research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, inter­molecular inter­action energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one

crossmark logo

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fez, Morocco, bLaboratory Of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, cLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP 1014 RP, Morocco, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, gLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route dImmouzzer, BP 2202 Fez, Morocco, and hLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
*Correspondence e-mail: mouad.lahyaoui@usmba.ac.ma

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 October 2023; accepted 15 November 2023; online 21 November 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the title mol­ecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped ππ stacking inter­actions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) inter­actions, showing that hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The mol­ecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap.

1. Chemical context

Owing to their importance in the fields of pharmaceuticals, cytosine derivatives and their syntheses have been in the focus of chemists in recent years, in particular during the Covid pandemic period, for example with respect to the synthesis of Molnupiravir as an anti-viral drug (Sahoo & Subba Reddy, 2022[Sahoo, T. & Subba Reddy, B. V. (2022). Tetrahedron Lett. 97, 153783.]). An alternative product identified as cytarabine, which also has been synthesized from cytosine, is a chemotherapy drug used to treat acute myeloid leukaemia (AML), acute lymphocytic leukaemia (ALL), chronic myeloid leukaemia (CML) and non-Hodgkin's lymphoma (Lamba, 2009[Lamba, J. K. (2009). Pharmacogenomics, 10, 1657-1674.]; Güngör et al., 2022[Güngör, Ö., Demircioğlu, Z. & Gölcü, A. (2022). J. Mol. Struct. 1270, 133826.]). 1-(Prop-2-yn­yl)-4-amino-2-oxo­pyrimidine was synthesized as an inter­mediate for the purpose of preparing other products that may have biological activities (Chatzileontiadou et al., 2015[Chatzileontiadou, D. S., Parmenopoulou, V., Manta, S., Kantsadi, A. L., Kylindri, P., Griniezaki, M., Kontopoulou, F., Telopoulou, A., Prokova, H., Panagopoulos, D., Boix, E., Balatsos, N. A. A., Komiotis, D. & Leonidas, D. D. (2015). Bioorg. Chem. 63, 152-165.]).

In a continuation of our research work devoted to the study of N-alkyl­ation reactions involving cytosine derivatives, we report herein on synthesis, mol­ecular and crystal structures as well as Hirshfeld surface analysis, inter­molecular inter­action energies, energy frameworks and DFT-computational studies of the title compound (I)[link], C7H7N3O. This cytosine derivative was obtained by an alkyl­ation reaction of cytosine using an excess of propargyl bromide as an alkyl­ating reagent under the conditions of phase-transfer catalysis (PTC).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises one mol­ecule and is shown in Fig. 1[link]. The pyrimidine ring is essentially planar (r.m.s.d = 0.0055 Å). The plane defined by the propynyl group (N1/C5/C6/C7) is inclined to the pyrimidine plane by 15.31 (4)°.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, N3—H3A⋯O1 and C3—H3⋯O1 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the c-axis direction. Inversion-related chains are connected by N3—H3B⋯N2 hydrogen bonds (Table 1[link]), forming ribbons whose mean planes are inclined by ±31.4° to (010) (Fig. 2[link]). The ribbons are linked by C7—H7⋯O1 hydrogen bonds (Table 1[link]) and slipped ππ stacking inter­actions between pyrimidine rings [centroid-to-centroid distance = 3.6122 (6) Å, slippage = 1.51 Å] into the tri-periodic structure (Fig. 3[link]), which has narrow channels running parallel to the c axis (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.89 (1) 2.16 (1) 3.0002 (9) 156 (1)
N3—H3B⋯N2ii 0.90 (1) 2.10 (1) 2.9854 (10) 169 (1)
C3—H3⋯O1i 0.95 2.56 3.3036 (10) 135
C7—H7⋯O1iii 0.95 2.37 3.2559 (11) 156
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+2, -y+1, -z+1]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of one ribbon viewed along the a axis with N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by blue, violet and black dashed lines.
[Figure 3]
Figure 3
Packing of (I)[link] viewed along the a axis with hydrogen bonds depicted as in Fig. 2[link]. The ππ stacking inter­actions are depicted by orange dashed lines.
[Figure 4]
Figure 4
Packing viewed along the c axis with hydrogen bonds depicted as in Fig. 2[link], and with ππ stacking inter­actions as in Fig. 3[link].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contacts) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots appearing near O1, N2 and hydrogen atom H3A indicate their roles as the respective donors and/or acceptors atoms for hydrogen bonding; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) shown in Fig. 6[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles (Fig. 7[link]). The overall two-dimensional fingerprint plot, Fig. 8[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/ N⋯H, C⋯C, C⋯N/N⋯C, N⋯N, C⋯O/O⋯C and N⋯O/O⋯N (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link]bj, together with their relative contributions to the Hirshfeld surface. The most important inter­action originates from H⋯H contacts, contributing 36.2% to the overall crystal packing, which is reflected in Fig. 8[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.20 Å. In the absence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts, contributing 20.9% to the overall crystal packing, are shown in Fig. 8[link]c with the tips at de + di = 2.57 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 8[link]d) with a 17.8% contribution to the HS is viewed as a pair of spikes with the tips at de + di = 2.05 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 8[link]e, 12.2% contribution to the HS) is viewed as a pair of spikes with the tips at de + di = 2.00 Å. The C⋯C contacts, contributing with 6.1% to the overall crystal packing, have a bullet-shaped distribution of points. They are shown in Fig. 8[link]f with the tip at de = di = 1.61 Å. The C⋯N/N⋯C contacts,which contribute 5.1% to the overall crystal packing, have a bat-shaped distribution of points (Fig. 8[link]g) with the tips at de + di = 3.28 Å. Finally, the N⋯N (Fig. 8[link]h), C⋯O/O⋯C (Fig. 8[link]i) and N⋯O/O⋯N (Fig. 8[link]j) contacts contribute 0.9%, 0.4% and 0.3%, respectively, to the HS. The functions dnorm plotted onto the HS are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 9[link]ad. The HS analysis confirms the importance of H-atom contacts in establishing the packing and suggest that van der Waals inter­actions and hydrogen-bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range of −0.4969 to 1.1244 a.u.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 7]
Figure 7
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/ N⋯H, (f) C⋯C, (g) C⋯N/N⋯C, (h) N⋯N, (i) C⋯O/O⋯C and (j) N⋯O/O⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 9]
Figure 9
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

5. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) and are shown in Fig. 10[link]a–c. The evaluation of the electrostatic, dispersion and total energy frameworks reveals that the stabilization is dominated by the electrostatic energy contribution in the crystal structure of (I)[link].

[Figure 10]
Figure 10
The views of the energy frameworks for a cluster of mol­ecules of the title compound showing (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylinder radii are proportional to the relative strength of the corresponding energies, adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2×2×2 unit cells.

6. DFT calculations

Bond lengths and angles as well as energies of (I)[link] in the gas phase were computed on basis of density functional theory (DFT) using the standard B3LYP functional and the 6–311G(d,p) basis-set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US]). Table 2[link] reveals that the calculated bond lengths and angles are in good agreement with the experimentally determined values. The HOMO-LUMO energy gap of the mol­ecule was also calculated by the DFT/B3LYP/6-311G(d,p) method and is shown in Fig. 11[link]. Furthermore, quantum chemistry descriptors (chemical hardness η, softness S, electronegativity χ and electrophilicity w) derived from the conceptual DFT calculations of (I)[link] are given in Table 3[link]. The HOMO and LUMO are localized in the plane extending from the whole 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 6.64 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −9.28 eV and −2.64 eV, respectively.

Table 2
Comparison of selected X-ray and DFT bond lengths and angles (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C1 1.2444 (9) 1.2457
N1—C2 1.3632 (10) 1.3645
N1—C5 1.4716 (10) 1.4782
N2—C4 1.3415 (10) 1.3423
N2—C1 1.3570 (10) 1.3542
N3—C4 1.3353 (10) 1.3392
C2—N1—C1 120.71 (6) 120.82
O1—C1—N2 122.47 (7) 122.17
O1—C1—N1 118.64 (7) 118.54
N2—C1—N1 118.88 (6) 118.53

Table 3
Calculated energies and quantum-chemical parameters of (I)

Total Energy, TE (eV) −13800.94
EHOMO (eV) −9.28
ELUMO (eV) −2.64
Gap, ΔE (eV) 6.64
Dipole moment, μ (Debye) 7.47
Ionization potential, I (eV) 9.28
Electron affinity, A 2.64
Electronegativity, χ 3.20
Hardness, η 5.96
Softness, σ 0.15
Electrophilicity index, ω 5.35
[Figure 11]
Figure 11
The energy band gap of (I)[link].

7. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, current as of October 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment II (Fig. 12[link]) generated 37 hits also including co-crystals, metal complexes and ions protonated on the doubly bonded nitro­gen atom. The most comparable structures to (I)[link] include those with R = CH2CO2Bui (COFJIS; Geng et al., 2013[Geng, L.-L., Wang, C., Yuan, W. & Song, X.-M. (2013). Z. Krist. New Cryst. Struct. 228, 447-448.]), 2-oxido-2-phen­oxy-1,4,2-dioxaphosphinan-5-yl (DATZIJ; Krylov et al., 2012[Krylov, I. S., Zakharova, V. M., Serpi, M., Haiges, R., Kashemirov, B. A. & McKenna, C. E. (2012). J. Org. Chem. 77, 684-689.]), CH2C(=O)NHC(COOH)CH2(4-OHC6H4) (COQNAX; Doi et al., 1999[Doi, M., Miyako, H., Asano, A. & Ishida, T. (1999). Anal. Sci. 15, 109-110.]), (CH2)3SiMe2Ph (HIXKOQ; Kociok-Köhn et al., 2014[Kociok-Köhn, G., Mahon, M. F., Molloy, K. C., Price, G. J., Prior, T. J. & Smith, D. R. G. (2014). Dalton Trans. 43, 7734-7746.]), CH=CHCH2NHC(=O)(4-FC6H4) (PEYHOS; Cetina et al., 2012[Cetina, M., Benci, K., Wittine, K. & Mintas, M. (2012). Cryst. Growth Des. 12, 5262-5270.]), CH2OH (DECYUF; Shibata et al., 1985[Shibata, M., Takenaka, A., Sasada, Y. & Ohki, M. (1985). Acta Cryst. C41, 1354-1356.]), CH2C(=O)NH2 (CIMJEN; Fujita et al., 1984[Fujita, S., Takenaka, A. & Sasada, Y. (1984). Acta Cryst. C40, 1467-1469.]), CH2C(=O)NHC(COO)(CH2)4NH3+ (LAVZEO; Doi et al., 2005[Doi, M., Nakamoto, Y. & Asano, A. (2005). Acta Cryst. C61, o577-o582.]), 2′-de­oxy-β-D-ribo-pento­furanosyl (NAGLIQ; Hossain et al., 1996[Hossain, N., Blaton, N., Peeters, O., Rozenski, J. & Herdewijn, P. A. (1996). Tetrahedron, 52, 5563-5578.]), 4-pyridyl (KUDPEH; Tufenkjian et al., 2020[Tufenkjian, E., Jouaiti, A., Kyritsakas, N., Hosseini, M. W. & Bulach, V. (2020). Tetrahedron, 76, 130966.]), CH=CHCH2NHC(O)Ph (PEHYEI; Cetina et al., 2012[Cetina, M., Benci, K., Wittine, K. & Mintas, M. (2012). Cryst. Growth Des. 12, 5262-5270.]) and n-pentyl (YINGAF; Barceló-Oliver et al., 2013[Barceló-Oliver, M., Bauzá, A., Baquero, B. A., García-Raso, A., Terrón, A., Molins, E. & Frontera, A. (2013). Tetrahedron Lett. 54, 5355-5360.]). In all of these structures, the first two atoms of the substituent are rotated by nearly 90° from being coplanar with the pyrimidine ring, in contrast to what is observed for (I)[link]. In all cases this is likely due to steric hindrance between hydrogen atoms on the substituent and the adjacent ring hydrogen and the carbonyl oxygen. However, in COQNAX there is a possible, weak π-stacking inter­action that could also direct the conformation. In NAGLIQ, there is a weak C—H⋯π(ring) inter­action that could act similarly.

[Figure 12]
Figure 12
The mol­ecular fragment II used for the database search.

8. Synthesis and crystallization

A mixture of cytosine (1.5 mmol) and potassium carbonate (K2CO3) (3 mmol) was dissolved in 25 ml of di­methyl­formamide (DMF). The solution was stirred magnetically for 10 min., followed by addition of 0.01 equivalents of tetra-n-butyl­ammonium bromide (TBAB) and 3 mmol of propargyl bromide. The mixture was stirred magnetically for 24 h. After filtration of the formed salts, the DMF was evaporated under reduced pressure. The residue obtained was purified by chromatography on a silica gel column. Single crystals of (I)[link] suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. 1H NMR (300 MHz, DMSO-d6): 3.306–3.322 (t, 1H, CH≡C, J = 2.4, 4.8); 4.482–4.49 (d, 2H, CH2, J = 2.4); 5.806–5.83 (d, 1H, CH, J = 7.2); 7.109 (s, 1H, NH); 7.37 (s, 1H, NH); 7.669–7.693 (d, 1H, CH—N, J = 7.2). 13C NMR (75 MHz, DMSO): 37.95 (CH2); 75.78 (C≡CH); 94.93 (CH≡C); 141.48 (CH—N); 143.24 (CH—C); 156.05 (C=O); 166.42 (C=N).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms attached to carbon atoms were placed in idealized positions and were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms. Those attached to nitro­gen were placed in locations derived from a difference-Fourier map and refined with a distance of 0.90 (1) Å. Reflection 020 was affected by the beamstop and was omitted from the final refinement.

Table 4
Experimental details

Crystal data
Chemical formula C7H7N3O
Mr 149.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.3864 (6), 18.013 (2), 7.0112 (8)
β (°) 96.288 (4)
V3) 676.18 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.34 × 0.32 × 0.07
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.96, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 28024, 2554, 2251
Rint 0.035
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.05
No. of reflections 2554
No. of parameters 108
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one top
Crystal data top
C7H7N3OF(000) = 312
Mr = 149.16Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.3864 (6) ÅCell parameters from 9914 reflections
b = 18.013 (2) Åθ = 4.0–33.2°
c = 7.0112 (8) ŵ = 0.10 mm1
β = 96.288 (4)°T = 150 K
V = 676.18 (13) Å3Plate, colourless
Z = 40.34 × 0.32 × 0.07 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
2554 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.3910 pixels mm-1θmax = 33.2°, θmin = 4.0°
ω scansh = 88
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2727
Tmin = 0.96, Tmax = 0.99l = 1010
28024 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.1628P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 8 sets of frames, each of width 0.5° in ω, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.91 0.01 instruction. One reflection affected by the beamstop was omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66696 (11)0.40841 (3)0.85317 (8)0.01939 (14)
N10.39821 (12)0.36777 (4)0.60167 (9)0.01532 (14)
N20.75623 (12)0.43923 (3)0.55258 (9)0.01525 (14)
N30.83960 (13)0.46704 (4)0.24590 (10)0.01878 (15)
H3A0.805 (3)0.4626 (8)0.1187 (12)0.031 (3)*
H3B0.976 (2)0.4921 (7)0.296 (2)0.033 (3)*
C10.61327 (14)0.40625 (4)0.67606 (11)0.01469 (14)
C20.33252 (14)0.36368 (4)0.40859 (11)0.01677 (15)
H20.1838310.3383150.3611540.020*
C30.47496 (14)0.39504 (4)0.28349 (11)0.01730 (15)
H30.4319500.3912520.1487750.021*
C40.69319 (14)0.43416 (4)0.36256 (11)0.01446 (14)
C50.24325 (15)0.33434 (4)0.73922 (11)0.01883 (16)
H5A0.3529770.3087190.8411010.023*
H5B0.1534560.3742070.8005560.023*
C60.06137 (15)0.28125 (4)0.64860 (11)0.01895 (16)
C70.08594 (16)0.23629 (5)0.57853 (12)0.02220 (17)
H70.2025000.2007210.5230770.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (3)0.0237 (3)0.0123 (3)0.0033 (2)0.0012 (2)0.00096 (19)
N10.0150 (3)0.0178 (3)0.0128 (3)0.0033 (2)0.0001 (2)0.0006 (2)
N20.0154 (3)0.0169 (3)0.0130 (3)0.0025 (2)0.0001 (2)0.0009 (2)
N30.0190 (3)0.0232 (3)0.0140 (3)0.0051 (2)0.0011 (2)0.0000 (2)
C10.0142 (3)0.0153 (3)0.0140 (3)0.0008 (2)0.0008 (2)0.0015 (2)
C20.0161 (3)0.0194 (3)0.0142 (3)0.0028 (2)0.0009 (2)0.0017 (2)
C30.0177 (3)0.0207 (3)0.0130 (3)0.0034 (2)0.0008 (2)0.0023 (2)
C40.0145 (3)0.0148 (3)0.0138 (3)0.0002 (2)0.0003 (2)0.0010 (2)
C50.0195 (3)0.0218 (3)0.0151 (3)0.0051 (3)0.0014 (3)0.0004 (2)
C60.0192 (3)0.0206 (3)0.0170 (3)0.0014 (3)0.0019 (3)0.0025 (3)
C70.0227 (4)0.0240 (4)0.0195 (4)0.0044 (3)0.0007 (3)0.0015 (3)
Geometric parameters (Å, º) top
O1—C11.2444 (9)C2—C31.3507 (11)
N1—C21.3632 (10)C2—H20.9500
N1—C11.4007 (10)C3—C41.4294 (10)
N1—C51.4716 (10)C3—H30.9500
N2—C41.3415 (10)C5—C61.4635 (11)
N2—C11.3570 (10)C5—H5A0.9900
N3—C41.3353 (10)C5—H5B0.9900
N3—H3A0.894 (8)C6—C71.2005 (11)
N3—H3B0.899 (9)C7—H70.9500
C2—N1—C1120.71 (6)C2—C3—H3121.4
C2—N1—C5121.63 (6)C4—C3—H3121.4
C1—N1—C5117.63 (6)N3—C4—N2118.42 (7)
C4—N2—C1120.28 (6)N3—C4—C3119.79 (7)
C4—N3—H3A120.0 (9)N2—C4—C3121.78 (7)
C4—N3—H3B119.5 (10)C6—C5—N1112.56 (6)
H3A—N3—H3B120.4 (13)C6—C5—H5A109.1
O1—C1—N2122.47 (7)N1—C5—H5A109.1
O1—C1—N1118.64 (7)C6—C5—H5B109.1
N2—C1—N1118.88 (6)N1—C5—H5B109.1
C3—C2—N1121.21 (7)H5A—C5—H5B107.8
C3—C2—H2119.4C7—C6—C5178.11 (9)
N1—C2—H2119.4C6—C7—H7180.0
C2—C3—C4117.12 (7)
C4—N2—C1—O1178.71 (7)N1—C2—C3—C41.57 (11)
C4—N2—C1—N10.74 (10)C1—N2—C4—N3179.62 (7)
C2—N1—C1—O1179.75 (7)C1—N2—C4—C30.61 (11)
C5—N1—C1—O12.17 (10)C2—C3—C4—N3179.22 (7)
C2—N1—C1—N20.27 (11)C2—C3—C4—N20.55 (11)
C5—N1—C1—N2178.35 (6)C2—N1—C5—C615.87 (11)
C1—N1—C2—C31.48 (12)C1—N1—C5—C6166.07 (7)
C5—N1—C2—C3179.48 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.89 (1)2.16 (1)3.0002 (9)156 (1)
N3—H3B···N2ii0.90 (1)2.10 (1)2.9854 (10)169 (1)
C3—H3···O1i0.952.563.3036 (10)135
C7—H7···O1iii0.952.373.2559 (11)156
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z+1; (iii) x1, y+1/2, z1/2.
Comparison of selected X-ray and DFT bond lengths and angles (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C11.2444 (9)1.2457
N1—C21.3632 (10)1.3645
N1—C51.4716 (10)1.4782
N2—C41.3415 (10)1.3423
N2—C11.3570 (10)1.3542
N3—C41.3353 (10)1.3392
C2—N1—C1120.71 (6)120.82
O1—C1—N2122.47 (7)122.17
O1—C1—N1118.64 (7)118.54
N2—C1—N1118.88 (6)118.53
Calculated energies and quantum-chemical parameters of (I) top
Total Energy, TE (eV)-13800.94
EHOMO (eV)-9.28
ELUMO (eV)-2.64
Gap, ΔE (eV)6.64
Dipole moment, µ (Debye)7.47
Ionisation potential, I (eV)9.28
Electron affinity, A2.64
Electronegativity, χ3.20
Hardness, η5.96
Softness, σ0.15
Electrophilicity index, ω5.35
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBarceló-Oliver, M., Bauzá, A., Baquero, B. A., García-Raso, A., Terrón, A., Molins, E. & Frontera, A. (2013). Tetrahedron Lett. 54, 5355–5360.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationCetina, M., Benci, K., Wittine, K. & Mintas, M. (2012). Cryst. Growth Des. 12, 5262–5270.  CSD CrossRef CAS Google Scholar
First citationChatzileontiadou, D. S., Parmenopoulou, V., Manta, S., Kantsadi, A. L., Kylindri, P., Griniezaki, M., Kontopoulou, F., Telopoulou, A., Prokova, H., Panagopoulos, D., Boix, E., Balatsos, N. A. A., Komiotis, D. & Leonidas, D. D. (2015). Bioorg. Chem. 63, 152–165.  CrossRef CAS Google Scholar
First citationDoi, M., Miyako, H., Asano, A. & Ishida, T. (1999). Anal. Sci. 15, 109–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationDoi, M., Nakamoto, Y. & Asano, A. (2005). Acta Cryst. C61, o577–o582.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US  Google Scholar
First citationFujita, S., Takenaka, A. & Sasada, Y. (1984). Acta Cryst. C40, 1467–1469.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeng, L.-L., Wang, C., Yuan, W. & Song, X.-M. (2013). Z. Krist. New Cryst. Struct. 228, 447–448.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGüngör, Ö., Demircioğlu, Z. & Gölcü, A. (2022). J. Mol. Struct. 1270, 133826.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHossain, N., Blaton, N., Peeters, O., Rozenski, J. & Herdewijn, P. A. (1996). Tetrahedron, 52, 5563–5578.  CSD CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKociok-Köhn, G., Mahon, M. F., Molloy, K. C., Price, G. J., Prior, T. J. & Smith, D. R. G. (2014). Dalton Trans. 43, 7734–7746.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrylov, I. S., Zakharova, V. M., Serpi, M., Haiges, R., Kashemirov, B. A. & McKenna, C. E. (2012). J. Org. Chem. 77, 684–689.  CSD CrossRef CAS Google Scholar
First citationLamba, J. K. (2009). Pharmacogenomics, 10, 1657–1674.  CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSahoo, T. & Subba Reddy, B. V. (2022). Tetrahedron Lett. 97, 153783.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibata, M., Takenaka, A., Sasada, Y. & Ohki, M. (1985). Acta Cryst. C41, 1354–1356.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTufenkjian, E., Jouaiti, A., Kyritsakas, N., Hosseini, M. W. & Bulach, V. (2020). Tetrahedron, 76, 130966.  CSD CrossRef Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds