research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the isotypic complexes bis­­(morpholine)­gold(I) chloride and bis­­(morpholine)­gold(I) bromide1

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 13 October 2023; accepted 7 November 2023; online 16 November 2023)

The compounds bis­(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis­(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N—Au—N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N—H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding.

1. Chemical context

We are inter­ested in the synthesis and, particularly, the structures of amine complexes of gold halides and pseudohalides. These structures often display packing features such as aurophilic inter­actions (reviewed by Schmidbaur & Schier, 2008[Schmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931-1951.], 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.]), hydrogen bonding (sometimes involving metal-bonded halogens; Brammer, 2003[Brammer, L. (2003). Dalton Trans. pp. 3145-3157.]), gold⋯halogen contacts or halogen⋯halogen contacts (see e.g. Metrangelo, 2008[Metrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]). Background material, including an extensive summary of our previous investigations, can be found in the previous article of this series (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]), which presented complexes involving piperidine and pyrrolidine complexes. The ligand morpholine, C4H9NO, (sometimes referred to as 1,4-oxazin­ane or tetra­hydro-1,4-oxazine, although morpholine is the preferred IUPAC name; here abbreviated in formulae as `morph') is closely similar to piperidine (both are six-membered rings involving secondary amine functions), but the presence of the oxygen atom in the ring might lead to additional possibilities for hydrogen bonding. Here we present the structures of the isotypic complexes bis­(morpholine)­gold(I) chloride, [Au(morph)2]Cl, 1 and bis­(morpholine)­gold(I) bromide, [Au(morph)2]Br, 2. We have already reported the synthesis of 1 (Ahrens et al., 1999[Ahrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103-1110.]), but the structure was not determined at that time.

[Scheme 1]

2. Structural commentary

At the outset we comment that, for structures that contain more than one residue in the asymmetric unit, the distinction between the categories `Structural commentary' (which generally refers to the asymmetric unit) and `Supra­molecular features' becomes blurred.

Compounds 1 and 2 crystallize isotypically in space group C2/c with Z = 4. The gold atoms lie on inversion centres at (0.5, 0.5, 0.5) and the halide ions on twofold axes at (0.5, y, 0.75). Figs. 1[link] and 2[link] show the formula units, extended appropriately over the inversion centres. Selected mol­ecular dimensions are presented in Tables 1[link] and 2[link]. The Au—N bond lengths of 2.0631 (19) in 1 and 2.0598 (18) Å in 2 may be considered normal. The coordination geometry at gold is exactly linear by symmetry. Within the asymmetric units, a classical hydrogen bond connects the NH group and the halide ion. The morpholine rings are mutually rotated as viewed along the N11⋯N11i vector, with C12—N11⋯N11i—C12i = 180° by symmetry and C16—N11⋯N11i—C12i = 56.6 (2)° for 1 and 55.8 (2)° for 2.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Au1—N11 2.0631 (19) C13—O14 1.429 (3)
N11—C16 1.491 (3) O14—C15 1.427 (3)
N11—C12 1.495 (3)    
       
N11—Au1—N11i 180.0 C12—N11—Au1 113.41 (13)
C16—N11—C12 108.02 (17) C15—O14—C13 110.06 (16)
C16—N11—Au1 113.07 (14)    
       
Au1—N11—C12—C13 −68.44 (19) Au1—N11—C16—C15 67.7 (2)
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Au1—N11 2.0598 (18) C13—O14 1.427 (2)
N11—C16 1.491 (3) O14—C15 1.431 (3)
N11—C12 1.491 (3)    
       
N11i—Au1—N11 180.00 (7) C12—N11—Au1 114.42 (13)
C16—N11—C12 107.83 (16) C13—O14—C15 110.40 (15)
C16—N11—Au1 113.28 (14)    
       
Au1—N11—C12—C13 −68.99 (18) Au1—N11—C16—C15 68.54 (19)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The structure of compound 1 in the crystal, with ellipsoids at the 50% probability level. The asymmetric unit (labelled) is extended over the inversion centre at the gold atom. The dashed line represents the hydrogen bond.
[Figure 2]
Figure 2
The structure of compound 2 in the crystal, with ellipsoids at the 50% probability level. The asymmetric unit (labelled) is extended over the inversion centre at the gold atom. The dashed line represents the hydrogen bond.

One notable feature is the axial disposition of the gold centres at the morpholine ring, associated with C—C—N—Au torsion angles of around 68°. This conformation is usually regarded as unfavourable for a single substituent of a six-membered ring in the chair form; one would expect the conformation to be equatorial, with an anti­periplanar sequence C—C—N—Au, as was indeed observed for the piperidine complexes in our previous paper (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]). See also Section 4.

3. Supra­molecular features

Hydrogen bonds for 1 and 2 are presented in Tables 3[link] and 4[link] respectively.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl1 0.86 (3) 2.35 (3) 3.172 (2) 160 (2)
C12—H12B⋯Cl1ii 0.99 2.92 3.836 (2) 154
C16—H16A⋯Cl1iii 0.99 2.91 3.654 (2) 132
C13—H13B⋯O14iv 0.99 2.65 3.511 (3) 146
C15—H15A⋯O14v 0.99 2.61 3.439 (3) 142
Symmetry codes: (ii) [-x+1, -y, -z+1]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Br1 0.89 (2) 2.46 (2) 3.3056 (18) 159.0 (19)
C12—H12B⋯Br1ii 0.99 2.94 3.860 (2) 155
C16—H16A⋯Br1iii 0.99 2.98 3.717 (2) 132
C13—H13B⋯O14iv 0.99 2.70 3.542 (3) 144
C15—H15A⋯O14v 0.99 2.61 3.446 (3) 142
Symmetry codes: (ii) [-x+1, -y, -z+1]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

For compound 1, the chloride ion accepts hydrogen bonds from two symmetry-equivalent NH donors (one in the asymmetric unit and the other with operator 1 − x, y, [{3\over 2}] − z); the H⋯Cl⋯H angle is 93.9 (12)°. The gold atom is involved in two symmetry-equivalent Au1⋯Cl1 contacts of 3.7187 (5) Å (with operators x, 1 + y, z and 1 − x, −y, 1 − z for the chlorine atoms), with a Cl⋯Au⋯Cl angle of 180° by symmetry; the corresponding Au⋯Cl⋯Au angle is 98.93 (2)° (with operators x, −1 + y, z and x, −y, [{1\over 2}] + z for the gold atoms).

The contacts combine to form a layer structure parallel to the bc plane (Fig. 3[link]) in the region x ≃ 0.5. N—H⋯Cl hydrogen-bonded zigzag chains [⋯Cl⋯(morph)—Au—(morph)⋯]n, with overall direction parallel to the c axis, are crosslinked by the Au⋯Cl contacts. Within the layer, the chloride anion is involved in two C—H⋯Cl contacts that might be regarded as borderline `weak' hydrogen bonds. The morpholine ligands project out of the layer to occupy the spaces at x ≃ 0.25 and 0.75. The morpholine oxygen atom is not involved in classical hydrogen bonding, but two C—H⋯O contacts connect the morpholine ligands of the layer at x ≃ 0.5 to those of adjacent layers at x ≃ 0 and 1. The significant role of the C—H⋯O inter­actions is indirectly implied by the fact that bis­(piperidine)­gold(I) chloride, which lacks the oxygen atoms in the rings, has a quite different packing, involving inversion-symmetric dimers with NH⋯Cl⋯NH linkages (Ahrens et al., 1999[Ahrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103-1110.]).

[Figure 3]
Figure 3
Packing diagram of compound 1, viewed perpendicular to the bc plane in the region x ≃ 0.5. Hydrogen atoms bonded to carbon are omitted for clarity. Thick dashed lines indicate hydrogen bonds; thin dashed lines indicate Au⋯Cl contacts.

The packing of compound 2 is necessarily strictly analogous to that of 1 (and thus no separate packing diagram is presented for 2), with contact dimensions Au⋯Br = 3.7686 (2) Å, H⋯Br⋯H = 93.3 (11)° and Au⋯Br⋯Au = 98.33 (1)°. Hydrogen bonds for 2 are presented in Table 4[link].

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Only four other complexes of gold with morpholine are present in the CSD. Two of these involve our own work: [Au(morph)2] [N(SO2CH3)2] (refcode DUHKAY; Ahrens et al., 2000[Ahrens, B., Friedrichs, S., Herbst-Irmer, R. & Jones, P. G. (2000). Eur. J. Inorg. Chem. pp. 2017-2029.]) and (morph)AuCN (FIMSUR; Döring & Jones, 2013[Döring, C. & Jones, P. G. (2013). Z. Naturforsch. B, 68, 474-492.]). The third is a cationic complex in the salt [Au(morph)(phosphine)][B(C6F5)4] (OSOZUS; Hesp & Stradiotto, 2010[Hesp, K. D. & Stradiotto, M. (2010). J. Am. Chem. Soc. 132, 18026-18029.]) whereas the last is the neutral gold(III) complex trans-[AuCl2(morph)Ph] (WALQOR; Lavy et al., 2010[Lavy, S., Miller, J., Pažický, M., Rodrigues, A.-S., Rominger, F., Jäkel, C., Serra, D., Vinokurov, N. & Limbach, M. (2010). Adv. Synth. Catal. 352, 2993-3000.]).

A search for morpholine complexes of any transition metal gave 120 hits that included atom coordinates. A total of 117 structures displayed absolute C—C—N—TM torsion angles of 160–180° (i.e. with the metal atom equatorial to the morpholine ring), whereas just six lay in the range 68–78°, representing an axial position for the metal residue (with seven further cases in the range 78–90°, but none with angles < 68°; because of structures containing more than one morpholine and/or differing torsion angles, the sum of these exceeds the number of hits). All six axial systems (DUHKAY, Ahrens et al., 2000[Ahrens, B., Friedrichs, S., Herbst-Irmer, R. & Jones, P. G. (2000). Eur. J. Inorg. Chem. pp. 2017-2029.]; FIMSUR, Döring & Jones, 2013[Döring, C. & Jones, P. G. (2013). Z. Naturforsch. B, 68, 474-492.]; ICADIB, Miller et al., 2011[Miller, K. M., McCullough, S. M., Lepekhina, E. A., Thibau, I. J., Pike, R. D., Li, X., Killarney, J. P. & Patterson, H. H. (2011). Inorg. Chem. 50, 7239-7249.]; REZKUE, Wang & Lian, 2013[Wang, M. & Lian, Z.-X. (2013). Acta Cryst. C69, 594-596.]; YUXWUK and YUXXAR, Wölper et al., 2010[Wölper, C., Polo Bastardés, M. D., Dix, I., Kratzert, D. & Jones, P. G. (2010). Z. Naturforsch. B, 65, 647-673.]) involved the coinage metals. We made similar observations for piperidine complexes in the CSD (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]). It is unclear whether the generally lower coordination numbers of these metals, especially silver and gold, might promote the axial geometry (by reducing steric repulsions), whether electronic effects may play a role, or whether packing effects are involved.

A search for any structure containing morpholine (including those with four-coordinated nitro­gen, but only where the NH function is retained) gave 766 hits. All necessarily contained an NH group, and 378 an additional OH group. Only 144 structures displayed an N—H⋯Omorpholine or O—H⋯Omorpholine contact shorter then the sum of the van der Waals radii (2.68 Å in the CCDC system), and only 83 of these had a short H⋯O contact < 2.2 Å. This of course merely confirms the general principle that the oxygen atoms of ether groups have a limited tendency to form hydrogen bonds. In an investigation of the frequency of various hydrogen-bonded motifs, Allen et al. (1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Gregory, P., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]) concluded that particular motifs involving oxygen atoms were `much less likely to occur if the oxygen atom is two-coordinate'. A typical example, drawn from the hit-list and showing both possible roles of the morpholine oxygen atom, is the complex di­chlorido­bis­(morpholine)­zinc (WIQRIA; Kinens et al., 2018[Kinens, A., Balkaitis, S. & Suna, E. (2018). J. Org. Chem. 83, 12449-12459.]), with two crystallographically independent morpholine ligands in the mol­ecule, where a short N—H⋯O hydrogen bond (H⋯O 2.08 Å) connects the morpholine NH group of one ligand to the oxygen atom of the other ligand in a neighbouring mol­ecule related by translational symmetry, forming chains of mol­ecules (Fig. 4[link]). The second independent NH group, however, forms three-centre hydrogen bonds to two chloride ligands of an adjacent chain, whereby the second oxygen atom `misses out' on classical hydrogen-bond formation. We note in passing, after a random check of the hit-list, that the hydrogen bonding is often not discussed in the original references (nor in the corresponding Supplementary Material).

[Figure 4]
Figure 4
Packing diagram of di­chlorido­bis­(morpholine)­zinc (WIQRIA; Kinens et al., 2018[Kinens, A., Balkaitis, S. & Suna, E. (2018). J. Org. Chem. 83, 12449-12459.]), drawn using XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, U. S. A.]) from the deposited coordinates. Dashed lines represent N—H⋯O (thick) or three-centre N—H⋯Cl (thin) hydrogen bonds. Colour codes: Cl green, Zn violet, O red, N blue.

The above searches were limited to structures without disorder. One further relevant structure, which has disordered bridging cyano groups (with alternative orientations C≡N or N≡C), is the polymeric [Ag(CN)(morph)] (CITXAH; Strey & Döring, 2018[Strey, M. & Döring, C. (2018). Z. Naturforsch. B, 73, 231-241.]). This too has axial positions for the silver atoms at all three independent morpholine ligands, and the packing involves classical N—H⋯N hydrogen bonds and short C—H⋯O contacts, but no N—H⋯O hydrogen bonds.

5. Synthesis and crystallization

Single crystals of compound 1 (Ahrens et al., 1999[Ahrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103-1110.]) were obtained by adding 40 mg (0.125 mmol) of chlorido­(tetra­hydro­thio­phene)­gold(I) to 2 mL of morpholine and overlayering portions of the solution thus obtained with various precipitants. The crystal chosen for structure determination was obtained using petroleum ether. Analysis: calculated C 23.63, H 4.46, N 6.89; found C 23.29, H 4.45, N 6.94%. Crystals of 2 were obtained analogously from 45.6 mg (0.125 mmol) of bromido­(tetra­hydro­thio­phene)­gold(I); again, the measured crystal was obtained using petroleum ether as precipitant.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Structures were refined anisotropically on F2. Hydrogen atoms of the NH groups were refined freely [but for 2 with Uiso(H) set to 1.2 × Ueq(N), because the value otherwise refined to below zero]. Methyl­ene hydrogens were included at calculated positions and refined using a riding model with C—H = 0.99 Å and H—C—H = 109.5°, and with Uiso(H) set to 1.2 × Ueq(C).

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Au(C4H9NO)2]Cl [Au(C4H9NO)2]Br
Mr 406.66 451.12
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 18.9504 (9), 5.92161 (19), 11.3049 (5) 18.8719 (6), 6.07840 (17), 11.4050 (4)
β (°) 114.729 (6) 114.595 (4)
V3) 1152.27 (10) 1189.57 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 12.98 15.71
Crystal size (mm) 0.08 × 0.08 × 0.03 0.08 × 0.05 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.692, 1.000 0.733, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18488, 1744, 1440 22827, 1739, 1601
Rint 0.036 0.042
(sin θ/λ)max−1) 0.722 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.026, 1.06 0.015, 0.026, 1.08
No. of reflections 1744 1739
No. of parameters 70 70
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.49 0.58, −0.65
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 and SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, U. S. A.]).

For compound 2, an extinction correction was performed using the command `EXTI'; the extinction parameter (as defined by SHELXL; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) refined to 0.00023 (3).

Supporting information


Computing details top

Bis(morpholine-κN)gold(I) chloride (1) top
Crystal data top
[Au(C4H9NO)2]ClF(000) = 768
Mr = 406.66Dx = 2.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.9504 (9) ÅCell parameters from 7694 reflections
b = 5.92161 (19) Åθ = 2.4–30.8°
c = 11.3049 (5) ŵ = 12.98 mm1
β = 114.729 (6)°T = 100 K
V = 1152.27 (10) Å3Block, colourless
Z = 40.08 × 0.08 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1744 independent reflections
Radiation source: Enhance (Mo) X-ray Source1440 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.036
ω scanθmax = 30.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 2627
Tmin = 0.692, Tmax = 1.000k = 88
18488 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: mixed
wR(F2) = 0.026H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0016P)2 + 3.0402P]
where P = (Fo2 + 2Fc2)/3
1744 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. Non-bonded contacts: 3.7187 (0.0005) Au1 - Cl1_$2 3.7187 (0.0005) Au1 - Cl1_$1

Dihedral angles: 180.00 ( 0.00) C12 - N11 - N11_$5 - C12_$5 56.59 ( 0.22) C16 - N11 - N11_$5 - C12_$5

Copntact angles: 93.91 ( 1.20) H01 - Cl1 - H01_$6 98.93 ( 0.02) Au1_$7 - Cl1 - Au1_$8 180.00 Cl1_$1 - Au1 - Cl1_$2

Symmetry operators:

EQIV $1 -x+1, -y, -z+1 EQIV $2 x, y+1, z EQIV $5 1-x,1-y,1-z EQIV $6 1-x, y, 1.5-z EQIV $7 x, -1+y, z EQIV $8 x, -y, 0.5+z

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.5000000.5000000.01184 (3)
Cl10.5000000.09186 (14)0.7500000.01674 (15)
N110.42478 (11)0.2880 (3)0.53588 (18)0.0123 (4)
H010.4520 (14)0.179 (4)0.583 (2)0.013 (6)*
C120.36225 (13)0.1930 (4)0.4149 (2)0.0154 (4)
H12A0.3332800.0748080.4380300.018*
H12B0.3856310.1231710.3600870.018*
C130.30752 (14)0.3799 (4)0.3402 (2)0.0159 (5)
H13A0.3363510.4922620.3126810.019*
H13B0.2658640.3160430.2606890.019*
O140.27328 (8)0.4903 (3)0.41568 (14)0.0164 (3)
C150.33247 (13)0.5800 (4)0.5321 (2)0.0147 (4)
H15A0.3080670.6548840.5839110.018*
H15B0.3624840.6952370.5091310.018*
C160.38698 (13)0.3975 (4)0.6133 (2)0.0133 (4)
H16A0.4270370.4641010.6936740.016*
H16B0.3576400.2835610.6386900.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01025 (5)0.01374 (5)0.01282 (5)0.00112 (5)0.00610 (4)0.00242 (5)
Cl10.0190 (4)0.0122 (3)0.0155 (4)0.0000.0037 (3)0.000
N110.0111 (9)0.0126 (9)0.0139 (9)0.0037 (8)0.0059 (8)0.0035 (7)
C120.0174 (11)0.0133 (11)0.0162 (11)0.0020 (9)0.0077 (10)0.0026 (9)
C130.0166 (11)0.0185 (12)0.0133 (11)0.0020 (9)0.0068 (10)0.0021 (9)
O140.0120 (7)0.0227 (8)0.0139 (7)0.0029 (7)0.0049 (6)0.0017 (7)
C150.0157 (11)0.0164 (10)0.0130 (10)0.0028 (9)0.0069 (9)0.0003 (9)
C160.0135 (11)0.0163 (11)0.0112 (10)0.0019 (9)0.0061 (9)0.0022 (9)
Geometric parameters (Å, º) top
Au1—N112.0631 (19)C12—H12A0.9900
Au1—N11i2.0631 (19)C12—H12B0.9900
N11—C161.491 (3)C13—H13A0.9900
N11—C121.495 (3)C13—H13B0.9900
C12—C131.510 (3)C15—H15A0.9900
C13—O141.429 (3)C15—H15B0.9900
O14—C151.427 (3)C16—H16A0.9900
C15—C161.511 (3)C16—H16B0.9900
N11—H010.86 (3)
N11—Au1—N11i180.0H12A—C12—H12B108.2
C16—N11—C12108.02 (17)O14—C13—H13A109.2
C16—N11—Au1113.07 (14)C12—C13—H13A109.2
C12—N11—Au1113.41 (13)O14—C13—H13B109.2
N11—C12—C13109.38 (18)C12—C13—H13B109.2
O14—C13—C12112.27 (18)H13A—C13—H13B107.9
C15—O14—C13110.06 (16)O14—C15—H15A109.3
O14—C15—C16111.59 (19)C16—C15—H15A109.3
N11—C16—C15109.17 (17)O14—C15—H15B109.3
C16—N11—H01105.9 (16)C16—C15—H15B109.3
C12—N11—H01109.0 (17)H15A—C15—H15B108.0
Au1—N11—H01107.0 (16)N11—C16—H16A109.8
N11—C12—H12A109.8C15—C16—H16A109.8
C13—C12—H12A109.8N11—C16—H16B109.8
N11—C12—H12B109.8C15—C16—H16B109.8
C13—C12—H12B109.8H16A—C16—H16B108.3
C16—N11—C12—C1357.7 (2)C13—O14—C15—C1658.5 (2)
Au1—N11—C12—C1368.44 (19)C12—N11—C16—C1558.7 (2)
N11—C12—C13—O1458.2 (2)Au1—N11—C16—C1567.7 (2)
C12—C13—O14—C1557.7 (2)O14—C15—C16—N1160.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl10.86 (3)2.35 (3)3.172 (2)160 (2)
C12—H12B···Cl1ii0.992.923.836 (2)154
C16—H16A···Cl1iii0.992.913.654 (2)132
C13—H13B···O14iv0.992.653.511 (3)146
C15—H15A···O14v0.992.613.439 (3)142
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1.
Bis(morpholine-κN)gold(I) bromide (2) top
Crystal data top
[Au(C4H9NO)2]BrF(000) = 840
Mr = 451.12Dx = 2.519 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.8719 (6) ÅCell parameters from 8239 reflections
b = 6.07840 (17) Åθ = 3.5–30.5°
c = 11.4050 (4) ŵ = 15.71 mm1
β = 114.595 (4)°T = 100 K
V = 1189.57 (7) Å3Block, colourless
Z = 40.08 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1739 independent reflections
Radiation source: Enhance (Mo) X-ray Source1601 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.042
ω scanθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 2626
Tmin = 0.733, Tmax = 1.000k = 88
22827 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.026 w = 1/[σ2(Fo2) + (0.0064P)2 + 1.529P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1739 reflectionsΔρmax = 0.58 e Å3
70 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00023 (3)
Special details top

Geometry. Non-bonded distances: 3.7686 (0.0002) Au1 - Br1_$2 3.7686 (0.0002) Au1 - Br1_$1

Pseudo torsion angles: 180.00 ( 0.00) C12 - N11 - N11_$5 - C12_$5 55.84 ( 0.21) C16 - N11 - N11_$5 - C12_$5

Contact angles: 93.29 ( 1.11) H01 - Br1 - H01_$6 98.33 ( 0.01) Au1_$7 - Br1 - Au1_$8 180.00 ( 0.00) Br1_$1 - Au1 - Br1_$2

Operators for generating equivalent atoms: $1 -x+1, -y, -z+1 $2 x, y+1, z $5 -x+1, -y+1, -z+1 $6 -x+1, y, -z+3/2 $8 x, -y, z+1/2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.5000000.5000000.01205 (4)
Br10.5000000.09457 (5)0.7500000.01529 (7)
N110.42269 (10)0.2957 (3)0.53179 (17)0.0124 (4)
H010.4507 (13)0.183 (4)0.578 (2)0.015*
C120.36012 (12)0.2040 (4)0.4122 (2)0.0153 (4)
H12A0.3309780.0889520.4351590.018*
H12B0.3836320.1359000.3579410.018*
C130.30529 (12)0.3856 (4)0.33819 (19)0.0154 (4)
H13A0.3341740.4948860.3106260.018*
H13B0.2634730.3231300.2597030.018*
O140.27109 (9)0.4933 (3)0.41320 (14)0.0163 (3)
C150.33036 (12)0.5800 (4)0.52921 (19)0.0148 (4)
H15A0.3057010.6521570.5806290.018*
H15B0.3607130.6925590.5071100.018*
C160.38456 (11)0.4011 (4)0.60869 (19)0.0130 (4)
H16A0.4246430.4646280.6887400.016*
H16B0.3548070.2896580.6329760.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01062 (6)0.01299 (6)0.01400 (6)0.00095 (5)0.00659 (4)0.00242 (5)
Br10.01822 (15)0.01134 (14)0.01438 (14)0.0000.00487 (12)0.000
N110.0131 (9)0.0111 (9)0.0142 (9)0.0036 (7)0.0070 (7)0.0036 (7)
C120.0175 (11)0.0129 (11)0.0165 (10)0.0027 (9)0.0079 (9)0.0040 (9)
C130.0173 (11)0.0180 (12)0.0111 (10)0.0005 (9)0.0062 (8)0.0017 (9)
O140.0121 (7)0.0216 (8)0.0146 (7)0.0032 (7)0.0049 (6)0.0006 (7)
C150.0154 (10)0.0162 (10)0.0125 (10)0.0026 (9)0.0057 (8)0.0006 (9)
C160.0120 (10)0.0173 (11)0.0110 (9)0.0011 (9)0.0060 (8)0.0012 (9)
Geometric parameters (Å, º) top
Au1—N11i2.0598 (18)C13—H13A0.9900
Au1—N112.0598 (18)C13—H13B0.9900
N11—C161.491 (3)O14—C151.431 (3)
N11—C121.491 (3)C15—C161.509 (3)
N11—H010.89 (2)C15—H15A0.9900
C12—C131.508 (3)C15—H15B0.9900
C12—H12A0.9900C16—H16A0.9900
C12—H12B0.9900C16—H16B0.9900
C13—O141.427 (2)
N11i—Au1—N11180.00 (7)O14—C13—H13B109.2
C16—N11—C12107.83 (16)C12—C13—H13B109.2
C16—N11—Au1113.28 (14)H13A—C13—H13B107.9
C12—N11—Au1114.42 (13)C13—O14—C15110.40 (15)
C16—N11—H01107.2 (15)O14—C15—C16111.31 (19)
C12—N11—H01107.6 (16)O14—C15—H15A109.4
Au1—N11—H01106.2 (15)C16—C15—H15A109.4
N11—C12—C13109.65 (18)O14—C15—H15B109.4
N11—C12—H12A109.7C16—C15—H15B109.4
C13—C12—H12A109.7H15A—C15—H15B108.0
N11—C12—H12B109.7N11—C16—C15109.18 (16)
C13—C12—H12B109.7N11—C16—H16A109.8
H12A—C12—H12B108.2C15—C16—H16A109.8
O14—C13—C12112.10 (17)N11—C16—H16B109.8
O14—C13—H13A109.2C15—C16—H16B109.8
C12—C13—H13A109.2H16A—C16—H16B108.3
C16—N11—C12—C1358.0 (2)C13—O14—C15—C1658.2 (2)
Au1—N11—C12—C1368.99 (18)C12—N11—C16—C1559.1 (2)
N11—C12—C13—O1458.0 (2)Au1—N11—C16—C1568.54 (19)
C12—C13—O14—C1557.3 (2)O14—C15—C16—N1160.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Br10.89 (2)2.46 (2)3.3056 (18)159.0 (19)
C12—H12B···Br1ii0.992.943.860 (2)155
C16—H16A···Br1iii0.992.983.717 (2)132
C13—H13B···O14iv0.992.703.542 (3)144
C15—H15A···O14v0.992.613.446 (3)142
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1.
 

Footnotes

1Gold complexes with amine ligands, Part 13. Part 12: Döring & Jones (2023).

Acknowledgements

We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAhrens, B., Friedrichs, S., Herbst-Irmer, R. & Jones, P. G. (2000). Eur. J. Inorg. Chem. pp. 2017–2029.  CrossRef Google Scholar
First citationAhrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103–1110.  CrossRef Google Scholar
First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Gregory, P., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationBrammer, L. (2003). Dalton Trans. pp. 3145–3157.  Web of Science CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2013). Z. Naturforsch. B, 68, 474–492.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHesp, K. D. & Stradiotto, M. (2010). J. Am. Chem. Soc. 132, 18026–18029.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKinens, A., Balkaitis, S. & Suna, E. (2018). J. Org. Chem. 83, 12449–12459.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLavy, S., Miller, J., Pažický, M., Rodrigues, A.-S., Rominger, F., Jäkel, C., Serra, D., Vinokurov, N. & Limbach, M. (2010). Adv. Synth. Catal. 352, 2993–3000.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Google Scholar
First citationMiller, K. M., McCullough, S. M., Lepekhina, E. A., Thibau, I. J., Pike, R. D., Li, X., Killarney, J. P. & Patterson, H. H. (2011). Inorg. Chem. 50, 7239–7249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.  Google Scholar
First citationSchmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931–1951.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, U. S. A.  Google Scholar
First citationStrey, M. & Döring, C. (2018). Z. Naturforsch. B, 73, 231–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, M. & Lian, Z.-X. (2013). Acta Cryst. C69, 594–596.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWölper, C., Polo Bastardés, M. D., Dix, I., Kratzert, D. & Jones, P. G. (2010). Z. Naturforsch. B, 65, 647–673.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds