research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-picolyllithium·3thf

crossmark logo

aTU Dortmund University, Fakultät für Chemie und chemische Biologie, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 15 November 2023; accepted 19 December 2023; online 1 January 2024)

In the title compound, (2-methyl­idene-1,2-di­hydro­pyridinium-κN)tris­(tetra­hydro­furan-κO)lithium, [Li(C6H6N)(C4H8O)3], the lithium ion adopts a distorted LiNO3 tetra­hedral coordination geometry and the 2-picolyl anion adopts its enamido form with the lithium ion lying close to the plane of the pyridine ring. A methyl­ene group of one of the thf ligands is disordered over two orientations. In the crystal, a weak C—H⋯O inter­action generates inversion dimers. A Hirshfeld surface analysis shows that H⋯H contacts dominate the packing (86%) followed by O⋯H/H⋯O and C⋯H/H⋯C contacts, which contribute 3% and 10.4%, respectively.

1. Chemical context

Among the various synthetic approaches for the introduction of 2-picoline (C6H7N) into a wide range of chemical products, the route via a metallated inter­mediate (i.e., the 2-picolyl anion, C6H6N) followed by trapping with an electrophile has proven to be particularly attractive due to the large number of possible electrophilic compounds. The formation of these metal-containing inter­mediates usually takes place by reaction with organometallic bases such as lithium organyles (Gessner et al., 2009[Gessner, V. H., Däschlein, C. & Strohmann, C. (2009). Chem. Eur. J. 15, 3320-3334.]), resulting in deprotonation of the picoline and consequent anion formation (Beumel Jr et al., 1974[Beumel, O. F. Jr, Smith, W. N. & Rybalka, B. (1974). Synthesis, 1974, 43-45.]). Due to resonance-stabilizing effects, there are different possibilities to stabilize the negative charge formed at the 2-picoline moiety. In addition to the delocalization of charge across the aromatic ring, further anionic motifs in the sense of a carbanion, an aza-allyl anion, or an enamide anion are possible: see Fig. 1[link].

[Figure 1]
Figure 1
Transformation of 2-picoline into its carbanion, aza-allyl anion and enaminde anion forms.

Charge-density studies by Ott et al. (2009[Ott, H., Pieper, U., Leusser, D., Flierler, U., Henn, J. & Stalke, D. (2009). Angew. Chem. Int. Ed. 48, 2978-2982.]) confirmed the existence of the aza-allyl carbanionic 2-picolyl motif by solid-state analysis of two dimeric 2-picolyllithium structures (2-PicLi·OEt2)2 (2) and (2-PicLi·PicH)2 (3). Both structures are defined by two different lithium–anion inter­actions within one complex (Fig. 2[link]). On the one hand there is an Li—N bond such that the metal ion lies almost coplanar to the aromatic pyridyl ring and on the other hand an η3-aza-allylic contact can be identified. While NBO analysis determined partial negative charges at the nitro­gen atom (–0.78 e) and formed carbanion (–0.69 e), which indicates aza-allylic character, bond-path analysis could only identify a bond path between the lithium and nitro­gen atoms. In conclusion, the Li—N inter­action was described as more dominant and the Li–carbanion contact as an auxiliary inter­action (Ott et al., 2009[Ott, H., Pieper, U., Leusser, D., Flierler, U., Henn, J. & Stalke, D. (2009). Angew. Chem. Int. Ed. 48, 2978-2982.]).

[Figure 2]
Figure 2
Structures of the title compound (2-PicLi·3thf) (1), (2-PicLi·OEt2)2 (2), (2-PicLi·PicH)2 (3), enamido (2-PicLi·pmdta) (4) and dimeric carbanionic [2-PicLi·(thf)2]2 (5).

The group of Mulvey (Kennedy et al., 2014[Kennedy, A. R., Mulvey, R. E., Urquhart, R. I. & Robertson, S. D. (2014). Dalton Trans. 43, 14265-14274.]) followed up on these studies and reported the monomeric solid-state structure (2-PicLi·pmdta) (4) (pmdta = N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine, C9H23N3). In contrast to the dimeric aza-allyl motif 2 of Stalke et al., Mulvey and co-workers identified the monomeric structure 4 as an enamido motif due to the sole Li—N inter­action (Fig. 1[link]). Saturation of the lithium coordination sphere is accomplished by the chelating pmdta ligand. To characterize the described solid-state structures, the location of the lithium cations relative to the aromatic pyridyl ring serves as an important tool. Therefore aza-allylic structures like 2 or 3 were defined by sp2-hybridized nitro­gen atoms and Cpara—N—Li bond angles of about 180°, representing an almost planar arrangement. The enamido motif shows a divergent Cpara—N—Li angle of about 146° indicating sp3-hybridization of the nitro­gen center (Kennedy et al., 2014[Kennedy, A. R., Mulvey, R. E., Urquhart, R. I. & Robertson, S. D. (2014). Dalton Trans. 43, 14265-14274.]). Due to the usage of different solvents, a follow-up dimeric structure [2-PicLi·(thf)2]2 (5) could be obtained by Brouillet et al. (2020[Brouillet, E. V., Kennedy, A. R., Krämer, T., Mulvey, R. E., Robertson, S. D., Stewart, A. & Towie, S. (2020). Z. Anorg. Allge Chem. 646, 726-733.]) (Fig. 2[link]). Unlike the previous dimeric structure 2 of Stalke et al., NBO calculations determined negative charges at N (–0.68 e), O (–0.65 e) and C2 (–0.80 e) suggesting a carbanionic structural motif. Thus, all three possible structural motifs have been detected and characterized in the solid state (Brouillet et al., 2020[Brouillet, E. V., Kennedy, A. R., Krämer, T., Mulvey, R. E., Robertson, S. D., Stewart, A. & Towie, S. (2020). Z. Anorg. Allge Chem. 646, 726-733.]).

In this work, using an excess amount of the tetra­hydro­furan (thf) ligand, a related structure to [2-PicLi·(thf)2]2 (5) by Mulvey et al. was obtained in the form of the title li­thia­ted monomeric 2-picoline saturated by three thf mol­ecules [2-PicLi·(thf)3] (1) (Fig. 1[link]). Inter­estingly, this monomeric structure shows an inconsistent Cpara⋯N—Li angle of 179.9° regarding to former enamido motifs, indicating an sp2-hybridized nitro­gen in contrast to usual sp3-hybridization.

[Scheme 1]

2. Structural commentary

Fig. 3[link] shows the mol­ecular structure of 1 and selected bond lengths and angles are given in Table 1[link]. The solid-state structure consists of a li­thia­ted 2-picoline unit forming an enamido motif. The lithium cation is coordinated by the N atom of 2-picoline as well as by three thf mol­ecules. The O—Li1—N1 angles of 106.33 (7), 115.29 (7) and 111.51 (7)° indicate a slightly distorted tetra­hedral coordination, probably due to packing effects (see Supra­molecular features). Li­thia­tion led to deprotonation of the methyl substituent resulting in sp2-hybridization of the C1-carbon atom, which is recognizable due to shortening of the C1—C2 bond and the changing sum of bond angles to 360° at the carbanionic center, compared to the solid-state structure of 2-picoline (Bond & Davies, 2001[Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1089-o1090.]). With a length of 1.3804 (10) Å, the C1—C2 bond is significant shorter than typical Csp2—Csp2 single bonds (1.466 Å) but too long for Csp2—Csp2 double bonds (1.335 Å; Rademacher, 1987[Rademacher, P. (1987). Strukturen organischer Moleküle. Weinheim: VCH.]). This is caused by stabilization of the negative charge by the aromatic ring. Due to the shortened C1—C2 bond, the overall bonding situation in the aromatic ring is changed as well, displayed by extended C2—C3 [1.4548 (19) Å], C4—C5 [1.4196 (12) Å] bonds and shortened C3—C4 [1.3664 (11) Å] and C5—C6 [1.3855 (11) Å] bonds. While the N1—C2 bond length increased by about 0.06 Å, the N1—C6 bond length is comparable to the equivalent bond in the educt structure (Bond & Davies, 2001[Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1089-o1090.]).

Table 1
Selected geometric parameters (Å, °)

Li1—O1 1.9493 (16) N1—C6 1.3479 (10)
Li1—O2 1.9698 (15) C2—C3 1.4548 (10)
Li1—O3 1.9576 (15) C3—C4 1.3664 (11)
Li1—N1 2.0131 (16) C4—C5 1.4196 (12)
N1—C2 1.4017 (10) C5—C6 1.3855 (11)
       
O1—Li1—O2 103.75 (7) O2—Li1—N1 115.29 (7)
O1—Li1—O3 105.69 (7) O3—Li1—O2 113.22 (7)
O1—Li1—N1 106.33 (7) O3—Li1—N1 111.51 (7)
[Figure 3]
Figure 3
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level. Only the major disorder component is shown.

The coordination distance Li1—N1 is only slightly longer than in the related monomeric structure of li­thia­ted 2-picoline with pmdta, 4. However, this can be explained by stronger coordinating thf ligands characterized by shorter Li—O distances [1.9493 (16) to 1.9698 (15) Å] compared to the nitro­gen coordination distance of pmdta [2.138 (7) to 2.147 (7) Å]. One thf ligand of 1 shows disorder of one of its methyl­ene groups over two adjacent positions in a 0.717 (5): 0.283 (5) ratio.

Another striking feature of the monomer 1 is the planar arrangement of the lithium cation relative to the aromatic ring. As indicated by the angle Li1—N1⋯C4 of 179.9°, the cation hardly deviates from the ring plane. Together with the angular sum of 360° around N1, an sp2-hybridized nitro­gen atom can be assumed. According to this, the lithium cation should be coordinated by a dative bond based on the free electron pair of the nitro­gen. This is in strong contrast to the monomeric compound 4 observed by Mulvey et al. in which an Li1—N1—C4 angle of 145.9 (2)° was observed, which suggests sp3-hybridization of the nitro­gen center and coordination of the lithium cation via a localized negative charge.

A greater similarity with 1 is shown by the dimeric carbanionic structure of li­thia­ted 2-picoline with thf, 5. The dimer consists of a non-planar eight-membered (NCCLi)2 ring in the solid state. A planar arrangement of the lithium cation with the aromatic ring was observed and the authors describe a dative coordination of the cation via an sp2-hybridized nitro­gen atom. However, the Li1—N1 coordination in 5 is described as a weaker inter­action, as in the case of the sp3-hybridized nitro­gen atom in structure 4. Therefore, the carbanionic CH2 substituent of 5 induces a stronger coordination to the lithium cation. In 1, less carbanionic character of the CH2 substituent is detectable, due to delocalization of the charge to the aromatic ring. The significantly shortened C1—C2 bond and the angular sum at the C1 atom of 360° indicate sp2 hybridization. This would be more comparable to the monomeric structure of Mulvey et al.

In summary, the here-presented structure 1 shows features of both structures 4 and 5. While the sp2 hybridization of the CH2 substituent is more similar to the monomeric structure 4, the linear arrangement of Li1—N1⋯C4 and the resulting presumed sp2 hybridization of the nitro­gen atom is more comparable to the dimeric structure 5.

3. Supra­molecular features

An important supra­molecular structural element of compound 1 is the two close contacts between O1 and H15B across the inversion center (Fig. 4[link]). With a coordination distance of O1i⋯C15 = 3.3695 (14) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z], fairly long-range inter­actions are represented. Due to two inter­molecular C—H inter­actions (Table 2[link]) between C11i/H11Bi and H19B as well as H7Ai and C3, further coordination points are given in the solid state (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O1i 0.99 2.63 3.3695 (14) 131
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
The crystal packing of compound 1. C—H⋯O hydrogen bonds are shown as dashed blue lines.
[Figure 5]
Figure 5
The crystal packing of compound 1. C11i/H11Bi⋯H19B and H7Ai⋯C3 van der Waals inter­actions are shown as dashed blue lines.

Fig. 6[link] shows the van der Waals inter­actions in the form of a Hirshfeld surface analysis mapped over dnorm in the range −0.02 to 1.61 a.u. (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) using red dots to represent close contacts. To visualize the percentages of the respective inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated and are illustrated in Fig. 7[link]. They show that inter­actions between H⋯H have the greatest influence (86%) to the packing of mol­ecules in the solid state. Inter­actions between O⋯H and C⋯H, as well as reciprocal contacts, contribute less to the crystal packing and can only be seen as spikes in the fingerprint plots with 3% and 10.4% contributions, respectively.

[Figure 6]
Figure 6
Hirshfeld surface analysis of 1 showing close contacts in the crystal. The weak hydrogen bond between O1i and H15B is labeled. [Symmetry code: (i) 1 − x, 1 − y, 1 − z].
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for compound 1, showing (a) all contributions and (b)–(d) contributions between specific inter­acting atom pairs (blue areas).

Due to its deprotonation, a partial negative charge at the CH2 substituent would be expected, but no distinct coordination points could be observed. The closest contact is C1⋯H13B at 2.97 Å but no specific inter­molecular inter­actions can be observed.

4. Database survey

A search of the Cambridge Crystallographic Database (WebCSD, November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for li­thia­ted 2-picoline or li­thia­ted 2-methyl­pyridine leads to the previously discussed structures 2 (Ott et al., 2009[Ott, H., Pieper, U., Leusser, D., Flierler, U., Henn, J. & Stalke, D. (2009). Angew. Chem. Int. Ed. 48, 2978-2982.]), 2 and 5 (Kennedy et al., 2014[Kennedy, A. R., Mulvey, R. E., Urquhart, R. I. & Robertson, S. D. (2014). Dalton Trans. 43, 14265-14274.]; Brouillet et al., 2020[Brouillet, E. V., Kennedy, A. R., Krämer, T., Mulvey, R. E., Robertson, S. D., Stewart, A. & Towie, S. (2020). Z. Anorg. Allge Chem. 646, 726-733.]). A few other li­thia­ted solid state structures of 2-picoline were published, for example bis­(μ2-dimesitylborinato)bis­(2-methyl­pyridine)­dilithium (ROLRIU; Saravana et al. (2009[Saravana, K. T. P., Son, J.-H. & Hoefelmeyer, J. D. (2009). Acta Cryst. E65, m179.]). However, it should be mentioned that the above structure and many other lithium 2-picoline complexes do not include the deprotonation of the methyl substituent and thus differ from the solid-state structures, accordingly this research. For example, bis­(μ2-tetra­hydro­borato)tetra­kis­(2-methyl­pyridine)­dilithium (HIWYOC; Gálvez Ruiz et al., 2008[Gálvez Ruiz, J. C., Nöth, H. & Warchhold, M. (2008). Eur. J. Inorg. Chem. pp. 251-266.]). Compared to the few li­thia­ted structures of 2-picoline, there are many other coordination complexes with neutral 2-picoline. For example, between 2-picoline and transition metals, such as trans-di­iodo­bis­(2-picoline)platinum(II) (KARVEE; Tessier & Rochon, 1999[Tessier, C. & Rochon, F. D. (1999). Inorg. Chim. Acta, 295, 25-38.]) or between 2-picolyl cations and different anions, for example bis­(2-methyl­pyridinium)tetra­bromo­copper(II) (BACHOD; Luque et al., 2001[Luque, A., Sertucha, J., Castillo, O. & Román, P. (2001). New J. Chem. 25, 1208-1214.]).

5. Synthesis and crystallization

On account of the air-sensitive nature of organolithium compounds, it was crucial to work with Schlenk techniques under an argon atmosphere. Pre-dried and distilled tetra­hydro­furan (1.00 ml) was added to an evacuated 25 ml Schlenk flask and 2-picoline (0.09 g, 1.00 mmol, 1.00 eq.) was added. After cooling down the reaction mixture to 193 K, n-butyl­lithium (2.5 M in hexane, 0.44 ml, 1.10 mmol, 1.10 eq.) was added. The resulting orange-colored suspension was heated up to 233 K over the period of 1 h. Afterwards the mixture was layered over by n-pentane (2.00 ml) and stored at 193 K. After 24 h, orange block-shaped crystals of the title compound were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms except for H1A and H1B were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. The hydrogen atoms H1A and H1B were refined freely.

Table 3
Experimental details

Crystal data
Chemical formula [Li(C6H6N)(C4H8O)3]
Mr 315.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.267 (3), 13.178 (4), 15.053 (5)
β (°) 94.437 (6)
V3) 1832.7 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.39 × 0.29 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.493, 0.570
No. of measured, independent and observed [I > 2σ(I)] reflections 58129, 10326, 7724
Rint 0.048
(sin θ/λ)max−1) 0.909
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.04
No. of reflections 10326
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.68, −0.39
Computer programs: APEX2 and SAINT V8.40B (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(2-Methylidene-1,2-dihydropyridinium-κN)tris(tetrahydrofuran-κO)lithium top
Crystal data top
[Li(C6H6N)(C4H8O)3]F(000) = 688
Mr = 315.37Dx = 1.143 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.267 (3) ÅCell parameters from 812 reflections
b = 13.178 (4) Åθ = 2.7–17.2°
c = 15.053 (5) ŵ = 0.08 mm1
β = 94.437 (6)°T = 100 K
V = 1832.7 (10) Å3Block, orange
Z = 40.39 × 0.29 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
7724 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 40.2°, θmin = 2.1°
Tmin = 0.493, Tmax = 0.570h = 1514
58129 measured reflectionsk = 2320
10326 independent reflectionsl = 2723
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.2483P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
10326 reflectionsΔρmax = 0.68 e Å3
226 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54688 (6)0.40545 (4)0.69990 (4)0.02005 (10)
O20.25473 (6)0.37020 (4)0.59195 (3)0.01990 (10)
O30.40664 (7)0.59499 (4)0.60466 (4)0.02251 (11)
N10.27503 (7)0.50208 (5)0.78389 (4)0.01709 (10)
C10.05286 (9)0.55119 (6)0.70141 (5)0.02052 (13)
H1A0.0958 (14)0.5399 (11)0.6444 (9)0.031 (3)*
H1B0.0492 (14)0.5759 (10)0.6979 (8)0.026 (3)*
C20.13184 (8)0.53679 (5)0.78198 (4)0.01576 (11)
C30.07194 (8)0.55663 (5)0.86681 (5)0.01810 (12)
H30.02620.57740.86730.022*
C40.15372 (9)0.54601 (6)0.94577 (5)0.02027 (13)
H40.11280.56011.00040.024*
C50.29996 (9)0.51389 (6)0.94596 (5)0.02199 (14)
H50.36000.50700.99970.026*
C60.35063 (8)0.49311 (6)0.86368 (5)0.01989 (13)
H60.44790.47040.86350.024*
C70.55077 (9)0.30305 (6)0.73460 (5)0.02141 (13)
H7A0.50910.25470.68920.026*
H7B0.49560.29830.78820.026*
C80.70987 (9)0.28060 (6)0.75781 (6)0.02488 (15)
H8A0.75770.25670.70510.030*
H8B0.72310.22920.80570.030*
C90.76766 (10)0.38425 (7)0.78926 (6)0.02664 (16)
H9A0.74870.39700.85210.032*
H9B0.87290.39020.78280.032*
C100.68127 (9)0.45639 (6)0.72633 (6)0.02482 (15)
H10A0.66250.52100.75700.030*
H10B0.73510.47140.67360.030*
C110.17241 (9)0.29871 (6)0.64195 (5)0.02126 (13)
H11A0.14760.32910.69900.026*
H11B0.22880.23590.65490.026*
C120.03647 (10)0.27587 (7)0.58261 (6)0.02632 (16)
H12A0.04100.32570.59170.032*
H12B0.00020.20660.59330.032*
C130.09069 (11)0.28551 (6)0.48928 (6)0.02723 (16)
H13A0.14290.22370.47260.033*
H13B0.01010.29910.44380.033*
C140.19207 (10)0.37589 (6)0.50112 (5)0.02495 (15)
H14A0.26840.37220.45870.030*
H14B0.13800.44020.49100.030*
C150.37218 (13)0.62291 (7)0.51309 (5)0.0318 (2)
H15A0.27190.60250.49340.038*
H15B0.43930.58960.47410.038*
C160.3882 (2)0.73688 (8)0.50938 (7)0.0516 (4)
H16A0.48850.75650.49880.062*0.717 (5)
H16B0.32090.76660.46210.062*0.717 (5)
H16C0.46040.75540.46700.062*0.283 (5)
H16D0.29450.76840.48890.062*0.283 (5)
C170.3499 (2)0.76969 (9)0.60076 (10)0.0299 (4)0.717 (5)
H17A0.39940.83390.61880.036*0.717 (5)
H17B0.24410.77920.60210.036*0.717 (5)
C17A0.4337 (5)0.7718 (2)0.59564 (19)0.0232 (9)0.283 (5)
H17C0.38010.83390.61000.028*0.283 (5)
H17D0.53850.78740.60000.028*0.283 (5)
C180.40128 (13)0.68536 (6)0.65944 (6)0.0325 (2)
H18A0.49870.70090.68790.039*0.717 (5)
H18B0.33440.67490.70680.039*0.717 (5)
H18C0.47500.68250.71060.039*0.283 (5)
H18D0.30450.69380.68210.039*0.283 (5)
Li10.36132 (16)0.47086 (10)0.66828 (9)0.0189 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (2)0.0180 (2)0.0236 (2)0.00114 (17)0.00041 (18)0.00186 (17)
O20.0242 (3)0.0201 (2)0.01507 (19)0.00422 (18)0.00091 (17)0.00015 (16)
O30.0354 (3)0.0150 (2)0.0172 (2)0.00083 (19)0.0025 (2)0.00046 (16)
N10.0175 (3)0.0193 (2)0.0143 (2)0.00114 (19)0.00059 (18)0.00134 (17)
C10.0204 (3)0.0227 (3)0.0180 (3)0.0024 (2)0.0009 (2)0.0007 (2)
C20.0176 (3)0.0134 (2)0.0163 (2)0.00083 (19)0.0013 (2)0.00071 (18)
C30.0199 (3)0.0164 (2)0.0184 (3)0.0007 (2)0.0041 (2)0.0020 (2)
C40.0243 (3)0.0205 (3)0.0164 (3)0.0030 (2)0.0042 (2)0.0035 (2)
C50.0241 (3)0.0269 (3)0.0146 (2)0.0008 (3)0.0007 (2)0.0039 (2)
C60.0189 (3)0.0244 (3)0.0161 (3)0.0010 (2)0.0005 (2)0.0029 (2)
C70.0211 (3)0.0172 (3)0.0257 (3)0.0014 (2)0.0002 (2)0.0007 (2)
C80.0222 (3)0.0237 (3)0.0281 (4)0.0028 (3)0.0017 (3)0.0016 (3)
C90.0239 (4)0.0303 (4)0.0247 (3)0.0053 (3)0.0056 (3)0.0020 (3)
C100.0244 (4)0.0222 (3)0.0271 (3)0.0064 (3)0.0027 (3)0.0016 (3)
C110.0278 (4)0.0185 (3)0.0173 (3)0.0030 (2)0.0007 (2)0.0015 (2)
C120.0244 (4)0.0244 (3)0.0298 (4)0.0050 (3)0.0006 (3)0.0003 (3)
C130.0362 (4)0.0227 (3)0.0213 (3)0.0047 (3)0.0076 (3)0.0016 (2)
C140.0351 (4)0.0234 (3)0.0156 (3)0.0047 (3)0.0025 (3)0.0016 (2)
C150.0580 (6)0.0211 (3)0.0163 (3)0.0044 (3)0.0028 (3)0.0001 (2)
C160.1042 (11)0.0230 (4)0.0273 (4)0.0134 (5)0.0030 (6)0.0074 (3)
C170.0322 (10)0.0159 (4)0.0408 (7)0.0010 (4)0.0016 (5)0.0044 (4)
C17A0.028 (2)0.0150 (9)0.0251 (12)0.0041 (9)0.0038 (10)0.0015 (8)
C180.0597 (6)0.0175 (3)0.0201 (3)0.0080 (3)0.0022 (3)0.0030 (2)
Li10.0223 (6)0.0184 (5)0.0159 (5)0.0007 (5)0.0011 (4)0.0001 (4)
Geometric parameters (Å, º) top
Li1—O11.9493 (16)C10—H10A0.9900
Li1—O21.9698 (15)C10—H10B0.9900
Li1—O31.9576 (15)C11—H11A0.9900
Li1—N12.0131 (16)C11—H11B0.9900
O1—C71.4465 (10)C11—C121.5170 (12)
O1—C101.4433 (10)C12—H12A0.9900
O2—C111.4577 (10)C12—H12B0.9900
O2—C141.4454 (10)C12—C131.5335 (14)
O3—C151.4384 (11)C13—H13A0.9900
O3—C181.4515 (10)C13—H13B0.9900
N1—C21.4017 (10)C13—C141.5189 (12)
N1—C61.3479 (10)C14—H14A0.9900
C1—H1A0.985 (14)C14—H14B0.9900
C1—H1B0.998 (13)C15—H15A0.9900
C1—C21.3804 (10)C15—H15B0.9900
C2—C31.4548 (10)C15—C161.5107 (14)
C3—H30.9500C16—H16A0.9900
C3—C41.3664 (11)C16—H16B0.9900
C4—H40.9500C16—H16C0.9900
C4—C51.4196 (12)C16—H16D0.9900
C5—H50.9500C16—C171.510 (2)
C5—C61.3855 (11)C16—C17A1.411 (3)
C6—H60.9500C17—H17A0.9900
C7—H7A0.9900C17—H17B0.9900
C7—H7B0.9900C17—C181.4755 (16)
C7—C81.5177 (12)C17A—H17C0.9900
C8—H8A0.9900C17A—H17D0.9900
C8—H8B0.9900C17A—C181.535 (3)
C8—C91.5288 (13)C18—H18A0.9900
C9—H9A0.9900C18—H18B0.9900
C9—H9B0.9900C18—H18C0.9900
C9—C101.5248 (12)C18—H18D0.9900
C7—O1—Li1119.84 (6)H12A—C12—H12B109.2
C10—O1—C7109.73 (6)C13—C12—H12A111.4
C10—O1—Li1125.99 (7)C13—C12—H12B111.4
C11—O2—Li1113.13 (6)C12—C13—H13A111.5
C14—O2—C11109.51 (6)C12—C13—H13B111.5
C14—O2—Li1131.57 (6)H13A—C13—H13B109.3
C15—O3—C18108.65 (6)C14—C13—C12101.59 (6)
C15—O3—Li1129.97 (7)C14—C13—H13A111.5
C18—O3—Li1112.93 (7)C14—C13—H13B111.5
C2—N1—Li1119.19 (6)O2—C14—C13105.66 (6)
C6—N1—C2118.22 (6)O2—C14—H14A110.6
C6—N1—Li1122.58 (7)O2—C14—H14B110.6
H1A—C1—H1B116.7 (11)C13—C14—H14A110.6
C2—C1—H1A121.5 (8)C13—C14—H14B110.6
C2—C1—H1B121.8 (7)H14A—C14—H14B108.7
N1—C2—C3117.74 (6)O3—C15—H15A110.5
C1—C2—N1119.98 (6)O3—C15—H15B110.5
C1—C2—C3122.28 (7)O3—C15—C16105.94 (7)
C2—C3—H3119.3H15A—C15—H15B108.7
C4—C3—C2121.43 (7)C16—C15—H15A110.5
C4—C3—H3119.3C16—C15—H15B110.5
C3—C4—H4120.1C15—C16—H16A111.2
C3—C4—C5119.83 (7)C15—C16—H16B111.2
C5—C4—H4120.1C15—C16—H16C110.0
C4—C5—H5121.7C15—C16—H16D110.0
C6—C5—C4116.52 (7)H16A—C16—H16B109.1
C6—C5—H5121.7H16C—C16—H16D108.4
N1—C6—C5126.19 (7)C17—C16—C15102.72 (9)
N1—C6—H6116.9C17—C16—H16A111.2
C5—C6—H6116.9C17—C16—H16B111.2
O1—C7—H7A110.7C17A—C16—C15108.27 (13)
O1—C7—H7B110.7C17A—C16—H16C110.0
O1—C7—C8105.16 (6)C17A—C16—H16D110.0
H7A—C7—H7B108.8C16—C17—H17A111.0
C8—C7—H7A110.7C16—C17—H17B111.0
C8—C7—H7B110.7H17A—C17—H17B109.0
C7—C8—H8A111.4C18—C17—C16104.00 (10)
C7—C8—H8B111.4C18—C17—H17A111.0
C7—C8—C9102.00 (7)C18—C17—H17B111.0
H8A—C8—H8B109.2C16—C17A—H17C110.5
C9—C8—H8A111.4C16—C17A—H17D110.5
C9—C8—H8B111.4C16—C17A—C18105.94 (18)
C8—C9—H9A111.3H17C—C17A—H17D108.7
C8—C9—H9B111.3C18—C17A—H17C110.5
H9A—C9—H9B109.2C18—C17A—H17D110.5
C10—C9—C8102.13 (7)O3—C18—C17107.55 (8)
C10—C9—H9A111.3O3—C18—C17A103.68 (13)
C10—C9—H9B111.3O3—C18—H18A110.2
O1—C10—C9106.36 (7)O3—C18—H18B110.2
O1—C10—H10A110.5O3—C18—H18C111.0
O1—C10—H10B110.5O3—C18—H18D111.0
C9—C10—H10A110.5C17—C18—H18A110.2
C9—C10—H10B110.5C17—C18—H18B110.2
H10A—C10—H10B108.6C17A—C18—H18C111.0
O2—C11—H11A110.6C17A—C18—H18D111.0
O2—C11—H11B110.6H18A—C18—H18B108.5
O2—C11—C12105.55 (6)H18C—C18—H18D109.0
H11A—C11—H11B108.8O1—Li1—O2103.75 (7)
C12—C11—H11A110.6O1—Li1—O3105.69 (7)
C12—C11—H11B110.6O1—Li1—N1106.33 (7)
C11—C12—H12A111.4O2—Li1—N1115.29 (7)
C11—C12—H12B111.4O3—Li1—O2113.22 (7)
C11—C12—C13101.94 (7)O3—Li1—N1111.51 (7)
O1—C7—C8—C934.54 (8)C14—O2—C11—C1211.21 (8)
O2—C11—C12—C1331.49 (8)C15—O3—C18—C174.90 (13)
O3—C15—C16—C1730.31 (15)C15—O3—C18—C17A26.28 (19)
O3—C15—C16—C17A1.4 (2)C15—C16—C17—C1832.73 (16)
N1—C2—C3—C42.67 (10)C15—C16—C17A—C1817.3 (3)
C1—C2—C3—C4177.20 (7)C16—C17—C18—O323.87 (15)
C2—N1—C6—C50.86 (12)C16—C17A—C18—O326.7 (3)
C2—C3—C4—C50.71 (11)C18—O3—C15—C1616.25 (13)
C3—C4—C5—C61.14 (11)Li1—O1—C7—C8175.91 (7)
C4—C5—C6—N11.12 (13)Li1—O1—C10—C9150.06 (8)
C6—N1—C2—C1177.20 (7)Li1—O2—C11—C12145.25 (7)
C6—N1—C2—C32.67 (9)Li1—O2—C14—C13164.78 (8)
C7—O1—C10—C95.96 (9)Li1—O3—C15—C16161.28 (10)
C7—C8—C9—C1037.15 (9)Li1—O3—C18—C17146.62 (11)
C8—C9—C10—O127.22 (9)Li1—O3—C18—C17A177.80 (17)
C10—O1—C7—C818.19 (8)Li1—N1—C2—C11.37 (10)
C11—O2—C14—C1314.18 (9)Li1—N1—C2—C3178.76 (6)
C11—C12—C13—C1439.06 (8)Li1—N1—C6—C5179.37 (8)
C12—C13—C14—O233.23 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.992.633.3695 (14)131
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by scholarships from the Fonds der Chemischen Industrie and Studienstiftung des Deutschen Volkes to AS.

References

First citationBeumel, O. F. Jr, Smith, W. N. & Rybalka, B. (1974). Synthesis, 1974, 43–45.  Google Scholar
First citationBond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1089–o1090.  CrossRef IUCr Journals Google Scholar
First citationBrouillet, E. V., Kennedy, A. R., Krämer, T., Mulvey, R. E., Robertson, S. D., Stewart, A. & Towie, S. (2020). Z. Anorg. Allge Chem. 646, 726–733.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGálvez Ruiz, J. C., Nöth, H. & Warchhold, M. (2008). Eur. J. Inorg. Chem. pp. 251–266.  Google Scholar
First citationGessner, V. H., Däschlein, C. & Strohmann, C. (2009). Chem. Eur. J. 15, 3320–3334.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKennedy, A. R., Mulvey, R. E., Urquhart, R. I. & Robertson, S. D. (2014). Dalton Trans. 43, 14265–14274.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuque, A., Sertucha, J., Castillo, O. & Román, P. (2001). New J. Chem. 25, 1208–1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOtt, H., Pieper, U., Leusser, D., Flierler, U., Henn, J. & Stalke, D. (2009). Angew. Chem. Int. Ed. 48, 2978–2982.  Web of Science CSD CrossRef CAS Google Scholar
First citationRademacher, P. (1987). Strukturen organischer Moleküle. Weinheim: VCH.  Google Scholar
First citationSaravana, K. T. P., Son, J.-H. & Hoefelmeyer, J. D. (2009). Acta Cryst. E65, m179.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTessier, C. & Rochon, F. D. (1999). Inorg. Chim. Acta, 295, 25–38.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds