research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of S-n-octyl 3-(1-phenyl­ethyl­­idene)di­thio­carbazate and of its bis-chelated nickel(II) complex

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 31 July 2023; accepted 7 November 2023; online 14 November 2023)

The nitro­gen–sulfur Schiff base proligand S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl di­thio­carbamate with aceto­phenone. Treatment of HL with nickel acetate yielded the complex bis­[S-n-octyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetra­hedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiol­ate) bond.

1. Chemical context

Bidentate Schiff bases of S-methyl di­thio­carbazate (SMDTC) or S-benzyl di­thio­carbaza­tes (SBDTC) and their bivalent metal complexes have received considerable attention in the field of medical science for their biological activities (Cavalcante et al., 2019[Cavalcante, C. de Q. O., Arcanjo, D. da S., da Silva, G. G., de Oliveira, D. M. & Gatto, C. C. (2019). New J. Chem. 43, 11209-11221.]; Chan et al., 2008[Chan, M.-H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]; Chew et al., 2004[Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]; Crouse et al., 2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]; How et al., 2008[How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]; Yang et al., 2020[Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.]). As part of our ongoing inter­est in S-containing Schiff bases and the corres­ponding metal complexes, we report herein on the structure of a ligand mol­ecule having an octyl alkyl chain and of its bis-chelated nickel complex.

[Scheme 1]

2. Structural commentary

The HL proligand crystallizes in its thione tautomeric form (Fig. 1[link]). The β-N atom (N1) and the thio­keto atom S1 are located in trans positions with respect to the C9—N2 bond, as has been observed in other similar di­thio­carbazate species (Begum et al., 2015[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R. & Hossain, M. M. (2015). Acta Cryst. E71, o265-o266.]). The phenyl ring is disordered with equal probability between two orientations, differing by a dihedral angle of 42.2 (3)°. The adjacent methyl group C8H3 is likewise disordered, the directions of the C7—C8 bond differing by 23.1 (1)°. While there can be some ambiguity on how the disorder of the phenyl and methyl groups is correlated intramol­ecularly, we suggest that the near-eclipsed conformation about the C1—C7 bond (as shown here) is more likely than the alternative one (twisted by 31 or 38°), because the former conformation was typically observed in previously studied compounds of ArC(Me)=NNHC(=S)SR type, where Ar is a phenyl group or a phenyl substituted in a meta or para (but not ortho) position (see Section 4).

[Figure 1]
Figure 1
Mol­ecular structure of HL. Atomic displacement ellipsoids are drawn at the 50% probability level.

In the NiL2 complex (Fig. 2[link]) the two Schiff bases L in their deprotonated imino thiol­ate form, coordinate the metal through the β-nitro­gen atoms, N1 or N3, and the thiol­ate sulfur, S1 or S3, respectively, in a cis-square-planar configuration which is tetra­hedrally distorted in order to avoid steric clashes between the phenyl rings. The dihedral angle formed by the NiNS planes of the two five-membered chelate rings is thus 21.66 (6)°. The Ni—S bond distances of 2.1506 (6) and 2.1573 (6) Å are similar, as are the Ni—N ones of 1.9392 (16) and 1.9318 (15) Å. The orientation of the phenyl groups is such that their ortho hydrogen atoms are located in apical positions above and below the metal centre, with the Ni⋯H separations of ca 2.6 Å indicating possible non-covalent inter­actions.

[Figure 2]
Figure 2
Mol­ecular structure of the NiL2 complex. Atomic displacement ellipsoids are drawn at the 50% probability level.

Some important geometrical changes are observed in the ligand upon coordination, the most significant being the elongation of the S1=C9 bond of 1.669 (3) Å in HL to the essentially single bonds of 1.738 (2) Å in the complex, thus validating the coordination with deprotonated thiol­ate sulfur atom. Correspondingly the N2—C9 bond of 1.340 (4) Å in HL shortens to essentially double bonds of 1.293 (3) and 1.290 (2) Å in the complex, while the N1—N2 bond length of 1.377 (4) Å is slightly elongated in the complex [to 1.414 (2) and 1.417 (2) Å, see the supporting information]. These parameters agree with those in previously reported NiII complexes with similar ligands (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.], 2017[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553-563.], 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.], 2023[Begum, M. S., Das, D., Zangrando, E., Rahman, S., Alodhayb, A., Begum, M. K., Sheikh, C. M., Miyatake, R., Howlader, M. B. H., Karim, M. R. & Chowdhury, M. B. (2023). J. Mol. Struct. 1277, 134808.]; Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]; Islam et al., 2014[Islam, M. A.-A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]; Khan et al., 2023[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023). Acta Cryst. E79, 714-717.]; Zangrando et al., 2015[Zangrando, E., Islam, M. T., Islam, M. A.-A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]). Upon coordination the ligand L undergoes a rotation of ca. 180° about the N2—C9 bond to chelate the metal through the N and S donors.

The n-octyl chain in HL has an extended all-trans conformation and is practically coplanar with the di­thio­carbazate moiety. In the complex, one n-octyl chain (C27 to C34) also adopts an all-trans conformation (although tilted out of the coordination plane), while the other one is `kinked' due to the gauche conformation about the C13—C14 bond.

An analysis of di­thio­carbazate ligands in bis-chelated Ni and Cu complexes of cis and trans arrangement was reported by us earlier (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]). Among the NiII complexes with di­thio­carbazate Schiff base N,S-ligands having long alkyl chains, the cis configuration was observed in derivatives with a phenyl­ethyl­idene fragment bound at N1 (Zangrando et al., 2015[Zangrando, E., Islam, M. T., Islam, M. A.-A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]; Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]), as in the present complex.

3. Supra­molecular features

The crystal pacing of HL is shown in Fig. 3[link]. The crystal structure contains segregated regions of polar di­thio­carbazate moieties, hydro­phobic alkyl chains and aromatic phenyl groups.

[Figure 3]
Figure 3
Crystal packing of HL viewed down the a axis (H atoms omitted and only one orientation of the disordered phenyl rings is shown for clarity).

It is noteworthy that there are some sterically impossible short distances between symmetry-related positions of the disordered phenyl rings, e.g. C2⋯C2 of 2.72 Å between mol­ecules related by an inversion centre, and C2A⋯C5A of 2.82 Å between mol­ecules related by the translation a. Obviously, these orientations cannot be adopted by adjacent mol­ecules simultaneously and the respective symmetry operations are locally spurious.

The packing of NiL2 is shown in Fig. 4[link]; the cis coordination does not allow the mol­ecules to stack at short distances as observed for trans square-planar species with analogous ligands (Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]; Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.]).

[Figure 4]
Figure 4
View of the crystal packing of the NiL2 complex down the b axis (H atoms not shown for clarity).

4. Database survey

Numerous NiII complexes with di­thio­carbazate ligands have been reported from these laboratories (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.], 2017[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553-563.], 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.], 2023[Begum, M. S., Das, D., Zangrando, E., Rahman, S., Alodhayb, A., Begum, M. K., Sheikh, C. M., Miyatake, R., Howlader, M. B. H., Karim, M. R. & Chowdhury, M. B. (2023). J. Mol. Struct. 1277, 134808.]; Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]; Islam et al., 2014[Islam, M. A.-A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141-149.]; Khan et al., 2023[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023). Acta Cryst. E79, 714-717.]; Zangrando et al., 2015[Zangrando, E., Islam, M. T., Islam, M. A.-A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]; CSD refcodes = JUYCAJ, WEGKEB, TILVUJ, PICMOH, LUBYAK, MIXRAO, MIMKIG and LUBNON, respectively).

Reported structures of the ArC(Me)=NNHC(=S)SR-type compounds include GUMJUV (Bin Break et al., 2013[Bin Break, K. M., Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorg. Chem. Appl. 362513.]), HUXNAS (Boshaala, Flörke et al., 2021[Boshaala, A., Yamin, B. M., Amer, Y. O. B., Ghaith, G. S. H., Almughery, A. A., Zarrouk, A. & Warad, I. (2021). J. Mol. Struct. 1224, 129207.]), LOBZUY (Shan et al., 2008[Shan, S., Wang, S.-H., Tian, Y.-L., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1015.]), LUBNIH (Zagrando et al., 2015), OKIVUB (Nanjundan et al., 2016[Nanjundan, N., Narayanasamy, R., Geib, S., Velmurugan, K., Nandhakumar, R., Balakumaran, M. D. & Kalaichelvan, P. T. (2016). Polyhedron, 110, 203-220.]), PIFMAT (How et al., 2007[How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o2912.]), UWATOD (Flörke & Boshaala, 2016[Flörke, U. & Boshaala, A. (2016). CSD Communication (refcode UWATOD). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1mgkpb]) and UWAVEV (Boshaala, Said et al., 2021[Boshaala, A., Said, M. A., Assirey, E. A., Alborki, Z. S., AlObaid, A. A., Zarrouk, A. & Warad, I. (2021). J. Mol. Struct. 1238, 130461.]). All these mol­ecules have broadly the same configuration as HL. The ArCMe skeleton is usually practically planar, the Ar and adjacent Me groups deviating from the eclipsed orientation by less than 5°, except in GUMJUV (14.5°), PIFMAT (20.4°) and one of the three independent mol­ecules in the structure of OKIVUB (10.8°).

5. Synthesis and crystallization

Proligand HL: 30 mL of an ethano­lic solution of KOH (2.81 g, 0.05 mol) was mixed with hydrazine hydrate (2.50 g, 0.05 mol, 99%) and stirred at 273 K. To this solution carbon di­sulfide (3.81 g, 0.05 mol) was added dropwise with constant stirring for 1 h. Then 1-bromo­octane (9.65 g, 0.05 mol) was added dropwise with vigorous stirring at 273 K for 1 h. Finally, 2 mL of an ethano­lic solution of aceto­phenone (6.00 g, 0.05 mol) were added and the resulting mixture was refluxed for 30 min. The hot mixture was filtered and the filtrate was cooled to 273 K giving a precipitate of NiL2, which was recrystallized from ethanol at room temperature, filtered off and dried in a vacuum desiccator over anhydrous CaCl2. Colourless plate-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation from a mixture of ethanol and methanol (2:1, v/v) after 15 days. The physical and spectroscopic data are as follows:

Colourless crystalline, yield 78%, m.p. 335–336 K. FT–IR data (KBr disc, cm−1): ν(N—H) 3232, ν(C—H, alk­yl) 2958, 2922, ν(C=N) 1639, ν(C=C) 1607, ν(C=S) 1060. 1H NMR (400 MHz, CDCl3, ppm) δ: 9.91 (s, 1H, NH), 7.85 (d, 2H, C-2, 6), 7.41 (t, 3H, C-3, 4, 5), 3.31 (t, 2H, C-10, –SCH2,), 2.33 [s, 3H, C-8, CH3—C(C)=N], 1.75 (p, 2H, C-11), 1.45 (p, 2H, C-12), 1.34–1.26 (m, 8H, C-13, 14, 15, 16), 0.90 (t, 3H, C-17, CH3). HRMS (FAB) Calculated for C17H26N2S2 [M+H]+: 323.16102, found [M+H]+: 323.16128.

Ni complex: Ni(CH3COO)2·4H2O (0.12 g, 0.5 mmol) in 10 mL of methanol was added to a solution of (0.322 g, 1.0 mmol) in 30 mL of methanol. The resulting mixture was stirred at room temperature for 4 h. A shiny green precipitate formed, was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Green needle-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation of the compound from a mixture of chloro­form and aceto­nitrile (5:1, v/v) after 19 days. The physical and spectroscopic data of the compound are as follows:

Green crystalline, Yield: 74%; m. p. 408–409 K. FT–IR data (KBr disc, cm−1): ν(C—H, alk­yl) 2949, 2924, ν(C=N—N=C) 1599, ν(C=C) 1562. 1H NMR (400 MHz, CDCl3, ppm) δ: 7.56 (t, 2×3H, C-3, 4, 5), 7.47 (d, 2×2H, C-2, 6), 2.91 (t, 2×2H, C-10, –SCH2,), 1.87 [s, 2×3H, C-8, CH3—C(C)=N], 1.67 (p, 2×2H, C-11), 1.38 (p, 2×2H, C-12), 1.33–1.27 (m, 2×8H, C-13, 14, 15, 16), 0.89 (t, 2×3H, C-17, CH3). UV–Vis spectrum in CHCl3 [λmax nm, ɛmax M−1 cm−1]: 222, 35240; 280, 57000; and 384, 12420. HRMS (FAB) Calculated for C34H50N4NiS4 [M+H]+: 701.23445, found [M+H]+: 701.23420.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The phenyl ring of the uncoordinated ligand was found disordered over two positions with equal (0.5) occupancies. All H atoms were geometrically located with exception of that at N2 in the free ligand which was freely refined.

Table 1
Experimental details

  HL NiL2
Crystal data
Chemical formula C17H26N2S2 [Ni(C17H25N2S2)2]
Mr 322.52 701.73
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 4.9925 (6), 12.4283 (16), 15.0643 (19) 13.6399 (3), 17.6532 (5), 16.7596 (3)
α, β, γ (°) 98.420 (7), 94.302 (7), 91.150 (6) 90, 114.000 (8), 90
V3) 921.6 (2) 3686.6 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.29 0.78
Crystal size (mm) 0.19 × 0.10 × 0.07 0.27 × 0.09 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.410, 0.980 0.737, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 8449, 4181, 3093 35807, 8419, 6674
Rint 0.037 0.038
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.196, 1.08 0.042, 0.096, 1.04
No. of reflections 4181 8419
No. of parameters 242 392
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.32 0.60, −0.25
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

S-n-Octyl 3-(1-phenylethylidene)dithiocarbazate (HL) top
Crystal data top
C17H26N2S2Z = 2
Mr = 322.52F(000) = 348
Triclinic, P1Dx = 1.162 Mg m3
a = 4.9925 (6) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.4283 (16) ÅCell parameters from 6282 reflections
c = 15.0643 (19) Åθ = 2.0–27.5°
α = 98.420 (7)°µ = 0.28 mm1
β = 94.302 (7)°T = 173 K
γ = 91.150 (6)°Plate, colorless
V = 921.6 (2) Å30.19 × 0.10 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3093 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.410, Tmax = 0.980h = 65
8449 measured reflectionsk = 1616
4181 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.6447P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4181 reflectionsΔρmax = 0.55 e Å3
242 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1043 (6)0.7323 (2)0.1266 (2)0.0401 (7)
N20.2090 (6)0.6296 (2)0.0940 (2)0.0409 (7)
H2N0.344 (7)0.616 (3)0.053 (2)0.031 (9)*
S10.20157 (19)0.41740 (7)0.08485 (6)0.0432 (3)
S20.16745 (18)0.58140 (7)0.20863 (6)0.0431 (3)
C10.0902 (7)0.9225 (3)0.1334 (3)0.0423 (8)
C2A0.2308 (19)1.0181 (6)0.1290 (6)0.0504 (19)0.5
H2A0.4127061.0139400.1048620.060*0.5
C3A0.107 (2)1.1189 (7)0.1597 (7)0.056 (2)0.5
H3A0.1967081.1831660.1498100.067*0.5
C20.1086 (16)1.0104 (6)0.0810 (6)0.0461 (17)0.5
H20.1904370.9985220.0212500.055*0.5
C30.0052 (18)1.1128 (7)0.1190 (7)0.049 (2)0.5
H30.0312471.1731570.0875470.058*0.5
C40.1357 (10)1.1268 (3)0.2027 (3)0.0619 (12)
H40.2211911.1949440.2265590.074*
C5A0.283 (2)1.0330 (8)0.2134 (7)0.060 (2)0.5
H5A0.4601261.0392910.2415110.072*0.5
C6A0.1629 (19)0.9312 (8)0.1820 (7)0.049 (2)0.5
H6A0.2522080.8672900.1935600.059*0.5
C50.151 (2)1.0410 (8)0.2510 (7)0.057 (2)0.5
H50.2301841.0525260.3111200.068*0.5
C60.053 (2)0.9385 (8)0.2135 (6)0.046 (2)0.5
H60.0870110.8785480.2447450.055*0.5
C70.2107 (8)0.8138 (3)0.0956 (3)0.0471 (9)
C8A0.477 (4)0.804 (2)0.0421 (15)0.062 (5)0.5
H8A0.4579210.7637470.0178730.075*0.5
H8B0.5404480.8772970.0361560.075*0.5
H8C0.6067660.7659850.0728090.075*0.5
C80.405 (4)0.7988 (19)0.0111 (15)0.067 (6)0.5
H8D0.3299650.7480350.0361660.081*0.5
H8E0.4305010.8691710.0098520.081*0.5
H8F0.5777520.7694990.0249400.081*0.5
C90.0943 (7)0.5445 (3)0.1251 (2)0.0363 (7)
C100.2629 (7)0.4508 (3)0.2385 (2)0.0406 (8)
H10A0.1052640.4127240.2571390.049*
H10B0.3305370.4049710.1859870.049*
C110.4822 (7)0.4701 (3)0.3158 (2)0.0421 (8)
H11A0.6371480.5097650.2970230.051*
H11B0.4125730.5158020.3680170.051*
C120.5748 (7)0.3632 (3)0.3436 (2)0.0433 (8)
H12A0.6516220.3195150.2917330.052*
H12B0.4164270.3219340.3582840.052*
C130.7831 (8)0.3763 (3)0.4239 (2)0.0458 (8)
H13A0.9413830.4178640.4095740.055*
H13B0.7060960.4191280.4761210.055*
C140.8745 (8)0.2683 (3)0.4499 (3)0.0479 (9)
H14A0.7149850.2261150.4624900.057*
H14B0.9548520.2264280.3980090.057*
C151.0773 (8)0.2790 (4)0.5313 (3)0.0520 (9)
H15A1.2377280.3205560.5187070.062*
H15B0.9976810.3211880.5832830.062*
C161.1647 (10)0.1709 (4)0.5568 (3)0.0652 (12)
H16A1.2443260.1284500.5049590.078*
H16B1.0048880.1293480.5699390.078*
C171.3697 (11)0.1840 (5)0.6387 (4)0.0820 (16)
H17A1.4297760.1121550.6496020.098*
H17B1.2862550.2197710.6915910.098*
H17C1.5243020.2283730.6272590.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0423 (16)0.0350 (14)0.0419 (16)0.0025 (12)0.0012 (13)0.0052 (12)
N20.0427 (16)0.0373 (15)0.0416 (16)0.0035 (12)0.0029 (14)0.0062 (13)
S10.0482 (5)0.0357 (4)0.0442 (5)0.0042 (4)0.0046 (4)0.0053 (4)
S20.0441 (5)0.0387 (5)0.0449 (5)0.0039 (4)0.0062 (4)0.0064 (4)
C10.0404 (18)0.0364 (17)0.049 (2)0.0006 (14)0.0064 (16)0.0067 (15)
C2A0.053 (5)0.042 (4)0.054 (5)0.006 (4)0.011 (4)0.003 (4)
C3A0.073 (7)0.032 (4)0.061 (6)0.005 (4)0.009 (5)0.003 (4)
C20.043 (4)0.043 (4)0.048 (4)0.004 (3)0.012 (4)0.001 (4)
C30.045 (5)0.037 (4)0.065 (6)0.002 (4)0.005 (4)0.017 (4)
C40.075 (3)0.038 (2)0.067 (3)0.0090 (19)0.016 (2)0.0005 (19)
C5A0.060 (6)0.050 (5)0.064 (6)0.004 (5)0.020 (5)0.002 (5)
C6A0.045 (5)0.044 (4)0.058 (6)0.007 (4)0.008 (4)0.011 (4)
C50.061 (6)0.053 (5)0.050 (5)0.000 (5)0.013 (4)0.004 (4)
C60.053 (6)0.039 (4)0.045 (5)0.002 (4)0.007 (4)0.006 (4)
C70.0436 (19)0.0381 (18)0.057 (2)0.0040 (15)0.0158 (17)0.0091 (16)
C8A0.046 (8)0.047 (6)0.089 (15)0.002 (5)0.026 (7)0.007 (9)
C80.075 (14)0.035 (5)0.083 (13)0.001 (8)0.039 (9)0.006 (7)
C90.0375 (17)0.0376 (17)0.0341 (16)0.0016 (13)0.0065 (14)0.0047 (13)
C100.0409 (18)0.0404 (18)0.0407 (18)0.0006 (14)0.0001 (15)0.0080 (15)
C110.0419 (19)0.0436 (19)0.0394 (18)0.0007 (15)0.0022 (15)0.0045 (15)
C120.0411 (19)0.047 (2)0.0403 (19)0.0044 (15)0.0051 (15)0.0073 (15)
C130.046 (2)0.052 (2)0.0380 (19)0.0030 (16)0.0043 (16)0.0056 (16)
C140.0417 (19)0.057 (2)0.044 (2)0.0016 (16)0.0046 (16)0.0084 (17)
C150.046 (2)0.065 (3)0.045 (2)0.0032 (18)0.0029 (17)0.0120 (19)
C160.059 (3)0.076 (3)0.065 (3)0.008 (2)0.004 (2)0.027 (2)
C170.069 (3)0.114 (5)0.067 (3)0.018 (3)0.010 (3)0.034 (3)
Geometric parameters (Å, º) top
N1—C71.284 (4)C8A—H8A0.9800
N1—N21.377 (4)C8A—H8B0.9800
N2—C91.340 (4)C8A—H8C0.9800
N2—H2N0.87 (4)C8—H8D0.9800
S1—C91.669 (3)C8—H8E0.9800
S2—C91.750 (3)C8—H8F0.9800
S2—C101810 (3)C10—C111.526 (5)
C1—C61.342 (10)C10—H10A0.9900
C1—C2A1.399 (9)C10—H10B0.9900
C1—C6A1.407 (10)C11—C121.521 (5)
C1—C21.438 (9)C11—H11A0.9900
C1—C71.484 (5)C11—H11B0.9900
C2A—C3A1.387 (12)C12—C131.523 (5)
C2A—H2A0.9500C12—H12A0.9900
C3A—C41.323 (11)C12—H12B0.9900
C3A—H3A0.9500C13—C141.521 (5)
C2—C31.390 (12)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.382 (10)C14—C151.519 (5)
C3—H30.9500C14—H14A0.9900
C4—C51.377 (11)C14—H14B0.9900
C4—C5A1.413 (11)C15—C161.513 (6)
C4—H40.9500C15—H15A0.9900
C5A—C6A1.390 (13)C15—H15B0.9900
C5A—H5A0.9500C16—C171.530 (6)
C6A—H6A0.9500C16—H16A0.9900
C5—C61.380 (13)C16—H16B0.9900
C5—H50.9500C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—C8A1.50 (2)C17—H17C0.9800
C7—C81.53 (2)
C7—N1—N2118.4 (3)H8D—C8—H8F109.5
C9—N2—N1118.4 (3)H8E—C8—H8F109.5
C9—N2—H2N117 (2)N2—C9—S1120.8 (3)
N1—N2—H2N124 (2)N2—C9—S2113.6 (2)
C9—S2—C10102.08 (16)S1—C9—S2125.6 (2)
C2A—C1—C6A117.8 (6)C11—C10—S2108.4 (2)
C6—C1—C2119.0 (6)C11—C10—H10A110.0
C6—C1—C7120.9 (5)S2—C10—H10A110.0
C2A—C1—C7121.9 (4)C11—C10—H10B110.0
C6A—C1—C7120.1 (5)S2—C10—H10B110.0
C2—C1—C7119.9 (4)H10A—C10—H10B108.4
C3A—C2A—C1120.5 (8)C12—C11—C10111.2 (3)
C3A—C2A—H2A119.8C12—C11—H11A109.4
C1—C2A—H2A119.8C10—C11—H11A109.4
C4—C3A—C2A121.0 (8)C12—C11—H11B109.4
C4—C3A—H3A119.5C10—C11—H11B109.4
C2A—C3A—H3A119.5H11A—C11—H11B108.0
C3—C2—C1119.1 (7)C11—C12—C13114.1 (3)
C3—C2—H2120.4C11—C12—H12A108.7
C1—C2—H2120.4C13—C12—H12A108.7
C4—C3—C2119.9 (8)C11—C12—H12B108.7
C4—C3—H3120.1C13—C12—H12B108.7
C2—C3—H3120.1H12A—C12—H12B107.6
C5—C4—C3119.4 (6)C14—C13—C12113.2 (3)
C3A—C4—C5A121.0 (6)C14—C13—H13A108.9
C5—C4—H4120.3C12—C13—H13A108.9
C3—C4—H4120.3C14—C13—H13B108.9
C6A—C5A—C4118.9 (8)C12—C13—H13B108.9
C6A—C5A—H5A120.6H13A—C13—H13B107.8
C4—C5A—H5A120.6C15—C14—C13114.3 (3)
C5A—C6A—C1120.2 (9)C15—C14—H14A108.7
C5A—C6A—H6A119.9C13—C14—H14A108.7
C1—C6A—H6A119.9C15—C14—H14B108.7
C4—C5—C6121.0 (8)C13—C14—H14B108.7
C4—C5—H5119.5H14A—C14—H14B107.6
C6—C5—H5119.5C16—C15—C14113.7 (4)
C1—C6—C5120.8 (8)C16—C15—H15A108.8
C1—C6—H6119.6C14—C15—H15A108.8
C5—C6—H6119.6C16—C15—H15B108.8
N1—C7—C1116.1 (3)C14—C15—H15B108.8
N1—C7—C8A122.2 (10)H15A—C15—H15B107.7
C1—C7—C8A120.2 (10)C15—C16—C17112.6 (4)
N1—C7—C8121.7 (9)C15—C16—H16A109.1
C1—C7—C8120.9 (9)C17—C16—H16A109.1
C7—C8A—H8A109.5C15—C16—H16B109.1
C7—C8A—H8B109.5C17—C16—H16B109.1
H8A—C8A—H8B109.5H16A—C16—H16B107.8
C7—C8A—H8C109.5C16—C17—H17A109.5
H8A—C8A—H8C109.5C16—C17—H17B109.5
H8B—C8A—H8C109.5H17A—C17—H17B109.5
C7—C8—H8D109.5C16—C17—H17C109.5
C7—C8—H8E109.5H17A—C17—H17C109.5
H8D—C8—H8E109.5H17B—C17—H17C109.5
C7—C8—H8F109.5
C7—N1—N2—C9178.7 (3)C6—C1—C7—N121.6 (7)
C6A—C1—C2A—C3A9.7 (13)C2A—C1—C7—N1159.1 (6)
C7—C1—C2A—C3A175.8 (8)C6A—C1—C7—N115.2 (7)
C1—C2A—C3A—C47.6 (16)C2—C1—C7—N1153.7 (5)
C6—C1—C2—C37.5 (12)C2A—C1—C7—C8A7.0 (11)
C7—C1—C2—C3177.2 (7)C6A—C1—C7—C8A178.7 (10)
C1—C2—C3—C46.1 (13)C6—C1—C7—C8171.6 (10)
C2A—C3A—C4—C5A4.2 (15)C2—C1—C7—C813.2 (11)
C2—C3—C4—C55.9 (13)N1—N2—C9—S1177.0 (2)
C3A—C4—C5A—C6A3.3 (15)N1—N2—C9—S23.0 (4)
C4—C5A—C6A—C15.7 (16)C10—S2—C9—N2177.4 (3)
C2A—C1—C6A—C5A8.9 (13)C10—S2—C9—S12.6 (3)
C7—C1—C6A—C5A176.6 (8)C9—S2—C10—C11176.7 (2)
C3—C4—C5—C67.0 (14)S2—C10—C11—C12179.2 (3)
C2—C1—C6—C58.6 (13)C10—C11—C12—C13176.8 (3)
C7—C1—C6—C5176.0 (8)C11—C12—C13—C14179.5 (3)
C4—C5—C6—C18.6 (16)C12—C13—C14—C15178.6 (3)
N2—N1—C7—C1179.8 (3)C13—C14—C15—C16179.6 (4)
N2—N1—C7—C8A14.0 (10)C14—C15—C16—C17179.8 (4)
N2—N1—C7—C813.4 (10)
Bis[S-n-octyl 3-(1-phenylethylidene)dithiocarbazato]nickel(II) (NiL2) top
Crystal data top
[Ni(C17H25N2S2)2]F(000) = 1496
Mr = 701.73Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 13.6399 (3) ÅCell parameters from 26150 reflections
b = 17.6532 (5) Åθ = 1.8–27.5°
c = 16.7596 (3) ŵ = 0.78 mm1
β = 114.000 (8)°T = 173 K
V = 3686.6 (3) Å3Needle, green
Z = 40.27 × 0.09 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6674 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.038
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.737, Tmax = 0.977k = 2222
35807 measured reflectionsl = 2021
8419 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.4889P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8419 reflectionsΔρmax = 0.60 e Å3
392 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74039 (2)0.25330 (2)0.25385 (2)0.03168 (8)
S10.84963 (5)0.16206 (3)0.31516 (4)0.04322 (14)
S21.08344 (5)0.17784 (3)0.40403 (4)0.05019 (16)
S30.61639 (5)0.17236 (3)0.18452 (4)0.04295 (14)
S40.38828 (5)0.20819 (3)0.08597 (4)0.04600 (14)
N10.84293 (13)0.31828 (8)0.34158 (10)0.0311 (3)
N20.95110 (13)0.29419 (9)0.37651 (10)0.0357 (4)
N30.65212 (13)0.32728 (8)0.17072 (10)0.0301 (3)
N40.54030 (13)0.31270 (9)0.13143 (10)0.0345 (4)
C10.71951 (16)0.41247 (10)0.34871 (12)0.0313 (4)
C20.63589 (16)0.36389 (11)0.34242 (12)0.0353 (4)
H20.6493820.3112210.3528040.042*
C30.53335 (17)0.39187 (12)0.32114 (14)0.0423 (5)
H30.4768870.3582650.3165050.051*
C40.51303 (18)0.46818 (13)0.30670 (15)0.0455 (5)
H40.4426480.4870960.2922290.055*
C50.59488 (19)0.51736 (12)0.31323 (15)0.0456 (5)
H50.5805460.5699430.3028500.055*
C60.69736 (17)0.49012 (10)0.33480 (13)0.0369 (4)
H60.7535090.5243400.3402920.044*
C70.82927 (16)0.38357 (10)0.37186 (12)0.0316 (4)
C80.92187 (17)0.43050 (11)0.43057 (14)0.0405 (5)
H8A0.9676490.4000210.4807930.049*
H8B0.8949270.4745490.4510680.049*
H8C0.9636670.4476710.3982960.049*
C90.95825 (17)0.22217 (11)0.36603 (13)0.0367 (4)
C101.17362 (18)0.25061 (14)0.46973 (15)0.0509 (6)
H10A1.1402630.2751840.5056390.061*
H10B1.2405580.2259430.5102650.061*
C111.20302 (19)0.31163 (14)0.41984 (15)0.0513 (6)
H11A1.1381610.3411630.3843730.062*
H11B1.2307060.2878100.3796510.062*
C121.2880 (2)0.36459 (17)0.48235 (18)0.0684 (8)
H12A1.2612180.3853920.5245720.082*
H12B1.3533310.3346660.5158070.082*
C131.3188 (2)0.43029 (17)0.4382 (2)0.0740 (8)
H13A1.3894380.4502710.4785900.089*
H13B1.3264890.4111610.3855440.089*
C141.2390 (2)0.49362 (15)0.41222 (17)0.0594 (7)
H14A1.2395820.5178210.4656970.071*
H14B1.1664570.4722630.3795540.071*
C151.2602 (2)0.55481 (15)0.35546 (16)0.0587 (7)
H15A1.2697510.5294660.3064120.070*
H15B1.1958400.5874810.3301270.070*
C161.3558 (2)0.60421 (18)0.40216 (18)0.0683 (7)
H16A1.4209470.5721510.4247990.082*
H16B1.3482120.6279380.4528840.082*
C171.3710 (3)0.66657 (19)0.3449 (2)0.0846 (9)
H17A1.4320100.6984860.3802350.102*
H17B1.3058760.6976210.3205270.102*
H17C1.3847270.6435770.2972260.102*
C180.79429 (16)0.40675 (10)0.17028 (12)0.0311 (4)
C190.86459 (16)0.34878 (11)0.17231 (12)0.0341 (4)
H190.8388890.2982600.1597440.041*
C200.97162 (17)0.36419 (13)0.19250 (13)0.0414 (5)
H201.0190320.3242890.1939090.050*
C211.00957 (18)0.43770 (14)0.21063 (14)0.0455 (5)
H211.0829600.4481510.2242050.055*
C220.94112 (19)0.49591 (13)0.20904 (14)0.0457 (5)
H220.9677040.5461500.2225580.055*
C230.83347 (17)0.48093 (11)0.18769 (13)0.0372 (4)
H230.7860940.5212770.1848760.045*
C240.67924 (16)0.39092 (10)0.14602 (12)0.0309 (4)
C250.59705 (17)0.44680 (11)0.09090 (14)0.0386 (5)
H25A0.5534520.4239040.0342020.046*
H25B0.6331690.4919930.0820720.046*
H25C0.5507150.4610940.1203550.046*
C260.52026 (17)0.24162 (11)0.13485 (13)0.0358 (4)
C270.31613 (18)0.29143 (12)0.02909 (14)0.0436 (5)
H27A0.3581500.3162830.0002450.052*
H27B0.2469640.2751510.0172790.052*
C280.29357 (18)0.34919 (12)0.08641 (14)0.0436 (5)
H28A0.2456870.3263970.1111300.052*
H28B0.3617110.3630800.1355860.052*
C290.24138 (18)0.41999 (12)0.03573 (14)0.0437 (5)
H29A0.2904870.4431730.0124970.052*
H29B0.1748360.4054130.0146880.052*
C300.2140 (2)0.47840 (13)0.08941 (15)0.0488 (5)
H30A0.1706900.4537150.1172300.059*
H30B0.2814300.4962720.1366490.059*
C310.15295 (19)0.54626 (12)0.03832 (15)0.0456 (5)
H31A0.1975890.5723280.0126750.055*
H31B0.0870240.5282870.0104930.055*
C320.1218 (2)0.60272 (13)0.09154 (15)0.0516 (6)
H32A0.0830500.5756160.1216780.062*
H32B0.1879960.6242100.1369730.062*
C330.0526 (2)0.66669 (14)0.03960 (17)0.0542 (6)
H33A0.0134760.6454050.0062310.065*
H33B0.0915240.6944430.0100950.065*
C340.0215 (2)0.72192 (17)0.0943 (2)0.0741 (8)
H34A0.0189400.6952170.1224780.089*
H34B0.0232060.7622010.0568030.089*
H34C0.0863700.7441350.1391020.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.04200 (15)0.01830 (12)0.03551 (14)0.00075 (10)0.01657 (11)0.00046 (9)
S10.0548 (3)0.0224 (2)0.0521 (3)0.0068 (2)0.0213 (3)0.0038 (2)
S20.0516 (4)0.0419 (3)0.0579 (4)0.0196 (3)0.0231 (3)0.0148 (3)
S30.0504 (3)0.0206 (2)0.0551 (3)0.0034 (2)0.0186 (3)0.0014 (2)
S40.0446 (3)0.0315 (3)0.0624 (4)0.0102 (2)0.0223 (3)0.0078 (2)
N10.0366 (9)0.0239 (7)0.0340 (9)0.0022 (6)0.0156 (7)0.0030 (6)
N20.0384 (9)0.0319 (9)0.0361 (9)0.0075 (7)0.0142 (7)0.0052 (7)
N30.0372 (9)0.0213 (7)0.0337 (8)0.0018 (6)0.0164 (7)0.0028 (6)
N40.0381 (9)0.0254 (8)0.0395 (9)0.0036 (7)0.0155 (7)0.0018 (6)
C10.0429 (11)0.0253 (9)0.0295 (10)0.0009 (8)0.0187 (8)0.0022 (7)
C20.0466 (12)0.0269 (9)0.0363 (11)0.0003 (8)0.0207 (9)0.0015 (8)
C30.0435 (12)0.0420 (12)0.0464 (12)0.0015 (9)0.0235 (10)0.0030 (9)
C40.0449 (13)0.0489 (13)0.0487 (13)0.0112 (10)0.0252 (10)0.0052 (10)
C50.0617 (15)0.0316 (11)0.0521 (13)0.0112 (10)0.0318 (11)0.0041 (9)
C60.0501 (12)0.0250 (9)0.0437 (12)0.0003 (8)0.0274 (10)0.0025 (8)
C70.0400 (11)0.0256 (9)0.0318 (10)0.0012 (8)0.0174 (8)0.0012 (7)
C80.0437 (12)0.0318 (10)0.0455 (12)0.0057 (9)0.0175 (10)0.0067 (9)
C90.0453 (12)0.0318 (10)0.0353 (11)0.0084 (9)0.0189 (9)0.0084 (8)
C100.0429 (13)0.0663 (16)0.0394 (12)0.0159 (11)0.0127 (10)0.0135 (11)
C110.0460 (14)0.0620 (15)0.0448 (13)0.0089 (11)0.0173 (11)0.0091 (11)
C120.0576 (17)0.0686 (19)0.0663 (17)0.0020 (14)0.0123 (14)0.0031 (14)
C130.0522 (17)0.072 (2)0.093 (2)0.0032 (14)0.0239 (15)0.0015 (16)
C140.0557 (16)0.0690 (18)0.0522 (15)0.0069 (13)0.0204 (12)0.0060 (12)
C150.0654 (17)0.0623 (16)0.0492 (14)0.0117 (13)0.0242 (13)0.0067 (12)
C160.0590 (17)0.083 (2)0.0584 (17)0.0056 (15)0.0191 (13)0.0046 (14)
C170.078 (2)0.081 (2)0.095 (2)0.0064 (18)0.0353 (19)0.0062 (18)
C180.0414 (11)0.0269 (9)0.0277 (9)0.0020 (8)0.0170 (8)0.0014 (7)
C190.0444 (12)0.0314 (10)0.0276 (10)0.0006 (8)0.0159 (8)0.0001 (7)
C200.0425 (12)0.0505 (13)0.0335 (11)0.0057 (10)0.0177 (9)0.0017 (9)
C210.0420 (12)0.0617 (15)0.0364 (12)0.0125 (11)0.0196 (10)0.0019 (10)
C220.0565 (14)0.0423 (12)0.0443 (13)0.0175 (10)0.0268 (11)0.0056 (9)
C230.0487 (12)0.0283 (10)0.0413 (11)0.0049 (9)0.0252 (10)0.0011 (8)
C240.0405 (11)0.0219 (9)0.0324 (10)0.0012 (8)0.0168 (8)0.0029 (7)
C250.0452 (12)0.0241 (9)0.0453 (12)0.0017 (8)0.0172 (10)0.0036 (8)
C260.0444 (12)0.0273 (10)0.0397 (11)0.0045 (8)0.0213 (9)0.0047 (8)
C270.0408 (12)0.0426 (12)0.0443 (12)0.0029 (10)0.0140 (10)0.0072 (9)
C280.0453 (13)0.0436 (12)0.0464 (13)0.0002 (10)0.0231 (10)0.0001 (9)
C290.0476 (13)0.0458 (13)0.0416 (12)0.0006 (10)0.0222 (10)0.0012 (9)
C300.0579 (15)0.0465 (13)0.0435 (13)0.0084 (11)0.0221 (11)0.0030 (10)
C310.0491 (13)0.0419 (12)0.0484 (13)0.0033 (10)0.0224 (11)0.0014 (10)
C320.0588 (15)0.0465 (13)0.0504 (14)0.0055 (11)0.0231 (11)0.0037 (10)
C330.0506 (15)0.0472 (14)0.0673 (16)0.0037 (11)0.0267 (12)0.0052 (11)
C340.072 (2)0.0666 (18)0.084 (2)0.0144 (15)0.0318 (16)0.0169 (16)
Geometric parameters (Å, º) top
Ni1—N31.9318 (15)C15—H15A0.9900
Ni1—N11.9392 (16)C15—H15B0.9900
Ni1—S12.1506 (6)C16—C171.529 (4)
Ni1—S32.1573 (6)C16—H16A0.9900
S1—C91.738 (2)C16—H16B0.9900
S2—C91.746 (2)C17—H17A0.9800
S2—C101.809 (3)C17—H17B0.9800
S3—C261.738 (2)C17—H17C0.9800
S4—C261.749 (2)C18—C191.393 (3)
S4—C271.809 (2)C18—C231.400 (3)
N1—C71.303 (2)C18—C241.479 (3)
N1—N21.414 (2)C19—C201.385 (3)
N2—C91.293 (3)C19—H190.9500
N3—C241.302 (2)C20—C211.384 (3)
N3—N41.417 (2)C20—H200.9500
N4—C261.290 (2)C21—C221.381 (3)
C1—C21.396 (3)C21—H210.9500
C1—C61.403 (3)C22—C231.388 (3)
C1—C71.476 (3)C22—H220.9500
C2—C31.386 (3)C23—H230.9500
C2—H20.9500C24—C251.497 (3)
C3—C41.377 (3)C25—H25A0.9800
C3—H30.9500C25—H25B0.9800
C4—C51.383 (3)C25—H25C0.9800
C4—H40.9500C27—C281.516 (3)
C5—C61.380 (3)C27—H27A0.9900
C5—H50.9500C27—H27B0.9900
C6—H60.9500C28—C291.516 (3)
C7—C81.496 (3)C28—H28A0.9900
C8—H8A0.9800C28—H28B0.9900
C8—H8B0.9800C29—C301.512 (3)
C8—H8C0.9800C29—H29A0.9900
C10—C111.514 (3)C29—H29B0.9900
C10—H10A0.9900C30—C311.510 (3)
C10—H10B0.9900C30—H30A0.9900
C11—C121.526 (4)C30—H30B0.9900
C11—H11A0.9900C31—C321.509 (3)
C11—H11B0.9900C31—H31A0.9900
C12—C131.523 (4)C31—H31B0.9900
C12—H12A0.9900C32—C331.502 (3)
C12—H12B0.9900C32—H32A0.9900
C13—C141.496 (4)C32—H32B0.9900
C13—H13A0.9900C33—C341.513 (3)
C13—H13B0.9900C33—H33A0.9900
C14—C151.542 (4)C33—H33B0.9900
C14—H14A0.9900C34—H34A0.9800
C14—H14B0.9900C34—H34B0.9800
C15—C161.498 (4)C34—H34C0.9800
N3—Ni1—N1101.11 (7)C15—C16—H16B108.8
N3—Ni1—S1163.41 (5)C17—C16—H16B108.8
N1—Ni1—S186.26 (5)H16A—C16—H16B107.7
N3—Ni1—S386.40 (5)C16—C17—H17A109.5
N1—Ni1—S3164.97 (5)C16—C17—H17B109.5
S1—Ni1—S390.02 (2)H17A—C17—H17B109.5
C9—S1—Ni193.66 (7)C16—C17—H17C109.5
C9—S2—C10103.05 (10)H17A—C17—H17C109.5
C26—S3—Ni193.75 (7)H17B—C17—H17C109.5
C26—S4—C27102.03 (10)C19—C18—C23118.78 (18)
C7—N1—N2113.29 (16)C19—C18—C24120.72 (17)
C7—N1—Ni1130.19 (14)C23—C18—C24120.44 (17)
N2—N1—Ni1116.46 (11)C20—C19—C18120.55 (19)
C9—N2—N1111.31 (16)C20—C19—H19119.7
C24—N3—N4113.59 (15)C18—C19—H19119.7
C24—N3—Ni1129.67 (14)C21—C20—C19120.0 (2)
N4—N3—Ni1116.71 (11)C21—C20—H20120.0
C26—N4—N3111.30 (16)C19—C20—H20120.0
C2—C1—C6118.27 (18)C22—C21—C20120.2 (2)
C2—C1—C7121.16 (16)C22—C21—H21119.9
C6—C1—C7120.55 (18)C20—C21—H21119.9
C3—C2—C1120.55 (18)C21—C22—C23119.9 (2)
C3—C2—H2119.7C21—C22—H22120.0
C1—C2—H2119.7C23—C22—H22120.0
C4—C3—C2120.3 (2)C22—C23—C18120.4 (2)
C4—C3—H3119.9C22—C23—H23119.8
C2—C3—H3119.9C18—C23—H23119.8
C3—C4—C5120.1 (2)N3—C24—C18118.85 (17)
C3—C4—H4119.9N3—C24—C25121.78 (18)
C5—C4—H4119.9C18—C24—C25119.33 (16)
C6—C5—C4120.1 (2)C24—C25—H25A109.5
C6—C5—H5120.0C24—C25—H25B109.5
C4—C5—H5120.0H25A—C25—H25B109.5
C5—C6—C1120.72 (19)C24—C25—H25C109.5
C5—C6—H6119.6H25A—C25—H25C109.5
C1—C6—H6119.6H25B—C25—H25C109.5
N1—C7—C1119.58 (17)N4—C26—S3124.99 (16)
N1—C7—C8121.99 (18)N4—C26—S4120.22 (16)
C1—C7—C8118.42 (16)S3—C26—S4114.79 (11)
C7—C8—H8A109.5C28—C27—S4114.80 (15)
C7—C8—H8B109.5C28—C27—H27A108.6
H8A—C8—H8B109.5S4—C27—H27A108.6
C7—C8—H8C109.5C28—C27—H27B108.6
H8A—C8—H8C109.5S4—C27—H27B108.6
H8B—C8—H8C109.5H27A—C27—H27B107.5
N2—C9—S1124.81 (16)C29—C28—C27111.69 (18)
N2—C9—S2120.52 (16)C29—C28—H28A109.3
S1—C9—S2114.67 (11)C27—C28—H28A109.3
C11—C10—S2115.86 (17)C29—C28—H28B109.3
C11—C10—H10A108.3C27—C28—H28B109.3
S2—C10—H10A108.3H28A—C28—H28B107.9
C11—C10—H10B108.3C30—C29—C28113.72 (18)
S2—C10—H10B108.3C30—C29—H29A108.8
H10A—C10—H10B107.4C28—C29—H29A108.8
C10—C11—C12110.8 (2)C30—C29—H29B108.8
C10—C11—H11A109.5C28—C29—H29B108.8
C12—C11—H11A109.5H29A—C29—H29B107.7
C10—C11—H11B109.5C31—C30—C29114.60 (18)
C12—C11—H11B109.5C31—C30—H30A108.6
H11A—C11—H11B108.1C29—C30—H30A108.6
C13—C12—C11114.6 (2)C31—C30—H30B108.6
C13—C12—H12A108.6C29—C30—H30B108.6
C11—C12—H12A108.6H30A—C30—H30B107.6
C13—C12—H12B108.6C32—C31—C30114.30 (19)
C11—C12—H12B108.6C32—C31—H31A108.7
H12A—C12—H12B107.6C30—C31—H31A108.7
C14—C13—C12113.5 (2)C32—C31—H31B108.7
C14—C13—H13A108.9C30—C31—H31B108.7
C12—C13—H13A108.9H31A—C31—H31B107.6
C14—C13—H13B108.9C33—C32—C31114.56 (19)
C12—C13—H13B108.9C33—C32—H32A108.6
H13A—C13—H13B107.7C31—C32—H32A108.6
C13—C14—C15114.0 (2)C33—C32—H32B108.6
C13—C14—H14A108.8C31—C32—H32B108.6
C15—C14—H14A108.8H32A—C32—H32B107.6
C13—C14—H14B108.8C32—C33—C34113.5 (2)
C15—C14—H14B108.8C32—C33—H33A108.9
H14A—C14—H14B107.7C34—C33—H33A108.9
C16—C15—C14115.3 (2)C32—C33—H33B108.9
C16—C15—H15A108.5C34—C33—H33B108.9
C14—C15—H15A108.5H33A—C33—H33B107.7
C16—C15—H15B108.5C33—C34—H34A109.5
C14—C15—H15B108.5C33—C34—H34B109.5
H15A—C15—H15B107.5H34A—C34—H34B109.5
C15—C16—C17113.7 (2)C33—C34—H34C109.5
C15—C16—H16A108.8H34A—C34—H34C109.5
C17—C16—H16A108.8H34B—C34—H34C109.5
C7—N1—N2—C9161.19 (16)C13—C14—C15—C1671.2 (3)
Ni1—N1—N2—C921.57 (19)C14—C15—C16—C17177.2 (2)
C24—N3—N4—C26159.67 (17)C23—C18—C19—C201.0 (3)
Ni1—N3—N4—C2622.02 (19)C24—C18—C19—C20178.05 (17)
C6—C1—C2—C31.3 (3)C18—C19—C20—C210.2 (3)
C7—C1—C2—C3179.60 (18)C19—C20—C21—C220.3 (3)
C1—C2—C3—C40.6 (3)C20—C21—C22—C231.1 (3)
C2—C3—C4—C50.1 (3)C21—C22—C23—C181.9 (3)
C3—C4—C5—C60.4 (3)C19—C18—C23—C221.8 (3)
C4—C5—C6—C11.2 (3)C24—C18—C23—C22178.93 (18)
C2—C1—C6—C51.7 (3)N4—N3—C24—C18169.77 (15)
C7—C1—C6—C5179.93 (18)Ni1—N3—C24—C1812.2 (3)
N2—N1—C7—C1173.58 (15)N4—N3—C24—C257.7 (2)
Ni1—N1—C7—C19.7 (3)Ni1—N3—C24—C25170.32 (13)
N2—N1—C7—C85.9 (2)C19—C18—C24—N336.4 (3)
Ni1—N1—C7—C8170.90 (14)C23—C18—C24—N3146.61 (18)
C2—C1—C7—N138.0 (3)C19—C18—C24—C25141.20 (18)
C6—C1—C7—N1143.77 (19)C23—C18—C24—C2535.8 (3)
C2—C1—C7—C8141.45 (19)N3—N4—C26—S32.3 (2)
C6—C1—C7—C836.8 (3)N3—N4—C26—S4176.86 (13)
N1—N2—C9—S10.3 (2)Ni1—S3—C26—N414.51 (18)
N1—N2—C9—S2179.64 (13)Ni1—S3—C26—S4166.32 (10)
Ni1—S1—C9—N216.87 (17)C27—S4—C26—N47.20 (19)
Ni1—S1—C9—S2163.16 (10)C27—S4—C26—S3172.01 (11)
C10—S2—C9—N210.39 (19)C26—S4—C27—C2878.59 (18)
C10—S2—C9—S1169.58 (11)S4—C27—C28—C29175.22 (15)
C9—S2—C10—C1178.20 (19)C27—C28—C29—C30178.15 (19)
S2—C10—C11—C12174.06 (18)C28—C29—C30—C31174.7 (2)
C10—C11—C12—C13177.1 (2)C29—C30—C31—C32177.5 (2)
C11—C12—C13—C1478.4 (3)C30—C31—C32—C33174.7 (2)
C12—C13—C14—C15171.3 (2)C31—C32—C33—C34179.3 (2)
 

Acknowledgements

MBHH, MRHA and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationBegum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692–696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, M. S., Das, D., Zangrando, E., Rahman, S., Alodhayb, A., Begum, M. K., Sheikh, C. M., Miyatake, R., Howlader, M. B. H., Karim, M. R. & Chowdhury, M. B. (2023). J. Mol. Struct. 1277, 134808.  Web of Science CSD CrossRef Google Scholar
First citationBegum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationBegum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R. & Hossain, M. M. (2015). Acta Cryst. E71, o265–o266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553–563.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoshaala, A., Said, M. A., Assirey, E. A., Alborki, Z. S., AlObaid, A. A., Zarrouk, A. & Warad, I. (2021). J. Mol. Struct. 1238, 130461.  Web of Science CSD CrossRef Google Scholar
First citationBoshaala, A., Yamin, B. M., Amer, Y. O. B., Ghaith, G. S. H., Almughery, A. A., Zarrouk, A. & Warad, I. (2021). J. Mol. Struct. 1224, 129207.  Web of Science CSD CrossRef Google Scholar
First citationBin Break, K. M., Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorg. Chem. Appl. 362513.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCavalcante, C. de Q. O., Arcanjo, D. da S., da Silva, G. G., de Oliveira, D. M. & Gatto, C. C. (2019). New J. Chem. 43, 11209–11221.  Web of Science CSD CrossRef CAS Google Scholar
First citationChan, M.-H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationChew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlörke, U. & Boshaala, A. (2016). CSD Communication (refcode UWATOD). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1mgkpb  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHow, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationHow, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63, o2912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CSD CrossRef IUCr Journals Google Scholar
First citationIslam, M. A.-A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023). Acta Cryst. E79, 714–717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNanjundan, N., Narayanasamy, R., Geib, S., Velmurugan, K., Nandhakumar, R., Balakumaran, M. D. & Kalaichelvan, P. T. (2016). Polyhedron, 110, 203–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShan, S., Wang, S.-H., Tian, Y.-L., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZangrando, E., Islam, M. T., Islam, M. A.-A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278–284.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds