A109.4
F1—C8—F3106.9 (2)C15—C14—H14B109.4
F2—C8—F3106.07 (18)C13—C14—H14B109.4
F1—C8—C5113.21 (19)H14A—C14—H14B108.0
F2—C8—C5112.1 (2)C14—C15—C10111.6 (2)
F3—C8—C5111.90 (18)C14—C15—H15A109.3
N2—C9—C10113.45 (19)C10—C15—H15A109.3
N2—C9—H9A108.9C14—C15—H15B109.3
C10—C9—H9A108.9C10—C15—H15B109.3
N2—C9—H9B108.9H15A—C15—H15B108.0
C10—C9—H9B108.9O3—N1—O2124.3 (2)
H9A—C9—H9B107.7O3—N1—C7119.6 (2)
C15—C10—C9109.99 (19)O2—N1—C7116.06 (19)
C15—C10—C11110.53 (19)C3—N2—C9122.1 (2)
C9—C10—C11112.6 (2)C3—N2—S1116.46 (16)
C15—C10—H10107.8C9—N2—S1121.45 (16)
C9—C10—H10107.8C7A—S1—N290.24 (10)
O1—C3—C3A—C42.0 (4)C6—C5—C8—F341.5 (3)
N2—C3—C3A—C4178.5 (2)N2—C9—C10—C15161.7 (2)
O1—C3—C3A—C7A177.3 (2)N2—C9—C10—C1174.5 (3)
N2—C3—C3A—C7A2.3 (3)C15—C10—C11—C1255.4 (3)
C7A—C3A—C4—C50.9 (3)C9—C10—C11—C12178.9 (2)
C3—C3A—C4—C5178.2 (2)C10—C11—C12—C1356.3 (3)
C3A—C4—C5—C62.4 (3)C11—C12—C13—C1456.3 (3)
C3A—C4—C5—C8175.7 (2)C12—C13—C14—C1555.7 (3)
C4—C5—C6—C72.8 (3)C13—C14—C15—C1055.6 (3)
C8—C5—C6—C7175.3 (2)C9—C10—C15—C14179.9 (2)
C5—C6—C7—C7A0.0 (3)C11—C10—C15—C1455.2 (3)
C5—C6—C7—N1179.4 (2)C6—C7—N1—O39.8 (3)
C6—C7—C7A—C3A3.2 (3)C7A—C7—N1—O3169.7 (2)
N1—C7—C7A—C3A176.3 (2)C6—C7—N1—O2170.6 (2)
C6—C7—C7A—S1178.69 (19)C7A—C7—N1—O29.9 (3)
N1—C7—C7A—S11.9 (3)O1—C3—N2—C90.7 (3)
C4—C3A—C7A—C73.6 (3)C3A—C3—N2—C9178.87 (19)
C3—C3A—C7A—C7175.6 (2)O1—C3—N2—S1178.73 (18)
C4—C3A—C7A—S1177.93 (18)C3A—C3—N2—S10.8 (2)
C3—C3A—C7A—S12.8 (2)C10—C9—N2—C391.3 (3)
C4—C5—C8—F119.4 (3)C10—C9—N2—S186.6 (2)
C6—C5—C8—F1162.4 (2)C7—C7A—S1—N2176.2 (2)
C4—C5—C8—F2100.7 (3)C3A—C7A—S1—N21.96 (17)
C6—C5—C8—F277.5 (3)C3—N2—S1—C7A0.63 (18)
C4—C5—C8—F3140.3 (2)C9—N2—S1—C7A177.45 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.253.193 (3)175
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Footnotes

1Dedicated to Professor Martin Feigel on the occasion of his 75th birthday.

Acknowledgements

We thank Professor Christian W. Lehmann for providing access to the X-ray diffraction facility, Heike Schucht for technical assistance with the X-ray intensity data collection, Dirk Kampen and Simone Marcus for measuring the ESI and EI mass spectra and Dr Christian Heiser for recording the IR spectrum. Thanks are also due to Dr Jens-Ulrich Rahfeld, Dr Nadine Taudte and Nadine Jänckel for providing and maintaining the biosafety level 2 laboratory. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEckhardt, T., Goddard, R., Lehmann, C., Richter, A., Sahile, H. A., Liu, R., Tiwari, R., Oliver, A. G., Miller, M. J., Seidel, R. W. & Imming, P. (2020). Acta Cryst. C76, 907–913.  CrossRef IUCr Journals Google Scholar
First citationGopinath, P., Yadav, R. K., Shukla, P. K., Srivastava, K., Puri, S. K. & Muraleedharan, K. M. (2017). Bioorg. Med. Chem. Lett. 27, 1291–1295.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, A., Bhakta, S., Kundu, S., Gupta, M., Srivastava, B. S. & Srivastava, R. (2009). J. Antimicrob. Chemother. 64, 774–781.  CrossRef PubMed CAS Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMakarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.  Web of Science CrossRef Google Scholar
First citationNamouchi, A., Cimino, M., Favre-Rochex, S., Charles, P. & Gicquel, B. (2017). BMC Genomics, 18, 530.  Google Scholar
First citationPhelan, J., Maitra, A., McNerney, R., Nair, M., Gupta, A., Coll, F., Pain, A., Bhakta, S. & Clark, T. G. (2015). Int. J. Mycobacteriol. 4, 207–216.  CrossRef PubMed Google Scholar
First citationPizzi, A., Daolio, A., Beccaria, R., Demitri, N., Viani, F. & Resnati, G. (2023). Chem. A Eur. J. 29, e202300571.  CrossRef Google Scholar
First citationRichter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N. & Imming, P. (2022). ACS Med. Chem. Lett. 13, 1302–1310.  CrossRef CAS PubMed Google Scholar
First citationScilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeidel, R. W., Richter, A., Goddard, R. & Imming, P. (2023). Chem. Commun. 59, 4697–4715.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, V., Silva, C., Soares, P., Garrido, E. M., Borges, F. & Garrido, J. (2020). Molecules, 25, 991.  CrossRef PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSundarsingh, J. A. T., Ranjitha, J., Rajan, A. & Shankar, V. (2020). J. Infect. Public Health, 13, 1255–1264.  PubMed Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationVogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds