research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a new mononuclear copper(II) complex: [bis­­(pyridin-2-yl-κN)amine](formato-κO)(m-hy­dr­oxy­benzoato-κ2O,O′)copper(II)

crossmark logo

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand, and bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 September 2023; accepted 20 October 2023; online 2 November 2023)

A new mononuclear copper(II) complex, [Cu(C7H5O3)(HCO2)(C10H9N3)], containing mixed N- and O-donor ligands, 2,2′-di­pyridyl­amine (dpyam) and m-hy­droxy­benzoate (m-OHbenz), has been obtained from a solvent mixture. The coordination environment of the CuII ion is distorted square-pyramidal with a [N2O3] coordination set originating from the chelating dpyam and m-OHbenz ligands in the basal plane and the O atom of a formato ligand at the apical position. The crystal structure of the title complex is stabilized by N—H⋯O, O—H⋯O, C—H⋯O hydrogen-bonding, ππ and C—H⋯π inter­molecular inter­actions, which were qu­anti­fied by Hirshfeld surface analysis.

1. Chemical context

Mononuclear copper(II) complexes have received great attention in several fields due to their versatile properties including anti­tumor, anti­oxidant, anti­bacterial, DNA inter­action, DNA cleavage (Huang et al., 2015[Huang, K. B., Chen, Z. F., Liu, Y. C., Xie, X. L. & Liang, H. (2015). RSC Adv. 5, 81313-81323.]; Venkateswarlu et al., 2022[Venkateswarlu, K., Anantha Lakshmi, P. V. & Shivaraj, (2022). Appl. Organomet. Chem. 36, e6530.]), anti­cancer (Kacar et al., 2020[Kacar, S., Unver, H. & Sahinturk, V. (2020). Arabian J. Chem. 13, 4310-4323.]), biological (Kumar et al., 2019[Kumar, M., Mogha, N. K., Kumar, G., Hussain, F. & Masram, D. T. (2019). Inorg. Chim. Acta, 490, 144-154.]), industrial catalytic oxidation processes (Samanta et al., 2013[Samanta, S., Das, S., Samanta, P. K., Dutta, S. & Biswas, P. (2013). RSC Adv. 3, 19455-19466.]; Silva & Martins, 2020[Silva, T. F. & Martins, L. M. (2020). Molecules, 25, 748.]), magnetism (Boča et al., 2017[Boča, R., Rajnák, C., Titiš, J. & Valigura, D. (2017). Inorg. Chem. 56, 1478-1482.]) and catalysis (Fukuzumi et al., 2010[Fukuzumi, S., Kotani, H., Lucas, H. R., Doi, K., Suenobu, T., Peterson, R. L. & Karlin, K. D. (2010). J. Am. Chem. Soc. 132, 6874-6875.]).

In this context and in the scope of our research activities, we started to search for new mononuclear copper(II) complexes containing mixed N- and O-donor ligands such as bi­pyridine and benzoate derivatives and to study their catalytic properties in some organic reactions. This includes, for example, olefin epoxidation (Das et al., 1997[Das, G., Shukla, R., Mandal, S., Singh, R., Bharadwaj, P. K., van Hall, J. & Whitmire, K. H. (1997). Inorg. Chem. 36, 323-329.]), aerobic oxidation of alcohols (Nairn et al., 2006[Nairn, A. K., Archibald, S. J., Bhalla, R., Gilbert, B. C., MacLean, E. J., Teat, S. J. & Walton, P. H. (2006). Dalton Trans. pp. 172-176.]; Alaji et al., 2014[Alaji, Z., Safaei, E., Chiang, L., Clarke, R. M., Mu, C. & Storr, T. (2014). Eur. J. Inorg. Chem. 2014, 6066-6074.]), ring-opening reactions (John et al., 2007[John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033-4044.]) and the photocatalytic oxidation of benzyl alcohol (Ranjan et al., 2022[Ranjan, R., Kundu, B. K., Kyarikwal, R., Ganguly, R. & Mukhopadhyay, S. (2022). Appl. Organomet. Chem. 36, e6450.]). In general, the CuII ion has the [Ar]3d9 electron configuration with an unpaired electron that can induce inter­esting magnetic properties. Copper(II) compounds also exhibit a variety of coordination environments with coordination numbers ranging from 4 to 6 (Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]).

With this in mind, we have designed new ternary mononuclear copper(II) complexes constructed from mixed 2,2′-di­pyridyl­amine (dpyam) derivatives as N-donor ligands and hy­droxy­benzoate (OHbenz) derivatives as O-donor ligands. The dpyam ligand contains two aromatic pyridine rings that can bind in a chelating coordination mode, and together with the secondary amine (–NH–) group, supra­molecular inter­actions such as ππ stacking and hydrogen-bonding inter­actions are present in corresponding coordination compounds (Phiokliang et al., 2019[Phiokliang, P., Promwit, P., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1301-1305.]). On the other hand, OHbenz derivatives are inter­esting because of their carboxyl­ate functional group, which can exhibit a variety of coordination modes, resulting in different structural arrangements (Ziyaev et al., 2021[Ziyaev, M. A., Ashurov, J. M., Eshimbetov, A. G. & Ibragimov, B. T. (2021). Acta Cryst. E77, 1164-1169.]). Likewise, the presence of a hy­droxy group on the phenyl ring supports crystal stability by hydrogen-bonding inter­actions, and the different arrangement of this group (ortho-, meta-, para-positions) can be used to influence the crystal packing.

In order to determine crystal structures of additional members of this family of complexes, we have investigated a new mononuclear copper(II) complex with dpyam and m-OHbenz ligands and an additional formato ligand, [Cu(dpyam)(m-OHbenz)(HCO2)] (I). We report here the mol­ecular and crystal structure, spectroscopic characterizations, Hirshfeld surface analysis and 2D-fingerprint plots of this compound.

[Scheme 1]

2. Structural commentary

Crystals of (I) were obtained from the reaction of Cu(NO3)2·3H2O, dpyam and m-OHbenz in mixed solvents, H2O/DMF ratio of 5:2. According to the synthetic conditions, the presence of the formate anion can be explained by hydrolysis of DMF (Huang et al., 2012[Huang, G., Yang, P., Wang, N., Wu, J. Z. & Yu, Y. (2012). Inorg. Chim. Acta, 384, 333-339.]). The asymmetric unit of (I) consists of a CuII ion, one chelating dpyam ligand, one chelating m-OHbenz ligand and one monodentately binding formato ligand, as shown in Fig. 1[link]. The CuII ion is surrounded by two pyridine nitrogen atoms of the chelating dpyam ligand, two carboxyl­ate oxygen atoms of the chelating m-OHbenz ligand and one oxygen atom of the formato ligand, resulting in a square-pyramidal [N2O3] coordination set. The Cu1—(N, O) bond lengths of the basal atoms originating from the chelating ligands are in the range 1.936 (3) to 2.096 (2) Å, while the Cu1—O4 bond length to the apical formato ligand is 2.207 (2) Å. Selected bond lengths and angles are summarized in Table 1[link]. The CuII atom lies 0.265 Å above the basal plane and is oriented towards the apical oxygen atom of the formato ligand (Fig. S1a in the supporting information, ESI). The structural parameter τ5 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]; Brophy et al., 1999[Brophy, M., Murphy, G., Osullivan, C., Hathaway, B. & Murphy, B. (1999). Polyhedron, 18, 611-615.]) is 0.19 and indicates a distortion of the square-pyramidal coordination (τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bipyramid; Fig. S1b in the ESI). The mol­ecular structure of (I) is stabilized by non-classical intra­molecular hydrogen-bonding inter­actions between C—H groups of pyridine rings and the oxygen atoms of the carboxyl­ate group of m-OHbenz, C1—H1⋯O1 and C10–H10⋯O2, as detailed in Table 2[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.096 (2) Cu1—N3 1.963 (2)
Cu1—O2 1.984 (2) Cu1—N1 1.936 (3)
Cu1—O4 2.207 (2)    
       
O1—Cu1—O4 89.16 (9) N3—Cu1—O4 114.49 (10)
O2—Cu1—O1 64.40 (9) N1—Cu1—O1 99.43 (9)
O2—Cu1—O4 90.64 (10) N1—Cu1—O2 163.39 (10)
N3—Cu1—O1 151.93 (10) N1—Cu1—O4 92.99 (10)
N3—Cu1—O2 98.82 (10) N1—Cu1—N3 94.41 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.42 3.056 (4) 125
C10—H10⋯O2 0.93 2.38 2.999 (4) 124
N2—H5⋯O4i 0.86 2.02 2.834 (3) 158
O3—H14⋯O5ii 0.82 1.83 2.645 (4) 170
C2—H2⋯O3iii 0.93 2.59 3.497 (5) 166
C18—H18⋯Cg7iv 0.93 2.88 3.634 (3) 139
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Numerical values of supra­molecular inter­actions in the crystal structure of (I) are collated in Table 2[link] and graphically displayed in Figs. 2[link] and 3[link]. The crystal structure of the title complex is stabilized by the presence of inter­molecular inter­actions such as hydrogen bonding, ππ stacking and C–H⋯π inter­actions.

[Figure 2]
Figure 2
View of the hydrogen bonding inter­actions (dashed lines) in the crystal structure of (I). [Symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) 1 − x, −y, 1 − z.]
[Figure 3]
Figure 3
View of ππ stacking and C—H⋯π inter­actions (dashed lines) in the crystal structure of (I) [Symmetry code: (i) x, [{1\over 2}] − y, −1/2 + z; (iv) −1 + x, y, z; Cg5 and Cg7 are the centroids of the N1/C1–C5 and C12–C17 rings, respectively.]

Classical inter­molecular hydrogen-bonding inter­actions are realized between the N—H group of dpyam and the ligating O atom of the formato carboxyl­ate group, N2—H5⋯O4i (symmetry codes refer to Table 2[link]), and between the hy­droxy group of m-OHbenz and the non-ligating O atom of the formato of carboxyl­ate group, O3—H14⋯O5ii. There is also a C—H⋯π inter­action between the C—H group of the formato ligand and the phenyl ring of m-OHbenz, C18—O18⋯Cg7iv. Notable ππ stacking inter­actions are found between one of the pyridyl rings of the dpyam ligand and the phenyl ring of the m-OHbenz ligand with a centroid-to-centroid distance Cg7⋯Cg5i of 3.978 (2) Å and a slippage of 1.431 Å (Cg5 and Cg7 are the centroids of the N1/C1–C5 and C12–C17 rings, respectively). These inter­molecular hydrogen-bonding, C—H⋯π and ππ stacking inter­actions result in supra­molecular layers extending parallel to the ac plane (Fig. 4[link]). Cohesion between these layers along the b axis is achieved through non-classical hydrogen-bonding inter­actions between the C—H group of dpyam and the hy­droxy group of m-OHbenz, C2—H2⋯O3iii, leading to a tri-periodic supra­molecular network (Fig. 5[link]).

[Figure 4]
Figure 4
View of the layered supra­molecular network in the crystal structure of (I), showing (a) the crystal packing in the ac plane and (b) the schematic skeleton representing the CuII atoms as nodes.
[Figure 5]
Figure 5
A perspective view of tri-periodic supra­molecular network of the title complex.

4. Hirshfeld surface analysis

Inter­molecular inter­actions in the crystal structure of (I) were qu­anti­fied by Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), as shown in Fig. 6[link]. For this purpose, CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used.

[Figure 6]
Figure 6
Views of (a) three-dimensional Hirshfeld surface mapped over dnorm and (b) two-dimensional fingerprint plots for the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts of the title complex.

The different colors of the Hirshfeld surface mapped over dnorm relate to different distances. A red surface indicates distances shorter than the sum of the van der Waals radii, a white surface indicates distances near the sum of van der Waals radii, and a blue surface indicates distances longer than the sum of the van der Waals radii. Fig. 6[link]a displays bright-red spots on dnorm caused by hydrogen-bonding inter­actions between the N—H group of the dpyam ligand and the oxygen atom of a carboxyl­ate group, and between the hy­droxy group of the m-OHbenz ligand and an O atom of the formato ligand. C—H⋯O and also C—H⋯π inter­actions are likely represented by weaker red spots of the Hirshfeld surface. The two-dimensional fingerprint plots in Fig. 6[link]b are displayed with the corresponding percentage contribution for H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts in (I). The H⋯H inter­molecular contacts have the highest percentage contribution of 41.6%. The O⋯H/H⋯O inter­actions contribute 25.0% to the surface. C⋯H/H⋯C contacts have a slightly lesser contribution of 21.1% and correspond mostly to C—H⋯π inter­actions. C⋯C contacts with a percentage contribution of 3.8% indicate ππ inter­actions in the crystal structure (Fig. S2 in the ESI).

5. Spectroscopic characterization and powder X-ray diffraction

The FT–IR spectrum of the title complex shows a characteristic broad band at 3145 cm−1, which is assigned to the O—H stretching vibration of the hy­droxy group of the m-OHbenz ligand (Zhu et al., 2016[Zhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87-96.]). The dpyam ligand shows a band at 3204 cm−1 due to the N—H stretching of the secondary amine. The strong band in the region 1590 cm−1 results from the C=N aromatic stretching of the dpyam ligand (Chattopadhyay & Sinha, 1997[Chattopadhyay, P. & Sinha, C. (1997). Synth. React. Inorg. Met.-Org. Chem. 27, 997-1007.]). The C=O band of the chelating m-OHbenz ligand is present at 1648 cm−1 and at a higher wavenumber than the C=C aromatic vibration at 1590 cm−1 (Gusrizal et al., 2017[Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B. (2017). Asian J. Chem. 29, 1417-1422.]). The bands at 826, 768 and 686 cm−1 are assigned to the out-of-plane C—H bending of the m-OHbenz ligand (Zhu et al., 2016[Zhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87-96.]). The COO stretching band confirms a monodentately binding metal formate species, consisting of a strong anti­symmetric COO stretching vibration at 1648 cm−1 and a COO symmetrical stretching at 1305 cm−1 (Darensbourg et al., 1981[Darensbourg, D. J., Fischer, M. B., Schmidt, R. E. Jr & Baldwin, B. J. (1981). J. Am. Chem. Soc. 103, 1297-1298.]). The bands at 532 and 424 cm−1 are assigned to Cu—N and Cu—O stretching vibrations (Saini et al., 2015[Saini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155-163.]), as shown in Fig. S3 in the ESI).

The solid-state diffuse reflectance spectrum of the title complex (Fig. S4 in the ESI) presents two broad peaks with λmax at 425 and 645 nm. This feature is assigned to the electronic dd transitions of [(d_{xy}, d_{yz}, d_{xz}, d_z^2) \rightarrow d_{x^2-y^2}] corres­ponding to the square-pyramidal coordination environment of CuII (Kucková et al., 2015[Kucková, L., Jomová, K., Švorcová, A., Valko, M., Segľa, P., Moncoľ, J. & Kožíšek, J. (2015). Molecules, 20, 2115-2137.]).

The powder X-ray diffraction pattern of the title complex (Fig. S5 in the ESI) shows a close match between the experimental data and the simulated pattern, confirming a single-phase material.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, September 2021 update; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of ternary mononuclear CuII complexes containing dpyam and hy­droxy­benzoate derivatives, resulted in two closely related complexes, [Cu(dpyam)(p-OHbenz)Cl] (where p-OHbenz represents p-hy­droxy­benzoate; PASCIW, Wang et al., 2005[Wang, Y. & Okabe, N. (2005). Inorg. Chim. Acta, 358, 3407-3416.]) and [Cu(dpyam)(benz)Cl] (where benz represents benzoate; YIDQEI, Okabe et al., 2007[Okabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756-m1757.]). Both complexes likewise exhibit a square-pyramidal coordination environment with τ5 values of 0.03 and 0.00, respectively. In comparison with (I), the lower τ5 values can be attributed to the diminished steric impact resulting from the presence of benzoate and p-OHbenz moieties.

7. Synthesis and crystallization

Cu(NO3)2·3H2O (0.2416 g, 1 mmol) was dissolved in distilled water (10 ml), and the blue solution was heated at 338 K and stirred. Then, a solution of dpyam (0.1712 g, 1 mmol) in DMF (5 ml) was added, resulting in a clear green solution. Subsequently, a mixed solution of m-hy­droxy­benzoic acid (0.2762 g, 2 mmol) and sodium hydroxide (0.0866 g, 2 mmol) in distilled water (5 ml) was slowly added, resulting in a dark green solution. A mixed solution of distilled water and DMF (1:1 v:v, 10 ml) was added and continuously stirred for 30 min. Then, the reaction mixture was filtrated and allowed to stand and slowly evaporate in air at room temperature for 2 d. Green block-like crystals of the title copper(II) complex were obtained with a yield of 10.1% [based on the copper(II) salt].

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed in geometrically calculated positions and refined with a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C7H5O3)(HCO2)(C10H9N3)]
Mr 416.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.3265 (3), 14.9699 (5), 13.9523 (4)
β (°) 99.242 (1)
V3) 1716.53 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.31
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker D8 Quest Cmos Photon-II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.650, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18907, 4262, 2779
Rint 0.075
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.01
No. of reflections 4262
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.54
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

[Bis(pyridin-2-yl-κN)amine](formato-κO)(m-hydroxybenzoato-κ2O,O')copper(II) top
Crystal data top
[Cu(C7H5O3)(HCO2)(C10H9N3)]F(000) = 852
Mr = 416.87Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3265 (3) ÅCell parameters from 2887 reflections
b = 14.9699 (5) Åθ = 2.8–27.7°
c = 13.9523 (4) ŵ = 1.31 mm1
β = 99.242 (1)°T = 296 K
V = 1716.53 (10) Å3Block, clear dark green
Z = 40.12 × 0.10 × 0.10 mm
Data collection top
Bruker D8 Quest Cmos Photon-II
diffractometer
4262 independent reflections
Radiation source: sealed x-ray tube, Mo2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 7.39 pixels mm-1θmax = 28.3°, θmin = 3.0°
φ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.650, Tmax = 0.746l = 1817
18907 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0412P)2 + 1.0329P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.38 e Å3
4262 reflectionsΔρmin = 0.54 e Å3
246 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0021 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29575 (5)0.27751 (3)0.72313 (2)0.03822 (15)
O10.4328 (3)0.21333 (15)0.62997 (15)0.0414 (5)
O20.3988 (3)0.35716 (15)0.63693 (16)0.0472 (6)
O40.0779 (3)0.26399 (18)0.61092 (15)0.0518 (7)
N30.2728 (3)0.36345 (17)0.82630 (16)0.0339 (6)
O30.7085 (3)0.17132 (17)0.33624 (19)0.0596 (7)
H140.7661210.1860840.2964550.089*
N10.2382 (3)0.17503 (18)0.79522 (16)0.0358 (6)
O50.0791 (3)0.2937 (2)0.71924 (18)0.0625 (8)
N20.1539 (3)0.25934 (17)0.92169 (17)0.0375 (6)
H50.1046660.2553110.9711720.045*
C120.5440 (3)0.3037 (2)0.5146 (2)0.0322 (7)
C110.4562 (4)0.2903 (2)0.5980 (2)0.0340 (7)
C60.2023 (4)0.3445 (2)0.90355 (19)0.0339 (7)
C140.6699 (4)0.2441 (2)0.3845 (2)0.0372 (7)
C50.1693 (4)0.1795 (2)0.8759 (2)0.0335 (7)
C130.5860 (4)0.2308 (2)0.4624 (2)0.0340 (7)
H130.5582880.1733680.4790890.041*
C100.3265 (4)0.4479 (2)0.8168 (2)0.0471 (9)
H100.3775370.4607460.7638050.057*
C10.2504 (5)0.0941 (2)0.7541 (2)0.0507 (9)
H10.3010240.0904140.6994640.061*
C180.0541 (4)0.2676 (3)0.6408 (2)0.0484 (9)
H180.1445910.2480720.5980330.058*
C70.1792 (4)0.4109 (2)0.9711 (2)0.0475 (9)
H70.1280760.3970721.0237900.057*
C150.7091 (4)0.3303 (2)0.3605 (2)0.0454 (8)
H150.7639740.3398290.3083850.054*
C170.5852 (4)0.3886 (2)0.4908 (2)0.0433 (8)
H170.5581140.4371710.5265810.052*
C40.1112 (4)0.1025 (2)0.9160 (2)0.0470 (8)
H40.0666870.1059910.9728580.056*
C80.2316 (5)0.4955 (3)0.9592 (3)0.0577 (10)
H80.2154430.5399881.0031890.069*
C160.6674 (5)0.4016 (2)0.4132 (3)0.0519 (9)
H160.6946650.4591580.3965860.062*
C90.3100 (5)0.5150 (2)0.8804 (3)0.0606 (11)
H90.3496640.5719960.8717050.073*
C30.1206 (5)0.0226 (3)0.8707 (3)0.0607 (11)
H30.0787740.0286350.8952070.073*
C20.1921 (5)0.0181 (3)0.7887 (3)0.0640 (11)
H20.2003670.0361760.7574710.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0561 (3)0.0362 (2)0.02653 (19)0.0031 (2)0.01924 (16)0.00029 (17)
O10.0506 (14)0.0404 (13)0.0386 (11)0.0023 (11)0.0235 (10)0.0035 (10)
O20.0669 (16)0.0404 (13)0.0419 (12)0.0066 (12)0.0315 (11)0.0015 (10)
O40.0438 (14)0.0859 (19)0.0281 (10)0.0102 (13)0.0132 (10)0.0015 (12)
N30.0427 (15)0.0346 (14)0.0257 (11)0.0026 (11)0.0094 (10)0.0015 (11)
O30.081 (2)0.0488 (15)0.0614 (16)0.0128 (14)0.0506 (14)0.0157 (13)
N10.0461 (16)0.0363 (15)0.0262 (12)0.0037 (12)0.0101 (11)0.0005 (11)
O50.0564 (16)0.086 (2)0.0521 (15)0.0092 (14)0.0301 (12)0.0011 (14)
N20.0468 (16)0.0416 (16)0.0282 (12)0.0035 (12)0.0181 (11)0.0026 (11)
C120.0303 (16)0.0409 (17)0.0277 (13)0.0026 (13)0.0111 (12)0.0030 (12)
C110.0331 (16)0.0431 (19)0.0272 (13)0.0034 (14)0.0092 (12)0.0007 (13)
C60.0372 (17)0.0403 (17)0.0259 (13)0.0034 (14)0.0098 (12)0.0001 (13)
C140.0400 (18)0.0422 (18)0.0325 (14)0.0036 (14)0.0155 (13)0.0036 (13)
C50.0380 (17)0.0379 (17)0.0253 (13)0.0005 (14)0.0071 (12)0.0042 (13)
C130.0347 (16)0.0371 (17)0.0327 (14)0.0028 (14)0.0125 (12)0.0001 (13)
C100.065 (2)0.045 (2)0.0359 (16)0.0065 (17)0.0215 (16)0.0006 (15)
C10.081 (3)0.0353 (19)0.0411 (18)0.0041 (18)0.0251 (17)0.0031 (15)
C180.0387 (19)0.072 (3)0.0345 (16)0.0068 (18)0.0056 (14)0.0033 (17)
C70.062 (2)0.048 (2)0.0361 (17)0.0022 (18)0.0205 (16)0.0055 (15)
C150.051 (2)0.051 (2)0.0393 (17)0.0052 (17)0.0245 (15)0.0055 (16)
C170.054 (2)0.0374 (18)0.0427 (17)0.0057 (16)0.0205 (15)0.0007 (15)
C40.057 (2)0.047 (2)0.0418 (17)0.0033 (17)0.0206 (16)0.0082 (16)
C80.085 (3)0.046 (2)0.0462 (19)0.003 (2)0.0234 (19)0.0145 (17)
C160.069 (2)0.0376 (19)0.056 (2)0.0034 (18)0.0285 (18)0.0064 (16)
C90.097 (3)0.038 (2)0.051 (2)0.012 (2)0.026 (2)0.0100 (17)
C30.083 (3)0.040 (2)0.065 (2)0.005 (2)0.029 (2)0.0090 (18)
C20.104 (3)0.035 (2)0.058 (2)0.000 (2)0.029 (2)0.0011 (17)
Geometric parameters (Å, º) top
Cu1—O12.096 (2)C14—C151.385 (5)
Cu1—O21.984 (2)C5—C41.400 (4)
Cu1—O42.207 (2)C13—H130.9300
Cu1—N31.963 (2)C10—H100.9300
Cu1—N11.936 (3)C10—C91.363 (5)
Cu1—C112.370 (3)C1—H10.9300
O1—C111.262 (4)C1—C21.357 (5)
O2—C111.268 (4)C18—H180.9300
O4—C181.238 (4)C7—H70.9300
N3—C61.338 (4)C7—C81.357 (5)
N3—C101.354 (4)C15—H150.9300
O3—H140.8200C15—C161.372 (5)
O3—C141.346 (4)C17—H170.9300
N1—C51.344 (4)C17—C161.385 (4)
N1—C11.351 (4)C4—H40.9300
O5—C181.211 (4)C4—C31.360 (5)
N2—H50.8600C8—H80.9300
N2—C61.373 (4)C8—C91.397 (5)
N2—C51.371 (4)C16—H160.9300
C12—C111.484 (4)C9—H90.9300
C12—C131.388 (4)C3—H30.9300
C12—C171.371 (4)C3—C21.374 (5)
C6—C71.405 (4)C2—H20.9300
C14—C131.397 (4)
O1—Cu1—O489.16 (9)N1—C5—N2121.2 (3)
O1—Cu1—C1132.08 (9)N1—C5—C4121.0 (3)
O2—Cu1—O164.40 (9)N2—C5—C4117.9 (3)
O2—Cu1—O490.64 (10)C12—C13—C14119.8 (3)
O2—Cu1—C1132.35 (10)C12—C13—H13120.1
O4—Cu1—C1188.92 (9)C14—C13—H13120.1
N3—Cu1—O1151.93 (10)N3—C10—H10118.2
N3—Cu1—O298.82 (10)N3—C10—C9123.7 (3)
N3—Cu1—O4114.49 (10)C9—C10—H10118.2
N3—Cu1—C11128.32 (11)N1—C1—H1118.5
N1—Cu1—O199.43 (9)N1—C1—C2123.0 (3)
N1—Cu1—O2163.39 (10)C2—C1—H1118.5
N1—Cu1—O492.99 (10)O4—C18—H18116.2
N1—Cu1—N394.41 (10)O5—C18—O4127.6 (3)
N1—Cu1—C11131.48 (11)O5—C18—H18116.2
C11—O1—Cu186.03 (17)C6—C7—H7120.1
C11—O2—Cu190.84 (19)C8—C7—C6119.8 (3)
C18—O4—Cu1115.5 (2)C8—C7—H7120.1
C6—N3—Cu1124.0 (2)C14—C15—H15119.8
C6—N3—C10118.1 (3)C16—C15—C14120.4 (3)
C10—N3—Cu1117.8 (2)C16—C15—H15119.8
C14—O3—H14109.5C12—C17—H17120.2
C5—N1—Cu1124.8 (2)C12—C17—C16119.6 (3)
C5—N1—C1118.1 (3)C16—C17—H17120.2
C1—N1—Cu1116.6 (2)C5—C4—H4120.4
C6—N2—H5113.9C3—C4—C5119.3 (3)
C5—N2—H5113.9C3—C4—H4120.4
C5—N2—C6132.2 (3)C7—C8—H8120.3
C13—C12—C11120.2 (3)C7—C8—C9119.4 (3)
C17—C12—C11119.3 (3)C9—C8—H8120.3
C17—C12—C13120.5 (3)C15—C16—C17120.6 (3)
O1—C11—Cu161.89 (15)C15—C16—H16119.7
O1—C11—O2118.6 (3)C17—C16—H16119.7
O1—C11—C12121.6 (3)C10—C9—C8117.9 (3)
O2—C11—Cu156.81 (15)C10—C9—H9121.1
O2—C11—C12119.7 (3)C8—C9—H9121.1
C12—C11—Cu1174.5 (2)C4—C3—H3120.2
N3—C6—N2121.7 (3)C4—C3—C2119.6 (4)
N3—C6—C7121.0 (3)C2—C3—H3120.2
N2—C6—C7117.3 (3)C1—C2—C3118.9 (4)
O3—C14—C13117.6 (3)C1—C2—H2120.6
O3—C14—C15123.2 (3)C3—C2—H2120.6
C15—C14—C13119.1 (3)
Cu1—O1—C11—O22.9 (3)C6—N2—C5—N12.5 (5)
Cu1—O1—C11—C12175.1 (3)C6—N2—C5—C4177.4 (3)
Cu1—O2—C11—O13.1 (3)C6—C7—C8—C90.8 (6)
Cu1—O2—C11—C12175.0 (2)C14—C15—C16—C170.2 (6)
Cu1—O4—C18—O514.8 (6)C5—N1—C1—C22.0 (5)
Cu1—N3—C6—N26.6 (4)C5—N2—C6—N33.7 (5)
Cu1—N3—C6—C7175.3 (2)C5—N2—C6—C7174.5 (3)
Cu1—N3—C10—C9176.4 (3)C5—C4—C3—C22.4 (6)
Cu1—N1—C5—N29.0 (4)C13—C12—C11—O17.7 (4)
Cu1—N1—C5—C4171.1 (2)C13—C12—C11—O2170.4 (3)
Cu1—N1—C1—C2170.0 (3)C13—C12—C17—C160.9 (5)
N3—C6—C7—C81.3 (5)C13—C14—C15—C160.7 (5)
N3—C10—C9—C80.7 (6)C10—N3—C6—N2175.8 (3)
O3—C14—C13—C12179.8 (3)C10—N3—C6—C72.3 (5)
O3—C14—C15—C16179.5 (3)C1—N1—C5—N2179.6 (3)
N1—C5—C4—C31.9 (5)C1—N1—C5—C40.2 (5)
N1—C1—C2—C31.6 (6)C7—C8—C9—C101.8 (6)
N2—C6—C7—C8176.9 (3)C15—C14—C13—C120.4 (5)
N2—C5—C4—C3178.2 (3)C17—C12—C11—O1171.4 (3)
C12—C17—C16—C150.5 (6)C17—C12—C11—O210.6 (4)
C11—C12—C13—C14179.4 (3)C17—C12—C13—C140.4 (5)
C11—C12—C17—C16179.9 (3)C4—C3—C2—C10.7 (6)
C6—N3—C10—C91.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.423.056 (4)125
C10—H10···O20.932.382.999 (4)124
N2—H5···O4i0.862.022.834 (3)158
O3—H14···O5ii0.821.832.645 (4)170
C2—H2···O3iii0.932.593.497 (5)166
C18—H18···Cg7iv0.932.883.634 (3)139
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand (grant to W. Chaisuriya); Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA) (grant to K. Chainok, N. Wannarit).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlaji, Z., Safaei, E., Chiang, L., Clarke, R. M., Mu, C. & Storr, T. (2014). Eur. J. Inorg. Chem. 2014, 6066–6074.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoča, R., Rajnák, C., Titiš, J. & Valigura, D. (2017). Inorg. Chem. 56, 1478–1482.  Web of Science PubMed Google Scholar
First citationBrophy, M., Murphy, G., Osullivan, C., Hathaway, B. & Murphy, B. (1999). Polyhedron, 18, 611–615.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChattopadhyay, P. & Sinha, C. (1997). Synth. React. Inorg. Met.-Org. Chem. 27, 997–1007.  CrossRef CAS Web of Science Google Scholar
First citationDarensbourg, D. J., Fischer, M. B., Schmidt, R. E. Jr & Baldwin, B. J. (1981). J. Am. Chem. Soc. 103, 1297–1298.  CSD CrossRef CAS Web of Science Google Scholar
First citationDas, G., Shukla, R., Mandal, S., Singh, R., Bharadwaj, P. K., van Hall, J. & Whitmire, K. H. (1997). Inorg. Chem. 36, 323–329.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukuzumi, S., Kotani, H., Lucas, H. R., Doi, K., Suenobu, T., Peterson, R. L. & Karlin, K. D. (2010). J. Am. Chem. Soc. 132, 6874–6875.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B. (2017). Asian J. Chem. 29, 1417–1422.  CrossRef CAS Google Scholar
First citationHuang, G., Yang, P., Wang, N., Wu, J. Z. & Yu, Y. (2012). Inorg. Chim. Acta, 384, 333–339.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, K. B., Chen, Z. F., Liu, Y. C., Xie, X. L. & Liang, H. (2015). RSC Adv. 5, 81313–81323.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohn, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044.  Web of Science CSD CrossRef CAS Google Scholar
First citationKacar, S., Unver, H. & Sahinturk, V. (2020). Arabian J. Chem. 13, 4310–4323.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKucková, L., Jomová, K., Švorcová, A., Valko, M., Segľa, P., Moncoľ, J. & Kožíšek, J. (2015). Molecules, 20, 2115–2137.  Web of Science PubMed Google Scholar
First citationKumar, M., Mogha, N. K., Kumar, G., Hussain, F. & Masram, D. T. (2019). Inorg. Chim. Acta, 490, 144–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNairn, A. K., Archibald, S. J., Bhalla, R., Gilbert, B. C., MacLean, E. J., Teat, S. J. & Walton, P. H. (2006). Dalton Trans. pp. 172–176.  Web of Science CSD CrossRef Google Scholar
First citationOkabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756–m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPhiokliang, P., Promwit, P., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1301–1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRanjan, R., Kundu, B. K., Kyarikwal, R., Ganguly, R. & Mukhopadhyay, S. (2022). Appl. Organomet. Chem. 36, e6450.  Web of Science CSD CrossRef Google Scholar
First citationSaini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamanta, S., Das, S., Samanta, P. K., Dutta, S. & Biswas, P. (2013). RSC Adv. 3, 19455–19466.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, T. F. & Martins, L. M. (2020). Molecules, 25, 748.  Web of Science CrossRef PubMed Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkateswarlu, K., Anantha Lakshmi, P. V. & Shivaraj, (2022). Appl. Organomet. Chem. 36, e6530.  Google Scholar
First citationWang, Y. & Okabe, N. (2005). Inorg. Chim. Acta, 358, 3407–3416.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationZiyaev, M. A., Ashurov, J. M., Eshimbetov, A. G. & Ibragimov, B. T. (2021). Acta Cryst. E77, 1164–1169.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds