research communications
κN)amine](formato-κO)(m-hydroxybenzoato-κ2O,O′)copper(II)
and Hirshfeld surface analysis of a new mononuclear copper(II) complex: [bis(pyridin-2-yl-aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand, and bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th
A new mononuclear copper(II) complex, [Cu(C7H5O3)(HCO2)(C10H9N3)], containing mixed N- and O-donor ligands, 2,2′-dipyridylamine (dpyam) and m-hydroxybenzoate (m-OHbenz), has been obtained from a solvent mixture. The coordination environment of the CuII ion is distorted square-pyramidal with a [N2O3] coordination set originating from the chelating dpyam and m-OHbenz ligands in the basal plane and the O atom of a formato ligand at the apical position. The of the title complex is stabilized by N—H⋯O, O—H⋯O, C—H⋯O hydrogen-bonding, π–π and C—H⋯π intermolecular interactions, which were quantified by Hirshfeld surface analysis.
Keywords: copper(II); ternary complex; m-hydroxybenzoate; 2,2′-dipyridylamine; crystal structure; Hirshfeld surface analysis.
CCDC reference: 2302393
1. Chemical context
Mononuclear copper(II) complexes have received great attention in several fields due to their versatile properties including antitumor, antioxidant, antibacterial, DNA interaction, DNA cleavage (Huang et al., 2015; Venkateswarlu et al., 2022), anticancer (Kacar et al., 2020), biological (Kumar et al., 2019), industrial catalytic oxidation processes (Samanta et al., 2013; Silva & Martins, 2020), magnetism (Boča et al., 2017) and catalysis (Fukuzumi et al., 2010).
In this context and in the scope of our research activities, we started to search for new mononuclear copper(II) complexes containing mixed N- and O-donor ligands such as bipyridine and benzoate derivatives and to study their catalytic properties in some organic reactions. This includes, for example, olefin epoxidation (Das et al., 1997), aerobic oxidation of (Nairn et al., 2006; Alaji et al., 2014), ring-opening reactions (John et al., 2007) and the photocatalytic oxidation of benzyl alcohol (Ranjan et al., 2022). In general, the CuII ion has the [Ar]3d9 with an unpaired electron that can induce interesting magnetic properties. Copper(II) compounds also exhibit a variety of coordination environments with coordination numbers ranging from 4 to 6 (Santini et al., 2014).
With this in mind, we have designed new ternary mononuclear copper(II) complexes constructed from mixed 2,2′-dipyridylamine (dpyam) derivatives as N-donor ligands and hydroxybenzoate (OHbenz) derivatives as O-donor ligands. The dpyam ligand contains two aromatic pyridine rings that can bind in a chelating coordination mode, and together with the secondary amine (–NH–) group, supramolecular interactions such as π–π stacking and hydrogen-bonding interactions are present in corresponding coordination compounds (Phiokliang et al., 2019). On the other hand, OHbenz derivatives are interesting because of their carboxylate which can exhibit a variety of coordination modes, resulting in different structural arrangements (Ziyaev et al., 2021). Likewise, the presence of a hydroxy group on the phenyl ring supports crystal stability by hydrogen-bonding interactions, and the different arrangement of this group (ortho-, meta-, para-positions) can be used to influence the crystal packing.
In order to determine crystal structures of additional members of this family of complexes, we have investigated a new mononuclear copper(II) complex with dpyam and m-OHbenz ligands and an additional formato ligand, [Cu(dpyam)(m-OHbenz)(HCO2)] (I). We report here the molecular and spectroscopic characterizations, Hirshfeld surface analysis and 2D-fingerprint plots of this compound.
2. Structural commentary
Crystals of (I) were obtained from the reaction of Cu(NO3)2·3H2O, dpyam and m-OHbenz in mixed solvents, H2O/DMF ratio of 5:2. According to the synthetic conditions, the presence of the formate anion can be explained by hydrolysis of DMF (Huang et al., 2012). The of (I) consists of a CuII ion, one chelating dpyam ligand, one chelating m-OHbenz ligand and one monodentately binding formato ligand, as shown in Fig. 1. The CuII ion is surrounded by two pyridine nitrogen atoms of the chelating dpyam ligand, two carboxylate oxygen atoms of the chelating m-OHbenz ligand and one oxygen atom of the formato ligand, resulting in a square-pyramidal [N2O3] coordination set. The Cu1—(N, O) bond lengths of the basal atoms originating from the chelating ligands are in the range 1.936 (3) to 2.096 (2) Å, while the Cu1—O4 bond length to the apical formato ligand is 2.207 (2) Å. Selected bond lengths and angles are summarized in Table 1. The CuII atom lies 0.265 Å above the basal plane and is oriented towards the apical oxygen atom of the formato ligand (Fig. S1a in the supporting information, ESI). The structural parameter τ5 (Addison et al., 1984; Brophy et al., 1999) is 0.19 and indicates a distortion of the square-pyramidal coordination (τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bipyramid; Fig. S1b in the ESI). The molecular structure of (I) is stabilized by non-classical intramolecular hydrogen-bonding interactions between C—H groups of pyridine rings and the oxygen atoms of the carboxylate group of m-OHbenz, C1—H1⋯O1 and C10–H10⋯O2, as detailed in Table 2.
|
3. Supramolecular features
Numerical values of supramolecular interactions in the I) are collated in Table 2 and graphically displayed in Figs. 2 and 3. The of the title complex is stabilized by the presence of intermolecular interactions such as hydrogen bonding, π–π stacking and C–H⋯π interactions.
of (Classical intermolecular hydrogen-bonding interactions are realized between the N—H group of dpyam and the ligating O atom of the formato carboxylate group, N2—H5⋯O4i (symmetry codes refer to Table 2), and between the hydroxy group of m-OHbenz and the non-ligating O atom of the formato of carboxylate group, O3—H14⋯O5ii. There is also a C—H⋯π interaction between the C—H group of the formato ligand and the phenyl ring of m-OHbenz, C18—O18⋯Cg7iv. Notable π–π stacking interactions are found between one of the pyridyl rings of the dpyam ligand and the phenyl ring of the m-OHbenz ligand with a centroid-to-centroid distance Cg7⋯Cg5i of 3.978 (2) Å and a slippage of 1.431 Å (Cg5 and Cg7 are the centroids of the N1/C1–C5 and C12–C17 rings, respectively). These intermolecular hydrogen-bonding, C—H⋯π and π–π stacking interactions result in supramolecular layers extending parallel to the ac plane (Fig. 4). Cohesion between these layers along the b axis is achieved through non-classical hydrogen-bonding interactions between the C—H group of dpyam and the hydroxy group of m-OHbenz, C2—H2⋯O3iii, leading to a tri-periodic supramolecular network (Fig. 5).
4. Hirshfeld surface analysis
Intermolecular interactions in the I) were quantified by Hirshfeld surface analysis (McKinnon et al., 2007) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002), as shown in Fig. 6. For this purpose, CrystalExplorer (Spackman et al., 2021) was used.
of (The different colors of the Hirshfeld surface mapped over dnorm relate to different distances. A red surface indicates distances shorter than the sum of the van der Waals radii, a white surface indicates distances near the sum of van der Waals radii, and a blue surface indicates distances longer than the sum of the van der Waals radii. Fig. 6a displays bright-red spots on dnorm caused by hydrogen-bonding interactions between the N—H group of the dpyam ligand and the oxygen atom of a carboxylate group, and between the hydroxy group of the m-OHbenz ligand and an O atom of the formato ligand. C—H⋯O and also C—H⋯π interactions are likely represented by weaker red spots of the Hirshfeld surface. The two-dimensional fingerprint plots in Fig. 6b are displayed with the corresponding percentage contribution for H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts in (I). The H⋯H intermolecular contacts have the highest percentage contribution of 41.6%. The O⋯H/H⋯O interactions contribute 25.0% to the surface. C⋯H/H⋯C contacts have a slightly lesser contribution of 21.1% and correspond mostly to C—H⋯π interactions. C⋯C contacts with a percentage contribution of 3.8% indicate π–π interactions in the (Fig. S2 in the ESI).
5. Spectroscopic characterization and powder X-ray diffraction
The FT–IR spectrum of the title complex shows a characteristic broad band at 3145 cm−1, which is assigned to the O—H stretching vibration of the hydroxy group of the m-OHbenz ligand (Zhu et al., 2016). The dpyam ligand shows a band at 3204 cm−1 due to the N—H stretching of the secondary amine. The strong band in the region 1590 cm−1 results from the C=N aromatic stretching of the dpyam ligand (Chattopadhyay & Sinha, 1997). The C=O band of the chelating m-OHbenz ligand is present at 1648 cm−1 and at a higher wavenumber than the C=C aromatic vibration at 1590 cm−1 (Gusrizal et al., 2017). The bands at 826, 768 and 686 cm−1 are assigned to the out-of-plane C—H bending of the m-OHbenz ligand (Zhu et al., 2016). The COO− stretching band confirms a monodentately binding metal formate species, consisting of a strong antisymmetric COO− stretching vibration at 1648 cm−1 and a COO− symmetrical stretching at 1305 cm−1 (Darensbourg et al., 1981). The bands at 532 and 424 cm−1 are assigned to Cu—N and Cu—O stretching vibrations (Saini et al., 2015), as shown in Fig. S3 in the ESI).
The solid-state diffuse reflectance spectrum of the title complex (Fig. S4 in the ESI) presents two broad peaks with λmax at 425 and 645 nm. This feature is assigned to the electronic d–d transitions of corresponding to the square-pyramidal coordination environment of CuII (Kucková et al., 2015).
The powder X-ray diffraction pattern of the title complex (Fig. S5 in the ESI) shows a close match between the experimental data and the simulated pattern, confirming a single-phase material.
6. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, September 2021 update; Bruno et al., 2002; Groom et al., 2016) for structures of ternary mononuclear CuII complexes containing dpyam and hydroxybenzoate derivatives, resulted in two closely related complexes, [Cu(dpyam)(p-OHbenz)Cl] (where p-OHbenz represents p-hydroxybenzoate; PASCIW, Wang et al., 2005) and [Cu(dpyam)(benz)Cl] (where benz represents benzoate; YIDQEI, Okabe et al., 2007). Both complexes likewise exhibit a square-pyramidal coordination environment with τ5 values of 0.03 and 0.00, respectively. In comparison with (I), the lower τ5 values can be attributed to the diminished steric impact resulting from the presence of benzoate and p-OHbenz moieties.
7. Synthesis and crystallization
Cu(NO3)2·3H2O (0.2416 g, 1 mmol) was dissolved in distilled water (10 ml), and the blue solution was heated at 338 K and stirred. Then, a solution of dpyam (0.1712 g, 1 mmol) in DMF (5 ml) was added, resulting in a clear green solution. Subsequently, a mixed solution of m-hydroxybenzoic acid (0.2762 g, 2 mmol) and sodium hydroxide (0.0866 g, 2 mmol) in distilled water (5 ml) was slowly added, resulting in a dark green solution. A mixed solution of distilled water and DMF (1:1 v:v, 10 ml) was added and continuously stirred for 30 min. Then, the reaction mixture was filtrated and allowed to stand and slowly evaporate in air at room temperature for 2 d. Green block-like crystals of the title copper(II) complex were obtained with a yield of 10.1% [based on the copper(II) salt].
8. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed in geometrically calculated positions and refined with a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3Supporting information
CCDC reference: 2302393
https://doi.org/10.1107/S2056989023009234/wm5700sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009234/wm5700Isup2.hkl
Supporting information file consists of additional structural data, spectra and pxrd patterns. DOI: https://doi.org/10.1107/S2056989023009234/wm5700sup3.pdf
[Cu(C7H5O3)(HCO2)(C10H9N3)] | F(000) = 852 |
Mr = 416.87 | Dx = 1.613 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3265 (3) Å | Cell parameters from 2887 reflections |
b = 14.9699 (5) Å | θ = 2.8–27.7° |
c = 13.9523 (4) Å | µ = 1.31 mm−1 |
β = 99.242 (1)° | T = 296 K |
V = 1716.53 (10) Å3 | Block, clear dark green |
Z = 4 | 0.12 × 0.10 × 0.10 mm |
Bruker D8 Quest Cmos Photon-II diffractometer | 4262 independent reflections |
Radiation source: sealed x-ray tube, Mo | 2779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.075 |
Detector resolution: 7.39 pixels mm-1 | θmax = 28.3°, θmin = 3.0° |
φ and ω scans | h = −10→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −19→19 |
Tmin = 0.650, Tmax = 0.746 | l = −18→17 |
18907 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0412P)2 + 1.0329P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.38 e Å−3 |
4262 reflections | Δρmin = −0.54 e Å−3 |
246 parameters | Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0021 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.29575 (5) | 0.27751 (3) | 0.72313 (2) | 0.03822 (15) | |
O1 | 0.4328 (3) | 0.21333 (15) | 0.62997 (15) | 0.0414 (5) | |
O2 | 0.3988 (3) | 0.35716 (15) | 0.63693 (16) | 0.0472 (6) | |
O4 | 0.0779 (3) | 0.26399 (18) | 0.61092 (15) | 0.0518 (7) | |
N3 | 0.2728 (3) | 0.36345 (17) | 0.82630 (16) | 0.0339 (6) | |
O3 | 0.7085 (3) | 0.17132 (17) | 0.33624 (19) | 0.0596 (7) | |
H14 | 0.766121 | 0.186084 | 0.296455 | 0.089* | |
N1 | 0.2382 (3) | 0.17503 (18) | 0.79522 (16) | 0.0358 (6) | |
O5 | −0.0791 (3) | 0.2937 (2) | 0.71924 (18) | 0.0625 (8) | |
N2 | 0.1539 (3) | 0.25934 (17) | 0.92169 (17) | 0.0375 (6) | |
H5 | 0.104666 | 0.255311 | 0.971172 | 0.045* | |
C12 | 0.5440 (3) | 0.3037 (2) | 0.5146 (2) | 0.0322 (7) | |
C11 | 0.4562 (4) | 0.2903 (2) | 0.5980 (2) | 0.0340 (7) | |
C6 | 0.2023 (4) | 0.3445 (2) | 0.90355 (19) | 0.0339 (7) | |
C14 | 0.6699 (4) | 0.2441 (2) | 0.3845 (2) | 0.0372 (7) | |
C5 | 0.1693 (4) | 0.1795 (2) | 0.8759 (2) | 0.0335 (7) | |
C13 | 0.5860 (4) | 0.2308 (2) | 0.4624 (2) | 0.0340 (7) | |
H13 | 0.558288 | 0.173368 | 0.479089 | 0.041* | |
C10 | 0.3265 (4) | 0.4479 (2) | 0.8168 (2) | 0.0471 (9) | |
H10 | 0.377537 | 0.460746 | 0.763805 | 0.057* | |
C1 | 0.2504 (5) | 0.0941 (2) | 0.7541 (2) | 0.0507 (9) | |
H1 | 0.301024 | 0.090414 | 0.699464 | 0.061* | |
C18 | −0.0541 (4) | 0.2676 (3) | 0.6408 (2) | 0.0484 (9) | |
H18 | −0.144591 | 0.248072 | 0.598033 | 0.058* | |
C7 | 0.1792 (4) | 0.4109 (2) | 0.9711 (2) | 0.0475 (9) | |
H7 | 0.128076 | 0.397072 | 1.023790 | 0.057* | |
C15 | 0.7091 (4) | 0.3303 (2) | 0.3605 (2) | 0.0454 (8) | |
H15 | 0.763974 | 0.339829 | 0.308385 | 0.054* | |
C17 | 0.5852 (4) | 0.3886 (2) | 0.4908 (2) | 0.0433 (8) | |
H17 | 0.558114 | 0.437171 | 0.526581 | 0.052* | |
C4 | 0.1112 (4) | 0.1025 (2) | 0.9160 (2) | 0.0470 (8) | |
H4 | 0.066687 | 0.105991 | 0.972858 | 0.056* | |
C8 | 0.2316 (5) | 0.4955 (3) | 0.9592 (3) | 0.0577 (10) | |
H8 | 0.215443 | 0.539988 | 1.003189 | 0.069* | |
C16 | 0.6674 (5) | 0.4016 (2) | 0.4132 (3) | 0.0519 (9) | |
H16 | 0.694665 | 0.459158 | 0.396586 | 0.062* | |
C9 | 0.3100 (5) | 0.5150 (2) | 0.8804 (3) | 0.0606 (11) | |
H9 | 0.349664 | 0.571996 | 0.871705 | 0.073* | |
C3 | 0.1206 (5) | 0.0226 (3) | 0.8707 (3) | 0.0607 (11) | |
H3 | 0.078774 | −0.028635 | 0.895207 | 0.073* | |
C2 | 0.1921 (5) | 0.0181 (3) | 0.7887 (3) | 0.0640 (11) | |
H2 | 0.200367 | −0.036176 | 0.757471 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0561 (3) | 0.0362 (2) | 0.02653 (19) | 0.0031 (2) | 0.01924 (16) | 0.00029 (17) |
O1 | 0.0506 (14) | 0.0404 (13) | 0.0386 (11) | 0.0023 (11) | 0.0235 (10) | 0.0035 (10) |
O2 | 0.0669 (16) | 0.0404 (13) | 0.0419 (12) | 0.0066 (12) | 0.0315 (11) | −0.0015 (10) |
O4 | 0.0438 (14) | 0.0859 (19) | 0.0281 (10) | 0.0102 (13) | 0.0132 (10) | 0.0015 (12) |
N3 | 0.0427 (15) | 0.0346 (14) | 0.0257 (11) | −0.0026 (11) | 0.0094 (10) | −0.0015 (11) |
O3 | 0.081 (2) | 0.0488 (15) | 0.0614 (16) | −0.0128 (14) | 0.0506 (14) | −0.0157 (13) |
N1 | 0.0461 (16) | 0.0363 (15) | 0.0262 (12) | 0.0037 (12) | 0.0101 (11) | 0.0005 (11) |
O5 | 0.0564 (16) | 0.086 (2) | 0.0521 (15) | 0.0092 (14) | 0.0301 (12) | 0.0011 (14) |
N2 | 0.0468 (16) | 0.0416 (16) | 0.0282 (12) | −0.0035 (12) | 0.0181 (11) | −0.0026 (11) |
C12 | 0.0303 (16) | 0.0409 (17) | 0.0277 (13) | 0.0026 (13) | 0.0111 (12) | 0.0030 (12) |
C11 | 0.0331 (16) | 0.0431 (19) | 0.0272 (13) | 0.0034 (14) | 0.0092 (12) | −0.0007 (13) |
C6 | 0.0372 (17) | 0.0403 (17) | 0.0259 (13) | 0.0034 (14) | 0.0098 (12) | 0.0001 (13) |
C14 | 0.0400 (18) | 0.0422 (18) | 0.0325 (14) | −0.0036 (14) | 0.0155 (13) | −0.0036 (13) |
C5 | 0.0380 (17) | 0.0379 (17) | 0.0253 (13) | 0.0005 (14) | 0.0071 (12) | 0.0042 (13) |
C13 | 0.0347 (16) | 0.0371 (17) | 0.0327 (14) | −0.0028 (14) | 0.0125 (12) | −0.0001 (13) |
C10 | 0.065 (2) | 0.045 (2) | 0.0359 (16) | −0.0065 (17) | 0.0215 (16) | −0.0006 (15) |
C1 | 0.081 (3) | 0.0353 (19) | 0.0411 (18) | 0.0041 (18) | 0.0251 (17) | −0.0031 (15) |
C18 | 0.0387 (19) | 0.072 (3) | 0.0345 (16) | 0.0068 (18) | 0.0056 (14) | −0.0033 (17) |
C7 | 0.062 (2) | 0.048 (2) | 0.0361 (17) | 0.0022 (18) | 0.0205 (16) | −0.0055 (15) |
C15 | 0.051 (2) | 0.051 (2) | 0.0393 (17) | −0.0052 (17) | 0.0245 (15) | 0.0055 (16) |
C17 | 0.054 (2) | 0.0374 (18) | 0.0427 (17) | 0.0057 (16) | 0.0205 (15) | 0.0007 (15) |
C4 | 0.057 (2) | 0.047 (2) | 0.0418 (17) | −0.0033 (17) | 0.0206 (16) | 0.0082 (16) |
C8 | 0.085 (3) | 0.046 (2) | 0.0462 (19) | 0.003 (2) | 0.0234 (19) | −0.0145 (17) |
C16 | 0.069 (2) | 0.0376 (19) | 0.056 (2) | −0.0034 (18) | 0.0285 (18) | 0.0064 (16) |
C9 | 0.097 (3) | 0.038 (2) | 0.051 (2) | −0.012 (2) | 0.026 (2) | −0.0100 (17) |
C3 | 0.083 (3) | 0.040 (2) | 0.065 (2) | −0.005 (2) | 0.029 (2) | 0.0090 (18) |
C2 | 0.104 (3) | 0.035 (2) | 0.058 (2) | 0.000 (2) | 0.029 (2) | −0.0011 (17) |
Cu1—O1 | 2.096 (2) | C14—C15 | 1.385 (5) |
Cu1—O2 | 1.984 (2) | C5—C4 | 1.400 (4) |
Cu1—O4 | 2.207 (2) | C13—H13 | 0.9300 |
Cu1—N3 | 1.963 (2) | C10—H10 | 0.9300 |
Cu1—N1 | 1.936 (3) | C10—C9 | 1.363 (5) |
Cu1—C11 | 2.370 (3) | C1—H1 | 0.9300 |
O1—C11 | 1.262 (4) | C1—C2 | 1.357 (5) |
O2—C11 | 1.268 (4) | C18—H18 | 0.9300 |
O4—C18 | 1.238 (4) | C7—H7 | 0.9300 |
N3—C6 | 1.338 (4) | C7—C8 | 1.357 (5) |
N3—C10 | 1.354 (4) | C15—H15 | 0.9300 |
O3—H14 | 0.8200 | C15—C16 | 1.372 (5) |
O3—C14 | 1.346 (4) | C17—H17 | 0.9300 |
N1—C5 | 1.344 (4) | C17—C16 | 1.385 (4) |
N1—C1 | 1.351 (4) | C4—H4 | 0.9300 |
O5—C18 | 1.211 (4) | C4—C3 | 1.360 (5) |
N2—H5 | 0.8600 | C8—H8 | 0.9300 |
N2—C6 | 1.373 (4) | C8—C9 | 1.397 (5) |
N2—C5 | 1.371 (4) | C16—H16 | 0.9300 |
C12—C11 | 1.484 (4) | C9—H9 | 0.9300 |
C12—C13 | 1.388 (4) | C3—H3 | 0.9300 |
C12—C17 | 1.371 (4) | C3—C2 | 1.374 (5) |
C6—C7 | 1.405 (4) | C2—H2 | 0.9300 |
C14—C13 | 1.397 (4) | ||
O1—Cu1—O4 | 89.16 (9) | N1—C5—N2 | 121.2 (3) |
O1—Cu1—C11 | 32.08 (9) | N1—C5—C4 | 121.0 (3) |
O2—Cu1—O1 | 64.40 (9) | N2—C5—C4 | 117.9 (3) |
O2—Cu1—O4 | 90.64 (10) | C12—C13—C14 | 119.8 (3) |
O2—Cu1—C11 | 32.35 (10) | C12—C13—H13 | 120.1 |
O4—Cu1—C11 | 88.92 (9) | C14—C13—H13 | 120.1 |
N3—Cu1—O1 | 151.93 (10) | N3—C10—H10 | 118.2 |
N3—Cu1—O2 | 98.82 (10) | N3—C10—C9 | 123.7 (3) |
N3—Cu1—O4 | 114.49 (10) | C9—C10—H10 | 118.2 |
N3—Cu1—C11 | 128.32 (11) | N1—C1—H1 | 118.5 |
N1—Cu1—O1 | 99.43 (9) | N1—C1—C2 | 123.0 (3) |
N1—Cu1—O2 | 163.39 (10) | C2—C1—H1 | 118.5 |
N1—Cu1—O4 | 92.99 (10) | O4—C18—H18 | 116.2 |
N1—Cu1—N3 | 94.41 (10) | O5—C18—O4 | 127.6 (3) |
N1—Cu1—C11 | 131.48 (11) | O5—C18—H18 | 116.2 |
C11—O1—Cu1 | 86.03 (17) | C6—C7—H7 | 120.1 |
C11—O2—Cu1 | 90.84 (19) | C8—C7—C6 | 119.8 (3) |
C18—O4—Cu1 | 115.5 (2) | C8—C7—H7 | 120.1 |
C6—N3—Cu1 | 124.0 (2) | C14—C15—H15 | 119.8 |
C6—N3—C10 | 118.1 (3) | C16—C15—C14 | 120.4 (3) |
C10—N3—Cu1 | 117.8 (2) | C16—C15—H15 | 119.8 |
C14—O3—H14 | 109.5 | C12—C17—H17 | 120.2 |
C5—N1—Cu1 | 124.8 (2) | C12—C17—C16 | 119.6 (3) |
C5—N1—C1 | 118.1 (3) | C16—C17—H17 | 120.2 |
C1—N1—Cu1 | 116.6 (2) | C5—C4—H4 | 120.4 |
C6—N2—H5 | 113.9 | C3—C4—C5 | 119.3 (3) |
C5—N2—H5 | 113.9 | C3—C4—H4 | 120.4 |
C5—N2—C6 | 132.2 (3) | C7—C8—H8 | 120.3 |
C13—C12—C11 | 120.2 (3) | C7—C8—C9 | 119.4 (3) |
C17—C12—C11 | 119.3 (3) | C9—C8—H8 | 120.3 |
C17—C12—C13 | 120.5 (3) | C15—C16—C17 | 120.6 (3) |
O1—C11—Cu1 | 61.89 (15) | C15—C16—H16 | 119.7 |
O1—C11—O2 | 118.6 (3) | C17—C16—H16 | 119.7 |
O1—C11—C12 | 121.6 (3) | C10—C9—C8 | 117.9 (3) |
O2—C11—Cu1 | 56.81 (15) | C10—C9—H9 | 121.1 |
O2—C11—C12 | 119.7 (3) | C8—C9—H9 | 121.1 |
C12—C11—Cu1 | 174.5 (2) | C4—C3—H3 | 120.2 |
N3—C6—N2 | 121.7 (3) | C4—C3—C2 | 119.6 (4) |
N3—C6—C7 | 121.0 (3) | C2—C3—H3 | 120.2 |
N2—C6—C7 | 117.3 (3) | C1—C2—C3 | 118.9 (4) |
O3—C14—C13 | 117.6 (3) | C1—C2—H2 | 120.6 |
O3—C14—C15 | 123.2 (3) | C3—C2—H2 | 120.6 |
C15—C14—C13 | 119.1 (3) | ||
Cu1—O1—C11—O2 | 2.9 (3) | C6—N2—C5—N1 | −2.5 (5) |
Cu1—O1—C11—C12 | −175.1 (3) | C6—N2—C5—C4 | 177.4 (3) |
Cu1—O2—C11—O1 | −3.1 (3) | C6—C7—C8—C9 | −0.8 (6) |
Cu1—O2—C11—C12 | 175.0 (2) | C14—C15—C16—C17 | −0.2 (6) |
Cu1—O4—C18—O5 | 14.8 (6) | C5—N1—C1—C2 | 2.0 (5) |
Cu1—N3—C6—N2 | 6.6 (4) | C5—N2—C6—N3 | 3.7 (5) |
Cu1—N3—C6—C7 | −175.3 (2) | C5—N2—C6—C7 | −174.5 (3) |
Cu1—N3—C10—C9 | 176.4 (3) | C5—C4—C3—C2 | 2.4 (6) |
Cu1—N1—C5—N2 | −9.0 (4) | C13—C12—C11—O1 | 7.7 (4) |
Cu1—N1—C5—C4 | 171.1 (2) | C13—C12—C11—O2 | −170.4 (3) |
Cu1—N1—C1—C2 | −170.0 (3) | C13—C12—C17—C16 | 0.9 (5) |
N3—C6—C7—C8 | −1.3 (5) | C13—C14—C15—C16 | 0.7 (5) |
N3—C10—C9—C8 | −0.7 (6) | C10—N3—C6—N2 | −175.8 (3) |
O3—C14—C13—C12 | 179.8 (3) | C10—N3—C6—C7 | 2.3 (5) |
O3—C14—C15—C16 | −179.5 (3) | C1—N1—C5—N2 | 179.6 (3) |
N1—C5—C4—C3 | −1.9 (5) | C1—N1—C5—C4 | −0.2 (5) |
N1—C1—C2—C3 | −1.6 (6) | C7—C8—C9—C10 | 1.8 (6) |
N2—C6—C7—C8 | 176.9 (3) | C15—C14—C13—C12 | −0.4 (5) |
N2—C5—C4—C3 | 178.2 (3) | C17—C12—C11—O1 | −171.4 (3) |
C12—C17—C16—C15 | −0.5 (6) | C17—C12—C11—O2 | 10.6 (4) |
C11—C12—C13—C14 | −179.4 (3) | C17—C12—C13—C14 | −0.4 (5) |
C11—C12—C17—C16 | 179.9 (3) | C4—C3—C2—C1 | −0.7 (6) |
C6—N3—C10—C9 | −1.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1 | 0.93 | 2.42 | 3.056 (4) | 125 |
C10—H10···O2 | 0.93 | 2.38 | 2.999 (4) | 124 |
N2—H5···O4i | 0.86 | 2.02 | 2.834 (3) | 158 |
O3—H14···O5ii | 0.82 | 1.83 | 2.645 (4) | 170 |
C2—H2···O3iii | 0.93 | 2.59 | 3.497 (5) | 166 |
C18—H18···Cg7iv | 0.93 | 2.88 | 3.634 (3) | 139 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z−1/2; (iii) −x+1, −y, −z+1; (iv) x−1, y, z. |
Acknowledgements
The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.
Funding information
Funding for this research was provided by: Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand (grant to W. Chaisuriya); Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA) (grant to K. Chainok, N. Wannarit).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Alaji, Z., Safaei, E., Chiang, L., Clarke, R. M., Mu, C. & Storr, T. (2014). Eur. J. Inorg. Chem. 2014, 6066–6074. Web of Science CSD CrossRef CAS Google Scholar
Boča, R., Rajnák, C., Titiš, J. & Valigura, D. (2017). Inorg. Chem. 56, 1478–1482. Web of Science PubMed Google Scholar
Brophy, M., Murphy, G., Osullivan, C., Hathaway, B. & Murphy, B. (1999). Polyhedron, 18, 611–615. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chattopadhyay, P. & Sinha, C. (1997). Synth. React. Inorg. Met.-Org. Chem. 27, 997–1007. CrossRef CAS Web of Science Google Scholar
Darensbourg, D. J., Fischer, M. B., Schmidt, R. E. Jr & Baldwin, B. J. (1981). J. Am. Chem. Soc. 103, 1297–1298. CSD CrossRef CAS Web of Science Google Scholar
Das, G., Shukla, R., Mandal, S., Singh, R., Bharadwaj, P. K., van Hall, J. & Whitmire, K. H. (1997). Inorg. Chem. 36, 323–329. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fukuzumi, S., Kotani, H., Lucas, H. R., Doi, K., Suenobu, T., Peterson, R. L. & Karlin, K. D. (2010). J. Am. Chem. Soc. 132, 6874–6875. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B. (2017). Asian J. Chem. 29, 1417–1422. CrossRef CAS Google Scholar
Huang, G., Yang, P., Wang, N., Wu, J. Z. & Yu, Y. (2012). Inorg. Chim. Acta, 384, 333–339. Web of Science CSD CrossRef CAS Google Scholar
Huang, K. B., Chen, Z. F., Liu, Y. C., Xie, X. L. & Liang, H. (2015). RSC Adv. 5, 81313–81323. Web of Science CSD CrossRef CAS Google Scholar
John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044. Web of Science CSD CrossRef CAS Google Scholar
Kacar, S., Unver, H. & Sahinturk, V. (2020). Arabian J. Chem. 13, 4310–4323. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kucková, L., Jomová, K., Švorcová, A., Valko, M., Segľa, P., Moncoľ, J. & Kožíšek, J. (2015). Molecules, 20, 2115–2137. Web of Science PubMed Google Scholar
Kumar, M., Mogha, N. K., Kumar, G., Hussain, F. & Masram, D. T. (2019). Inorg. Chim. Acta, 490, 144–154. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Nairn, A. K., Archibald, S. J., Bhalla, R., Gilbert, B. C., MacLean, E. J., Teat, S. J. & Walton, P. H. (2006). Dalton Trans. pp. 172–176. Web of Science CSD CrossRef Google Scholar
Okabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756–m1757. Web of Science CSD CrossRef IUCr Journals Google Scholar
Phiokliang, P., Promwit, P., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1301–1305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ranjan, R., Kundu, B. K., Kyarikwal, R., Ganguly, R. & Mukhopadhyay, S. (2022). Appl. Organomet. Chem. 36, e6450. Web of Science CSD CrossRef Google Scholar
Saini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155–163. Web of Science CSD CrossRef CAS Google Scholar
Samanta, S., Das, S., Samanta, P. K., Dutta, S. & Biswas, P. (2013). RSC Adv. 3, 19455–19466. Web of Science CSD CrossRef CAS Google Scholar
Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, T. F. & Martins, L. M. (2020). Molecules, 25, 748. Web of Science CrossRef PubMed Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venkateswarlu, K., Anantha Lakshmi, P. V. & Shivaraj, (2022). Appl. Organomet. Chem. 36, e6530. Google Scholar
Wang, Y. & Okabe, N. (2005). Inorg. Chim. Acta, 358, 3407–3416. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87–96. Web of Science CSD CrossRef CAS Google Scholar
Ziyaev, M. A., Ashurov, J. M., Eshimbetov, A. G. & Ibragimov, B. T. (2021). Acta Cryst. E77, 1164–1169. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.