research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol monosolvate

crossmark logo

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, cDepartamento de Química, Pontífícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro-RJ, Brazil, and dDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 24 October 2023; accepted 15 November 2023; online 16 November 2023)

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).

1. Chemical context

One of the first reports concerning thio­semicarbazone chemistry was published more than a century ago (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). These mol­ecules, with the [R1R2N—N(H)—C(=S)—NR3R4] functional group, were observed as the major product of the reactions between thio­semicarbazide derivatives [H2N—N(H)—C(=S)—NR3R4] and aldehydes or ketones (R1R2C=O). Indeed, thio­semicarbazides were employed as analytical reagents in the organic chemistry for the detection of the carbonyl group (R1R2C=O). From those early times, thio­semicarbazones emerged as a class of compounds with applications in a wide range of scientific disciplines. A milestone of this chemistry was the report of the biological activity as chemotherapeutic agents against tuberculosis in in vitro essays, published in the mid-1940s (Domagk et al., 1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]).

As a result of the huge structural diversity of thio­semicarbazone derivatives, because of the large number of aldehydes and ketones employed in synthesis, several applications for metals, e.g., palladium(II) are observed. The [N—N(H)—C(=S)—N] fragment, and its anionic form, are very efficient ligands, since hard (N) and soft (S) Lewis-base behaviors are present in the same atom chain. In addition, the N—N—S—N entity can adopt different geometries, coordinating metal centers in diverse bonding modes (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]).

The applications of thio­semicarbazone derivatives in palladium chemistry range from analytical chemistry, e.g., the spectrophotometric determination of PdII in different matrices, as for example alloys and complexes (Karthikeyan et al., 2011[Karthikeyan, J., Parameshwara, P. & Shetty, A. N. (2011). Environ. Monit. Assess. 173, 569-577.]), to their use as reagents for the synthesis of palladium nanoparticles for Suzuki–Miyaura cross-coupling catalysis (Kovala-Demertzi et al., 2008[Kovala-Demertzi, D., Kourkoumelis, N., Derlat, K., Michalak, J., Andreadaki, F. J. & Kostas, I. D. (2008). Inorg. Chim. Acta, 361, 1562-1565.]) and the synergetic effect of thio­semicarbazones with palladium(II) has led to the development of catalysts for organic chemistry (Priyarega et al., 2022[Priyarega, S., Haribabu, J. & Karvembu, R. (2022). Inorg. Chim. Acta, 532, 120742.]). Furthermore, in the field of materials science, a palladium(II) coordination compound, with the 4-{bis­[4-(p-meth­oxy­phen­yl)thio­semicarbazone]}-2,3-butane derivative, has found application in electrocatalytic hydrogen production (Straistari et al., 2018[Straistari, T., Hardré, R., Massin, J., Attolini, M., Faure, B., Giorgi, M., Réglier, M. & Orio, M. (2018). Eur. J. Inorg. Chem. pp. 2259-2266.]), which is an important topic for energy research today. Finally, bioinorganic chemistry is one of the most relevant approaches for thio­semicarbazone chemistry (Aly et al., 2023[Aly, A. A., Abdallah, E. M., Ahmed, S. A., Rabee, M. M. & Bräse, S. (2023). Molecules, 28, 1808, 1-39.]; Singh et al., 2023[Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658, 1-43.]).

[Scheme 1]

Herein, as part of our inter­est in thio­semicarbazone chemistry, we report the synthesis, crystal structure and Hirshfeld analysis of the first fixolide 4-methyl­thio­semicarbazonato palladium(II) complex.

2. Structural commentary

The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvate mol­ecule. The coordination compound is composed of a palladium(II) center and two (R,S)-fixolide 4-methyl­thio­semicarbazonato ligands, which act as metal chelators, κ2N2,S-donors, and form five-membered metallarings in a trans-configuration. An intra­molecular C24—H24C⋯S1 hydrogen bond is observed, with a graph-set motif of S(6), and the coordination sphere of the metal center resembles a hydrogen-bonded macrocyclic environment (Fig. 1[link], Table 1[link]). The PdII metal center is fourfold coordinated in a distorted square-planar geometry: the N3—Pd1—N6 and S1—Pd1—S2 angles are 178.02 (5) and 164.63 (2)°, while the maximum deviation from the mean plane through the Pd1/N3/N6/S1/S2 atoms amounts to 0.1722 (4) Å for S1 [the r.m.s.d. for the selected atoms is 0.1409 Å] and the torsion angles between the N3—N2—C2—S1 and N6—N5—C22—S2 chains amount to −5.6 (2) and −1.7 (2)°. Additional structural data concerning the N/N/C/S/N entities are given in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24C⋯S1 0.98 2.73 3.5061 (19) 136
N1—H1⋯S1i 0.88 2.57 3.411 (2) 160
N4—H2⋯O1 0.88 2.01 2.879 (2) 167
O1—H3⋯S2ii 0.84 2.43 3.2596 (16) 169
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+2, -y+1, -z+2].

Table 2
The maximum deviations from the mean plane through the N/N/C/S/N entities, the r.m.s. deviations of the selected atoms and the dihedral angle with the respective aromatic rings for the title compound (Å, °)

The dihedral angle between the N/N/C/S/N entities amounts to 61.34 (4)°.

N/N/C/S/N entity max. deviation Atom r.m.s.d. Angle
N3/N2/C2/N1/S1 0.0567 (1) N2 0.0403 46.68 (5)
N6/N5/C22/N4/S2 −0.0307 (8) N6 0.0269 50.66 (4)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level. Disordered atoms are drawn with 40% transparency and A-labeled for the (R)-isomer [s.o.f. = 0.624 (2)] and B-labeled for the (S)-isomer [s.o.f. = 0.376 (2)]. The ethanol solvate mol­ecule is omitted for clarity.

In addition, a C24—H24C⋯Pd1 weak anagostic inter­action can be suggested (Fig. 2[link]). The angle between the C—H⋯M atoms is 117.78 (2)° and the H⋯Pd distance amounts to 2.8235 (7) Å, which lies in the upper limit for these inter­actions. For an agostic inter­action, which involves a covalent or a three-center and two-electron bond, an H⋯M distance of at least 2.3 Å is required and the C—H⋯M angle should range between 90 and 140°. For an anagostic inter­action that is assigned with an electrostatic nature, the H⋯M distance should range from 2.3 to 2.9 Å and the C—H⋯M angle between 110 and 170° (Brookhart et al., 2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908-6914.]). For an article that corroborates with the H24C⋯Pd1 anagostic inter­action of the title compound, see also: Derry Holaday et al. (2014[Derry Holaday, M. G., Tarafdar, G., Kumar, A., Reddy, M. L. P. & Srinivasan, A. (2014). Dalton Trans. 43, 7699-7703.]).

[Figure 2]
Figure 2
Graphical representation of the coordination sphere of the title compound showing the H⋯Pd weak anagostic intra­molecular inter­action. The figure is simplified for clarity.

In the complex, the thio­semicarbazonato ligands are disordered over the aliphatic rings and two of the methyl groups [site-occupancy ratio = 0.624 (2):0.376 (2)], with the A-labeled atoms having the highest s.o.f. value and the B-labeled atoms, the lowest (Fig. 1[link]). For both ligands, the disorder includes the carbon chiral atoms (C10 and C30) and thus, (R)- and (S)-isomers are observed. The C10A—HA and C10B—HB bonds are in opposite directions, and the (R)-isomer is assigned for the A-labeled atoms [s.o.f. = 0.624 (2)]. For the case of the C30A—H30A and C30B—H30B bonds, the (R)-isomer is assigned to the B-labeled atoms [s.o.f. = 0.376 (2)]. This inverted site-occupancy ratio for the (R,S)-isomery in the two ligands is a remarkable feature of the complex structure. Selected structural data parameters are provided in Tables 2[link] and 3[link].

Table 3
The maximum deviations from the mean plane through the aliphatic rings and the respective r.m.s. deviations of the selected atoms for the title compound (Å)

Aliphatic ring max. deviation (+) max. deviation (-) r.m.s.d.
C7/C8/C9A/C10A/C11/C12 0.347 (2) (C10A) −0.343 (2) (C9A) 0.2152
C7/C8/C9B/C10B/C11/C12 0.402 (3) (C9B) −0.331 (3) [C10B] 0.2309
C27/C28/C29A/C30A/C31/C32 0.308 (2) (C30A) −0.348 (2) [C29A] 0.2052
C27/C28/C29B/C30B/C31/C32 0.352 (4) (C29B) −0.379 (4) (C30B) 0.2280
For a graphical representation of the title compound, see: Fig. 1[link].

Finally, the anionic form of the (R,S)-fixolide 4-methyl­thio­semicarbazonato ligands is confirmed by the absence of the H acidic hydrazinic atom and by the changes on the bond lengths over the N—N—C—S fragment. In a neutral, non-coordinated, thio­semicarbazone derivative, N—N(H)—C=S entity, the H hydrazinic atom is present, the N—N and N—C distances are characteristic for single bonds, while the C=S distance indicates a double bond. When the thio­semicarbazone is deprotonated with a base, e.g. NaOH, the negative charge is delocalized over the N—N—C—S chain and the values for the chemical bonds distances tend to inter­mediate lengths. Thus, the N—N bond length tends to be longer, maintaining single-bond character, the N—C bond lengths tend to be shorter, suggesting a double-bond character and the C—S bond lengths tend to be longer, indicating a single-bond character (Table 4[link]).

Table 4
Selected torsion angles for disordered fixolide derivatives (°)

Compound Isomer Chiral atom (s.o.f.) Atom chain Torsion angle
C17H24O2a R C10A [0.683 (4)] C9—C10A—C11A—C12 −67.0 (3)
C17H24O2a S C10B [0.317 (4)] C9—C10B—C11B—C12 71.8 (6)
C20H31N3Sb R C10A [0.667 (13)] C8—C9A—C10A—C11 −65.3 (7)
C20H31N3Sb S C10B [0.333 (13)] C8—C9B—C10B—C11 70.2 (14)
Pd(C20H30N3S)2·C2H6Oc R C10A [0.624 (2)] C8—C9A—C10A—C11 −68.3 (3)
Pd(C20H30N3S)2·C2H6Oc S C10B [0.376 (2)] C8—C9B—C10B—C11 71.0 (4)
Pd(C20H30N3S)2·C2H6Oc R C30B [0.3752 (2)] C28—C29B—C30B—C31 −71.5 (5)
Pd(C20H30N3S)2·C2H6Oc S C30A [0.624 (2)] C28—C29A—C30A—C31 64.7 (3)
(a) The (R,S)-fixolide carb­oxy­lic acid derivative structure (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]); (b) the (R,S)-fixolide 4-methyl­thio­semicarbazone structure (Melo et al., 2023a[Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.]); (c) the trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) complex structure of this work.

3. Supra­molecular features

In the crystal, the coordination compounds are connected through N—H⋯S inter­actions into centrosymmetric dimers with graph-set R22(8) (Fig. 3[link], Table 1[link]). These dimers can be considered subunits of a hydrogen-bonded ribbon, since they are further linked by centrosymmetric pairs of ethanol solvate mol­ecules through N—H⋯O—H⋯S bridges (Fig. 4[link]) into mono-periodic hydrogen-bonded ribbons along [011] (Fig. 5[link]). The O1 atoms serve as hydrogen-atom acceptors and donors and the S1 atoms act as bifurcated hydrogen-atom acceptors.

[Figure 3]
Figure 3
Graphical representation of the H⋯S inter­molecular inter­actions for the complex of the title compound, forming a graph-set motif of R22(8) and linking the mol­ecules into centrosymmetric dimers. The solvate mol­ecule is omitted and the figure is simplified for clarity [Symmetry code: (i) −x + 2, −y + 2, −z + 1.]
[Figure 4]
Figure 4
Graphical representation of the H⋯O and H⋯S inter­molecular inter­actions for the title compound drawn as dashed lines. Two ethanol solvate mol­ecules act as bridges connecting two complexes into centrosymmetric dimers. The figure is simplified for clarity. [Symmetry code: (ii) −x + 2, −y + 1, −z + 2.]
[Figure 5]
Figure 5
Crystal structure section of the title compound viewed along [100]. The H⋯O and H⋯S inter­molecular inter­actions are drawn as dashed lines and link the mol­ecules into mono-periodic hydrogen-bonded ribbons along [011].

For the title compound, the Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]), the graphical representations and the two-dimensional Hirshfeld surface fingerprint were performed with Crystal Explorer software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]). The Hirshfeld surface analysis of the (R)-isomer structure of the title compound indicates that the most relevant inter­molecular inter­actions for crystal cohesion are the following: H⋯H (81.6%), H⋯C/C⋯H (6.5%), H⋯N/N⋯H (5.2%) and H⋯S/S⋯H (5.0%). Just for comparison, the (S)-isomer values amount to H⋯H (82.0%), H⋯C/C⋯H (6.4%), H⋯N/N⋯H (5.0%) and H⋯S/S⋯H (4.9%) and are quite similar to the results for the (R)-isomer. Since no considerable differences between the isomers was observed, the further evaluations and graphics were performed for the (R)-isomer only, which has the highest s.o.f. value. The graphical representations of the Hirshfeld surface for the trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) and the ethanol solvate mol­ecule are represented with transparency and using the ball-and-stick model (Fig. 6[link]). The locations of the strongest inter­molecular contacts, i.e, the regions around the H1, H3, S1 and S2 atoms are indicated in magenta. These atoms are those involved in the H⋯S inter­actions shown in previous figures (Figs. 3[link], 4[link] and 5[link]). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 7[link]). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å).

[Figure 6]
Figure 6
Hirshfeld surface graphical representation (dnorm) for the title compound. The surface is drawn with transparency and the regions with strongest inter­molecular inter­actions are shown in magenta. [dnorm range: −0.427 to 1.632]
[Figure 7]
Figure 7
The Hirshfeld surface two-dimensional fingerprint plot for the title compound showing the inter­molecular contacts in detail (cyan dots). The major contributions to the crystal cohesion amount to (a) H⋯H = 81.6%, (b) H⋯C/C⋯H = 6.5%, (c) H⋯N/N⋯H = 5.2% and (d) H ⋯S/S⋯H = 5.0%. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

4. Database survey

To the best of our knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2023[Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on October 21, 2023).]) and the Cambridge Structural Database (CSD, accessed via WebCSD on October 21, 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), this work is the first attempt at the synthesis, crystal structure and Hirshfeld analysis of a (R,S)-fixolide-thio­semicarbazonato complex. Thus, three crystal structures with some similarities to the title compound were selected for comparison.

The first selected compound is the (R,S)-fixolide carb­oxy­lic acid derivative (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]). In this structure, only one crystallographically independent mol­ecule is observed in the asymmetric unit, which is disordered over the aliphatic ring and two methyl groups (Fig. 8[link]). The chiral centers are disordered, C10A and C10B, so two isomers are observed, with A- and B-labeled atoms and related to the (R)- and (S)-isomers, as observed for the title compound (Table 4[link]).

[Figure 8]
Figure 8
The mol­ecular structure of the (R,S)-fixolide carb­oxy­lic acid derivative, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]). Disordered atoms are drawn with 40% transparency and A-labeled for the (R)-isomer [s.o.f. = 0.683 (4)] and B-labeled for the (S)-isomer [s.o.f. = 0.317 (4)].

The second selected mol­ecule for comparison is the (R,S)-fixolide 4-methyl­thio­semicarbazone ligand (Melo et al., 2023a[Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.]), which is disordered over the fixolide group (Fig. 9[link]) and was employed in the synthesis of the title compound. The structural similarities and differences between non-coordinated and coordinated mol­ecules are shown in Tables 4[link] and 5[link]. For the (R,S)-fixolide 4-methyl­thio­semicarbazone, a distorted geometry is also observed, in particular between the aromatic ring and the thio­semicarbazone entity, with a dihedral angle of 51.77 (1)°.

Table 5
Bond lengths for the N—N—C—S entities in the neutral, non-coordinated, and the anionic, coordinated, forms of thio­semicarbazone derivatives (Å)

  N—N N—C C—S
C20H31N3Sa 1.386 (3) 1.376 (4) 1.666 (3)
Pd(C16H14N3S)2b 1.390 (2) 1.293 (2) 1.7520 (19)
  1.393 (2) 1.291 (2) 1.7328 (19)
Pd(C20H30N3S)2·C2H6Oc 1.3970 (18) 1.304 (2) 1.7520 (17)
  1.4056 (18) 1.306 (2) 1.7644 (16)
(a) The neutral and non-coordinated form of the (R,S)-fixolide 4-methyl­thio­semicarbazone structure (Melo et al., 2023a[Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.]); (b) the anionic and coordinated form of the cinnamaldehyde 4-phenyl­thio­semicarbazone in a PdII-complex (Melo et al., 2023b[Melo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993-998.]); (c) the anionic and coordinated form of the (R,S)-fixolide 4-methyl­thio­semicarbazone in the PdII complex of this work.
[Figure 9]
Figure 9
The mol­ecular structure of (R,S)-fixolide 4-methyl­thio­semicarbazone, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level (Melo et al., 2023a[Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.]). Disordered atoms are drawn with 40% transparency and A-labeled for the (R)-isomer [s.o.f. = 0.667 (13)] and B-labeled for the (S)-isomer [s.o.f. = 0.333 (13)].

Finally, a bis-thio­semicarbazonato PdII complex was chosen for comparison. In the crystal structure of the trans-bis­[cinnamaldehyde 4-phenyl­thio­semicarbazonato-κ2N2S]palladium(II) compound (Melo et al., 2023b[Melo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993-998.]), the mol­ecules are also connected by N—H⋯S inter­molecular inter­actions, forming rings of graph-set motif R22(8), and linked into mono-periodic hydrogen-bonded ribbons along [001]. In addition, C—H⋯S intra­molecular inter­actions are observed, with rings of graph-set motif S(5). Similar to the title compound, a hydrogen-bonded macrocyclic coordination environment can be suggested, with the sulfur atoms acting as bifurcated hydrogen-bond acceptors, e.g., C17—H14⋯S1 and N6#i—H28#1⋯S1 [symmetry code: (#i) x, −y + [{1\over 2}], z + [{1\over 2}]] (Fig. 10[link]).

[Figure 10]
Figure 10
Crystal structure section of the trans-bis­[cinnamaldehyde 4-phenyl­thio­semicarbazonato-κ2N2S]palladium(II) complex viewed along [010] (Melo et al., 2023b[Melo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993-998.]). The H⋯S intra- and inter­molecular hydrogen bonds are drawn as dashed lines, forming rings of graph-set motifs R22(8) and S(5). The mol­ecules are connected into mono-periodic hydrogen-bonded ribbons along [001]. [Symmetry codes: (#i) x, −y + [{1\over 2}], z + [{1\over 2}]; (#ii) x, −y + [{1\over 2}], z − [{1\over 2}].]

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the complex was adapted from a previously reported procedure (Melo et al., 2023a[Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.],b[Melo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993-998.]). An ethano­lic solution of (R,S)-fixolide 4-methyl­semicarbazone (4 mmol, 50 mL) was prepared and the ligand was deprotonated with one pellet of NaOH. The solution was stirred for 4 h, until a yellow color could be observed. Simultaneously, an ethano­lic suspension of palladium(II) chloride (2 mmol, 50 mL) was prepared under stirring. A yellow-colored mixture of both ethano­lic solution and suspension was maintained with stirring at room temperature for 8 h, until the PdCl2 was consumed. Orange single crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The crystallographically independent bis-thio­semicarbazonato PdII complex is disordered over the fixolide fragments (Fig. 1[link]). Thus, the C9, C10, C16, C18, C29, C30, C37 and C38 atoms were split into two positions labeled A and B, with a refined site-occupancy ratio of 0.624 (2):0.376 (2). The EADP command was used to constrain the displacement parameters of the disordered atoms to get a stable refinement. Although the displacement ellipsoids of the C17, C19, C20, C36, C39 and C40 atoms seen to be prolate-like, no additional disorder was indicated by the data analysis.

Table 6
Experimental details

Crystal data
Chemical formula [Pd(C20H30N3S)2]·C2H6O
Mr 841.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.412 (3), 12.430 (4), 15.700 (5)
α, β, γ (°) 69.021 (5), 86.730 (6), 75.348 (9)
V3) 2186.6 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.22 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 102991, 10905, 10009
Rint 0.033
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.04
No. of reflections 10905
No. of parameters 524
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.16, −0.85
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Hydrogen atoms were located in difference-Fourier maps but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. So, for the methyl H atoms, with [Uiso(H) = 1.5Ueq(C)], the C—H bond lengths were set to 0.98 Å. The other C—H bond lengths were also set according to the H-atom neighborhood, with [Uiso(H) = 1.2Ueq(C)]. For the phenyl H atoms, the C—H bond lengths were set to 0.95 Å, for the H atoms of the disordered –CH2– fragments (C9A, C9B, C29A and C29B), the C—H bond lengths were set to 0.99 Å and for the H atoms attached to the disordered tertiary C atoms (C10A, C10B, C30A and C30B), the C—H bond lengths were set to 1.00 Å. Finally, the N—H bond lengths, with [Uiso(H) = 1.2Ueq(N)], were set to 0.88 Å.

Supporting information


Computing details top

trans-Bis(2-{1-[(6R,S)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamidato-κ2N2,S)palladium(II) ethanol monosolvate top
Crystal data top
[Pd(C20H30N3S)2]·C2H6OZ = 2
Mr = 841.52F(000) = 892
Triclinic, P1Dx = 1.278 Mg m3
a = 12.412 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.430 (4) ÅCell parameters from 9602 reflections
c = 15.700 (5) Åθ = 2.7–28.3°
α = 69.021 (5)°µ = 0.56 mm1
β = 86.730 (6)°T = 100 K
γ = 75.348 (9)°Block, orange
V = 2186.6 (11) Å30.22 × 0.16 × 0.15 mm
Data collection top
Bruker D8 Venture Photon 100
diffractometer
10009 reflections with I > 2σ(I)
Radiation source: microfocus X ray tube, Bruker D8 VentureRint = 0.033
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.712, Tmax = 0.746k = 1616
102991 measured reflectionsl = 2020
10905 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.029P)2 + 2.3103P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
10905 reflectionsΔρmax = 1.16 e Å3
524 parametersΔρmin = 0.85 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.08585 (18)1.1210 (2)0.65159 (15)0.0342 (4)
H1A1.1275201.1682750.6043500.051*
H1B1.1341831.0742660.7062960.051*
H1C1.0212341.1742750.6667590.051*
C20.98087 (13)0.97343 (14)0.66670 (11)0.0185 (3)
C30.84118 (13)0.92795 (14)0.86307 (11)0.0166 (3)
C40.88757 (15)1.00236 (18)0.90111 (13)0.0262 (4)
H4A0.9679670.9687820.9132980.039*
H4B0.8512131.0030770.9580450.039*
H4C0.8738631.0838720.8568530.039*
C50.73904 (13)0.89044 (14)0.90042 (11)0.0164 (3)
C60.64685 (13)0.93003 (14)0.84064 (11)0.0176 (3)
H6A0.6535600.9778820.7789360.021*
C70.54497 (13)0.90243 (14)0.86751 (12)0.0184 (3)
C80.44913 (15)0.95257 (17)0.79614 (14)0.0285 (4)
C9A0.3614 (2)0.8814 (3)0.8273 (2)0.0232 (5)0.6242 (19)
H9A0.2941960.9220870.7863510.028*0.6242 (19)
H9B0.3907970.8015280.8233710.028*0.6242 (19)
C10A0.3301 (2)0.8685 (3)0.9250 (2)0.0231 (5)0.6242 (19)
H10A0.3129120.9491790.9298600.028*0.6242 (19)
C16A0.4957 (3)0.9324 (3)0.7023 (2)0.0240 (6)0.6242 (19)
H16A0.5463870.9834840.6746750.036*0.6242 (19)
H16B0.4329690.9526920.6595030.036*0.6242 (19)
H16C0.5357790.8489160.7163130.036*0.6242 (19)
C18A0.2246 (14)0.8232 (14)0.9448 (10)0.034 (2)0.6242 (19)
H18A0.2380580.7468740.9358040.051*0.6242 (19)
H18B0.1636400.8810830.9032820.051*0.6242 (19)
H18C0.2043370.8124221.0080600.051*0.6242 (19)
C29A0.7483 (3)0.3718 (3)0.3920 (2)0.0306 (6)0.6242 (19)
H29A0.6715340.4154590.3676460.037*0.6242 (19)
H29B0.7905960.3490860.3430420.037*0.6242 (19)
C30A0.7441 (3)0.2612 (3)0.4714 (2)0.0272 (6)0.6242 (19)
H30A0.8212750.2217920.4987350.033*0.6242 (19)
C38A0.7043 (10)0.1745 (13)0.4383 (10)0.0364 (18)0.6242 (19)
H38A0.6314010.2141090.4064610.055*0.6242 (19)
H38B0.6980520.1042530.4908000.055*0.6242 (19)
H38C0.7581450.1500900.3964180.055*0.6242 (19)
C37A0.7757 (5)0.5732 (4)0.3311 (3)0.0407 (11)0.6242 (19)
H37A0.8045040.5560920.2766280.061*0.6242 (19)
H37B0.8110670.6308800.3397730.061*0.6242 (19)
H37C0.6948980.6063250.3232770.061*0.6242 (19)
C9B0.3361 (4)0.9418 (4)0.8571 (4)0.0232 (5)0.3758 (19)
H9C0.3263050.9938560.8936380.028*0.3758 (19)
H9D0.2697390.9688670.8156540.028*0.3758 (19)
C10B0.3459 (4)0.8182 (5)0.9183 (4)0.0231 (5)0.3758 (19)
H10B0.3743120.7659320.8818720.028*0.3758 (19)
C16B0.4618 (5)0.9141 (6)0.7263 (4)0.0240 (6)0.3758 (19)
H16D0.5273310.9341740.6927870.036*0.3758 (19)
H16E0.3954150.9523110.6854640.036*0.3758 (19)
H16F0.4720130.8276620.7493370.036*0.3758 (19)
C18B0.230 (2)0.800 (2)0.9518 (19)0.041 (5)0.3758 (19)
H18D0.2385120.7192020.9965400.062*0.3758 (19)
H18E0.1829460.8108870.8998740.062*0.3758 (19)
H18F0.1952770.8579570.9803980.062*0.3758 (19)
C29B0.7999 (5)0.3255 (5)0.4260 (4)0.0306 (6)0.3758 (19)
H29C0.8227190.3138170.3678500.037*0.3758 (19)
H29D0.8544290.2669510.4745360.037*0.3758 (19)
C30B0.6846 (5)0.3020 (5)0.4484 (4)0.0272 (6)0.3758 (19)
H30B0.6269630.3707070.4077840.033*0.3758 (19)
C38B0.6815 (19)0.188 (2)0.4315 (18)0.0364 (18)0.3758 (19)
H38D0.6860990.2025170.3660040.055*0.3758 (19)
H38E0.6117100.1663670.4534000.055*0.3758 (19)
H38F0.7447220.1233690.4643850.055*0.3758 (19)
C37B0.7445 (10)0.5437 (8)0.3352 (6)0.0407 (11)0.3758 (19)
H37D0.7826260.5317580.2816910.061*0.3758 (19)
H37E0.7437420.6230120.3345890.061*0.3758 (19)
H37F0.6678200.5367330.3337480.061*0.3758 (19)
C110.43150 (15)0.78566 (17)0.99371 (13)0.0247 (4)
C120.53601 (14)0.83033 (14)0.95798 (12)0.0193 (3)
C130.62871 (14)0.79313 (15)1.01780 (12)0.0209 (3)
H13A0.6221210.7454041.0795620.025*
C140.72960 (14)0.82199 (15)0.99204 (11)0.0190 (3)
C150.82669 (15)0.77370 (18)1.06003 (12)0.0268 (4)
H15A0.8945410.7447541.0313790.040*
H15B0.8121360.7080201.1128960.040*
H15C0.8364880.8369551.0799960.040*
C170.40989 (19)1.08683 (19)0.77040 (17)0.0402 (5)
H17A0.3831491.1055940.8246370.060*
H17B0.3492371.1185000.7239700.060*
H17C0.4720151.1229030.7460180.060*
C190.4588 (2)0.6525 (2)1.01169 (19)0.0452 (6)
H19A0.4791500.6385910.9545860.068*
H19B0.3934800.6220291.0356350.068*
H19C0.5212840.6112801.0564030.068*
C200.39893 (18)0.8059 (2)1.08336 (16)0.0368 (5)
H20A0.4588260.7591931.1297240.055*
H20B0.3301780.7809651.1041310.055*
H20C0.3869370.8905571.0736040.055*
C210.91116 (15)0.33047 (14)0.84376 (12)0.0217 (3)
H21A0.8461010.3337820.8094640.033*
H21B0.9313790.2537790.8942340.033*
H21C0.9738610.3392740.8031660.033*
C220.85251 (12)0.53979 (13)0.82282 (11)0.0149 (3)
C230.74272 (13)0.70098 (14)0.61482 (10)0.0159 (3)
C240.69026 (15)0.82454 (15)0.55224 (11)0.0214 (3)
H24A0.6091230.8405940.5571040.032*
H24B0.7095520.8324300.4892450.032*
H24C0.7177280.8816090.5693280.032*
C250.71832 (13)0.59952 (14)0.59672 (10)0.0156 (3)
C260.76394 (13)0.57287 (14)0.52167 (11)0.0170 (3)
H26A0.8070840.6221440.4821750.020*
C270.74890 (13)0.47630 (14)0.50186 (11)0.0171 (3)
C280.80284 (16)0.45433 (17)0.41750 (12)0.0248 (4)
C310.66562 (16)0.29300 (15)0.54837 (12)0.0235 (3)
C320.68504 (14)0.40437 (14)0.56004 (11)0.0180 (3)
C330.63708 (14)0.43480 (15)0.63406 (11)0.0198 (3)
H33A0.5923930.3868920.6728970.024*
C340.65108 (14)0.53056 (15)0.65380 (11)0.0183 (3)
C350.59337 (16)0.55897 (18)0.73331 (13)0.0273 (4)
H35A0.6483080.5376590.7827900.041*
H35B0.5370320.5134370.7550350.041*
H35C0.5573360.6442370.7136770.041*
C360.9289 (2)0.4244 (3)0.42744 (19)0.0651 (9)
H36A0.9540380.3578620.4847950.098*
H36B0.9521350.4939680.4278520.098*
H36C0.9620680.4021010.3760980.098*
C390.71855 (18)0.18481 (16)0.63149 (16)0.0359 (5)
H39A0.7978220.1807040.6372690.054*
H39B0.7105310.1122960.6238800.054*
H39C0.6812280.1920760.6865960.054*
C400.54081 (19)0.30199 (19)0.5461 (2)0.0495 (7)
H40A0.5082420.3139650.6013250.074*
H40B0.5288200.2283910.5431840.074*
H40C0.5052290.3694010.4921880.074*
C410.76119 (17)0.4532 (2)1.12175 (14)0.0331 (4)
H41A0.7608070.5340781.0806700.050*
H41B0.7214930.4564911.1768900.050*
H41C0.7241600.4156581.0908450.050*
C420.87835 (18)0.3823 (3)1.14735 (16)0.0500 (7)
H42A0.9164030.4215691.1769050.060*
H42B0.8786600.3021701.1917990.060*
N11.04828 (13)1.04158 (14)0.61810 (11)0.0262 (3)
H11.0699871.0376750.5647060.031*
N20.96365 (11)0.96714 (12)0.75090 (10)0.0179 (3)
N30.88191 (10)0.90727 (11)0.79084 (9)0.0143 (2)
N40.88465 (12)0.42619 (12)0.87994 (9)0.0187 (3)
H20.8896380.4098100.9391590.022*
N50.84996 (11)0.55992 (11)0.73529 (9)0.0159 (3)
N60.80513 (11)0.68097 (11)0.68467 (9)0.0149 (2)
O10.93682 (11)0.37138 (14)1.06952 (9)0.0306 (3)
H31.0045600.3663601.0773200.046*
Pd10.84134 (2)0.79593 (2)0.73601 (2)0.01358 (4)
S10.92010 (4)0.90429 (4)0.60956 (3)0.02192 (9)
S20.80874 (3)0.65163 (3)0.87072 (3)0.01597 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (10)0.0387 (11)0.0355 (11)0.0246 (9)0.0015 (8)0.0096 (9)
C20.0166 (7)0.0160 (7)0.0221 (8)0.0032 (6)0.0000 (6)0.0066 (6)
C30.0159 (7)0.0164 (7)0.0206 (7)0.0031 (6)0.0008 (6)0.0105 (6)
C40.0242 (8)0.0346 (10)0.0332 (10)0.0128 (7)0.0051 (7)0.0249 (8)
C50.0162 (7)0.0162 (7)0.0212 (8)0.0037 (6)0.0019 (6)0.0124 (6)
C60.0189 (7)0.0153 (7)0.0210 (8)0.0047 (6)0.0014 (6)0.0093 (6)
C70.0169 (7)0.0148 (7)0.0263 (8)0.0029 (6)0.0006 (6)0.0111 (6)
C80.0201 (8)0.0258 (9)0.0359 (10)0.0086 (7)0.0064 (7)0.0036 (8)
C9A0.0153 (10)0.0217 (11)0.0371 (14)0.0051 (9)0.0006 (9)0.0151 (10)
C10A0.0179 (11)0.0162 (15)0.0425 (14)0.0049 (12)0.0089 (10)0.0199 (13)
C16A0.0196 (18)0.0342 (15)0.0219 (17)0.0114 (12)0.0028 (11)0.0113 (14)
C18A0.026 (3)0.038 (4)0.048 (4)0.014 (2)0.011 (2)0.024 (3)
C29A0.048 (2)0.0266 (16)0.0233 (15)0.0109 (13)0.0006 (11)0.0150 (12)
C30A0.0356 (16)0.0214 (14)0.0278 (14)0.0056 (11)0.0040 (11)0.0126 (11)
C38A0.053 (5)0.027 (3)0.038 (2)0.011 (4)0.005 (3)0.019 (2)
C37A0.076 (4)0.030 (3)0.0179 (11)0.0152 (16)0.0111 (18)0.0105 (17)
C9B0.0153 (10)0.0217 (11)0.0371 (14)0.0051 (9)0.0006 (9)0.0151 (10)
C10B0.0179 (11)0.0162 (15)0.0425 (14)0.0049 (12)0.0089 (10)0.0199 (13)
C16B0.0196 (18)0.0342 (15)0.0219 (17)0.0114 (12)0.0028 (11)0.0113 (14)
C18B0.019 (6)0.053 (11)0.065 (9)0.021 (6)0.020 (5)0.029 (7)
C29B0.048 (2)0.0266 (16)0.0233 (15)0.0109 (13)0.0006 (11)0.0150 (12)
C30B0.0356 (16)0.0214 (14)0.0278 (14)0.0056 (11)0.0040 (11)0.0126 (11)
C38B0.053 (5)0.027 (3)0.038 (2)0.011 (4)0.005 (3)0.019 (2)
C37B0.076 (4)0.030 (3)0.0179 (11)0.0152 (16)0.0111 (18)0.0105 (17)
C110.0225 (8)0.0280 (9)0.0300 (9)0.0106 (7)0.0104 (7)0.0162 (7)
C120.0194 (7)0.0170 (7)0.0265 (8)0.0042 (6)0.0074 (6)0.0145 (6)
C130.0244 (8)0.0203 (8)0.0200 (8)0.0042 (6)0.0053 (6)0.0112 (6)
C140.0204 (8)0.0197 (7)0.0197 (8)0.0017 (6)0.0009 (6)0.0125 (6)
C150.0248 (9)0.0336 (10)0.0220 (8)0.0017 (7)0.0026 (7)0.0130 (7)
C170.0394 (12)0.0284 (10)0.0467 (13)0.0092 (9)0.0144 (10)0.0158 (9)
C190.0477 (13)0.0335 (11)0.0700 (17)0.0248 (10)0.0332 (12)0.0315 (12)
C200.0367 (11)0.0460 (12)0.0415 (12)0.0197 (9)0.0227 (9)0.0286 (10)
C210.0266 (8)0.0145 (7)0.0253 (8)0.0035 (6)0.0031 (7)0.0091 (6)
C220.0151 (7)0.0143 (7)0.0171 (7)0.0046 (5)0.0004 (5)0.0069 (6)
C230.0187 (7)0.0157 (7)0.0148 (7)0.0052 (6)0.0018 (6)0.0068 (6)
C240.0276 (8)0.0168 (7)0.0190 (8)0.0042 (6)0.0051 (6)0.0055 (6)
C250.0181 (7)0.0154 (7)0.0147 (7)0.0042 (6)0.0016 (6)0.0065 (6)
C260.0191 (7)0.0181 (7)0.0155 (7)0.0064 (6)0.0000 (6)0.0067 (6)
C270.0184 (7)0.0169 (7)0.0170 (7)0.0028 (6)0.0026 (6)0.0078 (6)
C280.0317 (9)0.0268 (9)0.0240 (9)0.0108 (7)0.0065 (7)0.0170 (7)
C310.0313 (9)0.0165 (8)0.0255 (9)0.0085 (7)0.0032 (7)0.0087 (7)
C320.0209 (7)0.0141 (7)0.0185 (7)0.0032 (6)0.0055 (6)0.0052 (6)
C330.0225 (8)0.0180 (7)0.0191 (8)0.0085 (6)0.0003 (6)0.0043 (6)
C340.0206 (7)0.0201 (8)0.0156 (7)0.0060 (6)0.0003 (6)0.0074 (6)
C350.0319 (9)0.0343 (10)0.0244 (9)0.0161 (8)0.0108 (7)0.0168 (8)
C360.0327 (12)0.124 (3)0.0467 (15)0.0114 (15)0.0162 (11)0.0482 (18)
C390.0350 (11)0.0142 (8)0.0528 (13)0.0004 (7)0.0170 (9)0.0068 (8)
C400.0369 (12)0.0223 (10)0.090 (2)0.0030 (8)0.0347 (12)0.0182 (11)
C410.0319 (10)0.0397 (11)0.0323 (10)0.0041 (8)0.0010 (8)0.0209 (9)
C420.0278 (11)0.095 (2)0.0285 (11)0.0050 (12)0.0022 (8)0.0296 (12)
N10.0283 (8)0.0306 (8)0.0247 (8)0.0165 (7)0.0083 (6)0.0104 (6)
N20.0165 (6)0.0182 (6)0.0206 (7)0.0070 (5)0.0007 (5)0.0070 (5)
N30.0135 (6)0.0132 (6)0.0180 (6)0.0037 (5)0.0012 (5)0.0070 (5)
N40.0270 (7)0.0138 (6)0.0158 (6)0.0043 (5)0.0024 (5)0.0057 (5)
N50.0197 (6)0.0118 (6)0.0161 (6)0.0025 (5)0.0014 (5)0.0057 (5)
N60.0191 (6)0.0125 (6)0.0139 (6)0.0039 (5)0.0012 (5)0.0057 (5)
O10.0235 (6)0.0494 (9)0.0212 (6)0.0089 (6)0.0023 (5)0.0151 (6)
Pd10.01665 (6)0.01189 (6)0.01366 (6)0.00362 (4)0.00014 (4)0.00610 (4)
S10.0335 (2)0.02045 (19)0.01642 (18)0.01367 (17)0.00511 (16)0.00789 (15)
S20.02174 (18)0.01444 (17)0.01425 (17)0.00566 (14)0.00208 (14)0.00749 (14)
Geometric parameters (Å, º) top
C1—N11.450 (2)C37B—H37F0.9800
C1—H1A0.9800C11—C191.525 (3)
C1—H1B0.9800C11—C201.532 (3)
C1—H1C0.9800C11—C121.537 (2)
C2—N21.304 (2)C12—C131.401 (2)
C2—N11.350 (2)C13—C141.388 (2)
C2—S11.7520 (17)C13—H13A0.9500
C3—N31.298 (2)C14—C151.508 (2)
C3—C51.479 (2)C15—H15A0.9800
C3—C41.499 (2)C15—H15B0.9800
C4—H4A0.9800C15—H15C0.9800
C4—H4B0.9800C17—H17A0.9800
C4—H4C0.9800C17—H17B0.9800
C5—C61.393 (2)C17—H17C0.9800
C5—C141.401 (2)C19—H19A0.9800
C6—C71.396 (2)C19—H19B0.9800
C6—H6A0.9500C19—H19C0.9800
C7—C121.398 (2)C20—H20A0.9800
C7—C81.528 (2)C20—H20B0.9800
C8—C171.521 (3)C20—H20C0.9800
C8—C9A1.524 (3)C21—N41.453 (2)
C8—C16A1.632 (4)C21—H21A0.9800
C8—C16B1.331 (6)C21—H21B0.9800
C8—C9B1.659 (5)C21—H21C0.9800
C9A—C10A1.523 (4)C22—N51.306 (2)
C9A—H9A0.9900C22—N41.344 (2)
C9A—H9B0.9900C22—S21.7644 (16)
C10A—C18A1.527 (17)C23—N61.292 (2)
C10A—C111.584 (4)C23—C251.491 (2)
C10A—H10A1.0000C23—C241.495 (2)
C16A—H16A0.9800C24—H24A0.9800
C16A—H16B0.9800C24—H24B0.9800
C16A—H16C0.9800C24—H24C0.9800
C18A—H18A0.9800C25—C261.388 (2)
C18A—H18B0.9800C25—C341.400 (2)
C18A—H18C0.9800C26—C271.400 (2)
C29A—C30A1.500 (5)C26—H26A0.9500
C29A—C281.532 (4)C27—C321.397 (2)
C29A—H29A0.9900C27—C281.531 (2)
C29A—H29B0.9900C28—C361.518 (3)
C30A—C38A1.542 (17)C31—C401.526 (3)
C30A—C311.605 (4)C31—C391.529 (3)
C30A—H30A1.0000C31—C321.537 (2)
C38A—H38A0.9800C32—C331.404 (2)
C38A—H38B0.9800C33—C341.385 (2)
C38A—H38C0.9800C33—H33A0.9500
C37A—C281.582 (5)C34—C351.510 (2)
C37A—H37A0.9800C35—H35A0.9800
C37A—H37B0.9800C35—H35B0.9800
C37A—H37C0.9800C35—H35C0.9800
C9B—C10B1.470 (7)C36—H36A0.9800
C9B—H9C0.9900C36—H36B0.9800
C9B—H9D0.9900C36—H36C0.9800
C10B—C111.510 (6)C39—H39A0.9800
C10B—C18B1.55 (3)C39—H39B0.9800
C10B—H10B1.0000C39—H39C0.9800
C16B—H16D0.9800C40—H40A0.9800
C16B—H16E0.9800C40—H40B0.9800
C16B—H16F0.9800C40—H40C0.9800
C18B—H18D0.9800C41—C421.489 (3)
C18B—H18E0.9800C41—H41A0.9800
C18B—H18F0.9800C41—H41B0.9800
C29B—C30B1.529 (8)C41—H41C0.9800
C29B—C281.568 (6)C42—O11.416 (3)
C29B—H29C0.9900C42—H42A0.9900
C29B—H29D0.9900C42—H42B0.9900
C30B—C311.541 (5)N1—H10.8800
C30B—C38B1.54 (3)N2—N31.3970 (18)
C30B—H30B1.0000N3—Pd12.0408 (13)
C38B—H38D0.9800N4—H20.8800
C38B—H38E0.9800N5—N61.4056 (18)
C38B—H38F0.9800N6—Pd12.0209 (14)
C37B—C281.449 (11)O1—H30.8400
C37B—H37D0.9800Pd1—S12.2893 (6)
C37B—H37E0.9800Pd1—S22.3253 (6)
N1—C1—H1A109.5C14—C13—C12123.78 (16)
N1—C1—H1B109.5C14—C13—H13A118.1
H1A—C1—H1B109.5C12—C13—H13A118.1
N1—C1—H1C109.5C13—C14—C5117.59 (15)
H1A—C1—H1C109.5C13—C14—C15120.23 (16)
H1B—C1—H1C109.5C5—C14—C15122.06 (16)
N2—C2—N1117.80 (15)C14—C15—H15A109.5
N2—C2—S1125.39 (13)C14—C15—H15B109.5
N1—C2—S1116.77 (13)H15A—C15—H15B109.5
N3—C3—C5118.93 (14)C14—C15—H15C109.5
N3—C3—C4120.70 (15)H15A—C15—H15C109.5
C5—C3—C4119.89 (14)H15B—C15—H15C109.5
C3—C4—H4A109.5C8—C17—H17A109.5
C3—C4—H4B109.5C8—C17—H17B109.5
H4A—C4—H4B109.5H17A—C17—H17B109.5
C3—C4—H4C109.5C8—C17—H17C109.5
H4A—C4—H4C109.5H17A—C17—H17C109.5
H4B—C4—H4C109.5H17B—C17—H17C109.5
C6—C5—C14119.20 (15)C11—C19—H19A109.5
C6—C5—C3117.09 (15)C11—C19—H19B109.5
C14—C5—C3123.68 (15)H19A—C19—H19B109.5
C5—C6—C7122.82 (16)C11—C19—H19C109.5
C5—C6—H6A118.6H19A—C19—H19C109.5
C7—C6—H6A118.6H19B—C19—H19C109.5
C6—C7—C12118.41 (15)C11—C20—H20A109.5
C6—C7—C8118.11 (16)C11—C20—H20B109.5
C12—C7—C8123.48 (15)H20A—C20—H20B109.5
C17—C8—C9A117.28 (19)C11—C20—H20C109.5
C17—C8—C7109.92 (16)H20A—C20—H20C109.5
C9A—C8—C7109.84 (18)H20B—C20—H20C109.5
C17—C8—C16A105.1 (2)N4—C21—H21A109.5
C9A—C8—C16A105.3 (2)N4—C21—H21B109.5
C7—C8—C16A108.91 (18)H21A—C21—H21B109.5
C17—C8—C16B115.3 (3)N4—C21—H21C109.5
C7—C8—C16B117.0 (3)H21A—C21—H21C109.5
C17—C8—C9B87.9 (2)H21B—C21—H21C109.5
C7—C8—C9B104.2 (2)N5—C22—N4117.82 (14)
C16B—C8—C9B118.6 (3)N5—C22—S2124.01 (12)
C10A—C9A—C8110.8 (2)N4—C22—S2118.06 (12)
C10A—C9A—H9A109.5N6—C23—C25119.97 (14)
C8—C9A—H9A109.5N6—C23—C24121.73 (14)
C10A—C9A—H9B109.5C25—C23—C24118.27 (14)
C8—C9A—H9B109.5C23—C24—H24A109.5
H9A—C9A—H9B108.1C23—C24—H24B109.5
C9A—C10A—C18A108.4 (6)H24A—C24—H24B109.5
C9A—C10A—C11110.4 (2)C23—C24—H24C109.5
C18A—C10A—C11113.4 (6)H24A—C24—H24C109.5
C9A—C10A—H10A108.2H24B—C24—H24C109.5
C18A—C10A—H10A108.2C26—C25—C34119.49 (14)
C11—C10A—H10A108.2C26—C25—C23118.98 (14)
C8—C16A—H16A109.5C34—C25—C23121.53 (14)
C8—C16A—H16B109.5C25—C26—C27122.63 (15)
H16A—C16A—H16B109.5C25—C26—H26A118.7
C8—C16A—H16C109.5C27—C26—H26A118.7
H16A—C16A—H16C109.5C32—C27—C26118.43 (15)
H16B—C16A—H16C109.5C32—C27—C28122.95 (15)
C10A—C18A—H18A109.5C26—C27—C28118.62 (15)
C10A—C18A—H18B109.5C37B—C28—C36120.8 (4)
H18A—C18A—H18B109.5C36—C28—C29A119.0 (2)
C10A—C18A—H18C109.5C37B—C28—C27110.2 (4)
H18A—C18A—H18C109.5C36—C28—C27110.68 (16)
H18B—C18A—H18C109.5C29A—C28—C27109.75 (18)
C30A—C29A—C28112.7 (2)C37B—C28—C29B112.0 (4)
C30A—C29A—H29A109.1C36—C28—C29B94.0 (3)
C28—C29A—H29A109.1C27—C28—C29B107.5 (2)
C30A—C29A—H29B109.1C36—C28—C37A102.8 (3)
C28—C29A—H29B109.1C29A—C28—C37A103.5 (2)
H29A—C29A—H29B107.8C27—C28—C37A110.5 (2)
C29A—C30A—C38A109.8 (6)C40—C31—C39107.89 (17)
C29A—C30A—C31110.9 (2)C40—C31—C32109.63 (15)
C38A—C30A—C31111.4 (6)C39—C31—C32108.17 (14)
C29A—C30A—H30A108.2C40—C31—C30B96.3 (3)
C38A—C30A—H30A108.2C39—C31—C30B124.6 (3)
C31—C30A—H30A108.2C32—C31—C30B109.1 (2)
C30A—C38A—H38A109.5C40—C31—C30A121.1 (2)
C30A—C38A—H38B109.5C39—C31—C30A98.86 (18)
H38A—C38A—H38B109.5C32—C31—C30A110.07 (17)
C30A—C38A—H38C109.5C27—C32—C33118.04 (15)
H38A—C38A—H38C109.5C27—C32—C31123.80 (15)
H38B—C38A—H38C109.5C33—C32—C31118.15 (15)
C28—C37A—H37A109.5C34—C33—C32123.84 (15)
C28—C37A—H37B109.5C34—C33—H33A118.1
H37A—C37A—H37B109.5C32—C33—H33A118.1
C28—C37A—H37C109.5C33—C34—C25117.50 (15)
H37A—C37A—H37C109.5C33—C34—C35120.24 (15)
H37B—C37A—H37C109.5C25—C34—C35122.25 (15)
C10B—C9B—C8110.5 (3)C34—C35—H35A109.5
C10B—C9B—H9C109.6C34—C35—H35B109.5
C8—C9B—H9C109.6H35A—C35—H35B109.5
C10B—C9B—H9D109.6C34—C35—H35C109.5
C8—C9B—H9D109.6H35A—C35—H35C109.5
H9C—C9B—H9D108.1H35B—C35—H35C109.5
C9B—C10B—C11109.4 (4)C28—C36—H36A109.5
C9B—C10B—C18B110.4 (10)C28—C36—H36B109.5
C11—C10B—C18B114.4 (11)H36A—C36—H36B109.5
C9B—C10B—H10B107.5C28—C36—H36C109.5
C11—C10B—H10B107.5H36A—C36—H36C109.5
C18B—C10B—H10B107.5H36B—C36—H36C109.5
C8—C16B—H16D109.5C31—C39—H39A109.5
C8—C16B—H16E109.5C31—C39—H39B109.5
H16D—C16B—H16E109.5H39A—C39—H39B109.5
C8—C16B—H16F109.5C31—C39—H39C109.5
H16D—C16B—H16F109.5H39A—C39—H39C109.5
H16E—C16B—H16F109.5H39B—C39—H39C109.5
C10B—C18B—H18D109.5C31—C40—H40A109.5
C10B—C18B—H18E109.5C31—C40—H40B109.5
H18D—C18B—H18E109.5H40A—C40—H40B109.5
C10B—C18B—H18F109.5C31—C40—H40C109.5
H18D—C18B—H18F109.5H40A—C40—H40C109.5
H18E—C18B—H18F109.5H40B—C40—H40C109.5
C30B—C29B—C28112.6 (4)C42—C41—H41A109.5
C30B—C29B—H29C109.1C42—C41—H41B109.5
C28—C29B—H29C109.1H41A—C41—H41B109.5
C30B—C29B—H29D109.1C42—C41—H41C109.5
C28—C29B—H29D109.1H41A—C41—H41C109.5
H29C—C29B—H29D107.8H41B—C41—H41C109.5
C29B—C30B—C31106.5 (4)O1—C42—C41110.93 (18)
C29B—C30B—C38B108.8 (10)O1—C42—H42A109.5
C31—C30B—C38B113.5 (10)C41—C42—H42A109.5
C29B—C30B—H30B109.3O1—C42—H42B109.5
C31—C30B—H30B109.3C41—C42—H42B109.5
C38B—C30B—H30B109.3H42A—C42—H42B108.0
C30B—C38B—H38D109.5C2—N1—C1121.71 (16)
C30B—C38B—H38E109.5C2—N1—H1119.1
H38D—C38B—H38E109.5C1—N1—H1119.1
C30B—C38B—H38F109.5C2—N2—N3112.94 (13)
H38D—C38B—H38F109.5C3—N3—N2113.87 (13)
H38E—C38B—H38F109.5C3—N3—Pd1126.67 (11)
C28—C37B—H37D109.5N2—N3—Pd1119.44 (10)
C28—C37B—H37E109.5C22—N4—C21119.90 (14)
H37D—C37B—H37E109.5C22—N4—H2120.1
C28—C37B—H37F109.5C21—N4—H2120.1
H37D—C37B—H37F109.5C22—N5—N6111.48 (12)
H37E—C37B—H37F109.5C23—N6—N5114.58 (13)
C10B—C11—C1994.5 (2)C23—N6—Pd1130.09 (11)
C10B—C11—C20121.4 (2)N5—N6—Pd1115.23 (10)
C19—C11—C20108.82 (18)C42—O1—H3109.5
C10B—C11—C12112.2 (2)N6—Pd1—N3178.02 (5)
C19—C11—C12108.26 (15)N6—Pd1—S197.92 (4)
C20—C11—C12109.91 (15)N3—Pd1—S182.82 (4)
C19—C11—C10A117.58 (19)N6—Pd1—S280.32 (4)
C20—C11—C10A104.05 (18)N3—Pd1—S298.47 (5)
C12—C11—C10A108.05 (17)S1—Pd1—S2164.631 (17)
C7—C12—C13118.13 (15)C2—S1—Pd195.29 (6)
C7—C12—C11123.21 (16)C22—S2—Pd191.28 (6)
C13—C12—C11118.60 (16)
N3—C3—C5—C654.0 (2)C30A—C29A—C28—C3678.1 (3)
C4—C3—C5—C6118.21 (17)C30A—C29A—C28—C2750.8 (3)
N3—C3—C5—C14128.43 (17)C30A—C29A—C28—C37A168.8 (3)
C4—C3—C5—C1459.4 (2)C32—C27—C28—C37B107.5 (4)
C14—C5—C6—C71.4 (2)C26—C27—C28—C37B72.3 (4)
C3—C5—C6—C7179.08 (14)C32—C27—C28—C36116.2 (2)
C5—C6—C7—C121.1 (2)C26—C27—C28—C3663.9 (2)
C5—C6—C7—C8179.08 (15)C32—C27—C28—C29A17.2 (3)
C6—C7—C8—C1768.7 (2)C26—C27—C28—C29A162.69 (19)
C12—C7—C8—C17111.49 (19)C32—C27—C28—C29B14.8 (3)
C6—C7—C8—C9A160.86 (17)C26—C27—C28—C29B165.3 (3)
C12—C7—C8—C9A19.0 (3)C32—C27—C28—C37A130.6 (3)
C6—C7—C8—C16A46.0 (2)C26—C27—C28—C37A49.2 (3)
C12—C7—C8—C16A133.9 (2)C30B—C29B—C28—C37B71.8 (6)
C6—C7—C8—C16B65.3 (4)C30B—C29B—C28—C36162.6 (4)
C12—C7—C8—C16B114.5 (3)C30B—C29B—C28—C2749.5 (5)
C6—C7—C8—C9B161.6 (2)C29B—C30B—C31—C40166.5 (4)
C12—C7—C8—C9B18.6 (3)C38B—C30B—C31—C4073.8 (10)
C17—C8—C9A—C10A76.7 (3)C29B—C30B—C31—C3976.6 (4)
C7—C8—C9A—C10A49.7 (3)C38B—C30B—C31—C3943.1 (10)
C16A—C8—C9A—C10A166.8 (2)C29B—C30B—C31—C3253.2 (4)
C8—C9A—C10A—C18A166.9 (7)C38B—C30B—C31—C32172.9 (10)
C8—C9A—C10A—C1168.3 (3)C29A—C30A—C31—C4088.6 (3)
C28—C29A—C30A—C38A171.8 (5)C38A—C30A—C31—C4034.0 (6)
C28—C29A—C30A—C3164.7 (3)C29A—C30A—C31—C39154.2 (2)
C17—C8—C9B—C10B166.3 (4)C38A—C30A—C31—C3983.2 (5)
C7—C8—C9B—C10B56.3 (4)C29A—C30A—C31—C3241.1 (3)
C16B—C8—C9B—C10B75.9 (5)C38A—C30A—C31—C32163.7 (5)
C8—C9B—C10B—C1171.0 (4)C26—C27—C32—C331.6 (2)
C8—C9B—C10B—C18B162.2 (12)C28—C27—C32—C33178.33 (15)
C28—C29B—C30B—C3171.5 (5)C26—C27—C32—C31177.59 (15)
C28—C29B—C30B—C38B165.8 (10)C28—C27—C32—C312.5 (2)
C9B—C10B—C11—C19155.0 (3)C40—C31—C32—C27126.5 (2)
C18B—C10B—C11—C1980.6 (12)C39—C31—C32—C27116.09 (19)
C9B—C10B—C11—C2089.7 (4)C30B—C31—C32—C2722.2 (3)
C18B—C10B—C11—C2034.7 (12)C30A—C31—C32—C279.1 (2)
C9B—C10B—C11—C1243.2 (4)C40—C31—C32—C3354.3 (2)
C18B—C10B—C11—C12167.6 (11)C39—C31—C32—C3363.1 (2)
C9A—C10A—C11—C1973.1 (3)C30B—C31—C32—C33158.6 (3)
C18A—C10A—C11—C1948.7 (7)C30A—C31—C32—C33170.06 (18)
C9A—C10A—C11—C20166.5 (2)C27—C32—C33—C341.3 (2)
C18A—C10A—C11—C2071.6 (7)C31—C32—C33—C34177.92 (15)
C9A—C10A—C11—C1249.7 (2)C32—C33—C34—C250.8 (2)
C18A—C10A—C11—C12171.6 (7)C32—C33—C34—C35178.11 (16)
C6—C7—C12—C132.3 (2)C26—C25—C34—C332.6 (2)
C8—C7—C12—C13177.87 (16)C23—C25—C34—C33177.14 (15)
C6—C7—C12—C11174.95 (15)C26—C25—C34—C35176.33 (16)
C8—C7—C12—C114.9 (2)C23—C25—C34—C354.0 (2)
C10B—C11—C12—C75.8 (3)N2—C2—N1—C110.2 (3)
C19—C11—C12—C7108.7 (2)S1—C2—N1—C1167.84 (15)
C20—C11—C12—C7132.54 (18)N1—C2—N2—N3172.20 (14)
C10A—C11—C12—C719.6 (2)S1—C2—N2—N35.6 (2)
C10B—C11—C12—C13171.5 (2)C5—C3—N3—N2167.56 (13)
C19—C11—C12—C1368.5 (2)C4—C3—N3—N24.5 (2)
C20—C11—C12—C1350.2 (2)C5—C3—N3—Pd114.3 (2)
C10A—C11—C12—C13163.15 (17)C4—C3—N3—Pd1173.55 (12)
C7—C12—C13—C141.2 (2)C2—N2—N3—C3161.72 (14)
C11—C12—C13—C14176.18 (15)C2—N2—N3—Pd120.03 (17)
C12—C13—C14—C51.2 (2)N5—C22—N4—C212.3 (2)
C12—C13—C14—C15177.37 (15)S2—C22—N4—C21174.14 (12)
C6—C5—C14—C132.5 (2)N4—C22—N5—N6174.48 (13)
C3—C5—C14—C13180.00 (14)S2—C22—N5—N61.68 (19)
C6—C5—C14—C15178.52 (15)C25—C23—N6—N53.4 (2)
C3—C5—C14—C153.9 (2)C24—C23—N6—N5178.64 (14)
N6—C23—C25—C26110.66 (18)C25—C23—N6—Pd1172.87 (11)
C24—C23—C25—C2671.3 (2)C24—C23—N6—Pd15.1 (2)
N6—C23—C25—C3469.1 (2)C22—N5—N6—C23142.16 (14)
C24—C23—C25—C34108.96 (18)C22—N5—N6—Pd134.70 (16)
C34—C25—C26—C272.3 (2)N2—C2—S1—Pd18.19 (15)
C23—C25—C26—C27177.37 (14)N1—C2—S1—Pd1173.96 (13)
C25—C26—C27—C320.2 (2)N5—C22—S2—Pd124.45 (14)
C25—C26—C27—C28179.90 (15)N4—C22—S2—Pd1159.40 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···S10.982.733.5061 (19)136
N1—H1···S1i0.882.573.411 (2)160
N4—H2···O10.882.012.879 (2)167
O1—H3···S2ii0.842.433.2596 (16)169
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+2.
The maximum deviations from the mean plane through the N/N/C/S/N entities, the r.m.s. deviations of the selected atoms and the dihedral angle with the respective aromatic rings for the title compound (Å, °) top
The dihedral angle between the N/N/C/S/N entities amounts to 61.34 (4)°.
N/N/C/S/N entitymax. deviationAtomr.m.s.d.Angle
N3/N2/C2/N1/S10.0567 (1)N20.040346.68 (5)
N6/N5/C22/N4/S2-0.0307 (8)N60.026950.66 (4)
The maximum deviations from the mean plane through the aliphatic rings and the respective r.m.s. deviations of the selected atoms for the title compound (Å) top
Aliphatic ringmax. deviation (+)max. deviation (-)r.m.s.d.
C7/C8/C9A/C10A/C11/C120.347 (2) (C10A)-0.343 (2) (C9A)0.2152
C7/C8/C9B/C10B/C11/C120.402 (3) (C9B)-0.331 (3) [C10B]0.2309
C27/C28/C29A/C30A/C31/C320.308 (2) (C30A)-0.348 (2) [C29A]0.2052
C27/C28/C29B/C30B/C31/C320.352 (4) (C29B)-0.379 (4) (C30B)0.2280
For a graphical representation of the title compound, see: Fig. 1.
Selected torsion angles for disordered fixolide derivatives (°) top
CompoundIsomerChiral atom (s.o.f.)Atom chainTorsion angle
C17H24O2aRC10A [0.683 (4)]C9—C10A—C11A—C12-67.0 (3)
C17H24O2aSC10B [0.317 (4)]C9—C10B—C11B—C1271.8 (6)
C20H31N3SbRC10A [0.646 (14)]C8—C9A—C10A—C11-66.4 (7)
C20H31N3SbSC10B [0.354 (14)]C8—C9B—C10B—C1167.7 (16)
Pd(C20H30N3S)2·C2H6OcRC10A [0.624 (2)]C8—C9A—C10A—C11-68.3 (3)
Pd(C20H30N3S)2·C2H6OcSC10B [0.376 (2)]C8—C9B—C10B—C1171.0 (4)
Pd(C20H30N3S)2·C2H6OcRC30B [0.3752 (2)]C28—C29B—C30B—C31-71.5 (5)
Pd(C20H30N3S)2·C2H6OcSC30A [0.624 (2)]C28—C29A—C30A—C3164.7 (3)
(a) The (R,S)-fixolide carboxylic acid derivative structure (Kuhlich et al., 2010); (b) the (R,S)-fixolide 4-methylthiosemicarbazone structure (Melo et al., 2023a); (c) the trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N1S]palladium(II) complex structure of this work.
Bond lengths for the N—N—C—S entities in the neutral, non-coordinated, and the anionic, coordinated, forms of thiosemicarbazone derivatives (Å) top
N—NN—CC—S
C20H31N3Sa1.386 (3)1.376 (4)1.666 (3)
Pd(C16H14N3S)2b1.390 (2)1.293 (2)1.7520 (19)
1.393 (2)1.291 (2)1.7328 (19)
Pd(C20H30N3S)2·C2H6Oc1.3970 (18)1.304 (2)1.7520 (17)
1.4056 (18)1.306 (2)1.7644 (16)
(a) The neutral and non-coordinated form of the (R,S)-fixolide 4-methylthiosemicarbazone structure (Melo et al., 2023a); (b) the anionic and coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone in a PdII-complex (Melo et al., 2023b); (c) the anionic and coordinated form of the (R,S)-fixolide 4-methylthiosemicarbazone in the PdII complex of this work.
 

Acknowledgements

APLM thanks CAPES for the award of a PhD scholarship. The authors thank the Department of Chemistry of the Federal University of Santa Maria/Brazil for the access to the X-ray diffraction facility.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 .

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAly, A. A., Abdallah, E. M., Ahmed, S. A., Rabee, M. M. & Bräse, S. (2023). Molecules, 28, 1808, 1–39.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on October 21, 2023).  Google Scholar
First citationDerry Holaday, M. G., Tarafdar, G., Kumar, A., Reddy, M. L. P. & Srinivasan, A. (2014). Dalton Trans. 43, 7699–7703.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKarthikeyan, J., Parameshwara, P. & Shetty, A. N. (2011). Environ. Monit. Assess. 173, 569–577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKovala-Demertzi, D., Kourkoumelis, N., Derlat, K., Michalak, J., Andreadaki, F. J. & Kostas, I. D. (2008). Inorg. Chim. Acta, 361, 1562–1565.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMelo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020.  Google Scholar
First citationMelo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993–998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriyarega, S., Haribabu, J. & Karvembu, R. (2022). Inorg. Chim. Acta, 532, 120742.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658, 1–43.  Google Scholar
First citationStraistari, T., Hardré, R., Massin, J., Attolini, M., Faure, B., Giorgi, M., Réglier, M. & Orio, M. (2018). Eur. J. Inorg. Chem. pp. 2259–2266.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds