research communications
Temperature-dependent solid-state
with in the of 4-methoxyanilinium chlorideaDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu
At room temperature, the title salt, C7H10NO+·Cl−, is orthorhombic, Pbca with Z′ = 1, as previously reported [Zhao (2009). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state to a twinned monoclinic P21/c structure with Z′ = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent molecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the methoxy group is nearly coplanar with the rest of the molecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended orthorhombic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane.
1. Chemical context
4-Alkoxyacetanilides (4-AAs), represented by phenacetin, or N-(4-ethoxyphenyl)acetamide (C10H13NO2), played a pivotal role in introducing synthetic fever reduction and non-opioid analgesics to the global pharmaceutical market in the early 1900s. The analgesic effects of 4-AAs result from their impact on the sensory tracts of the spinal cord, while their antipyretic actions predominantly occur in the brain, where they lower the temperature set point (Dalmann et al., 2015; Flower & Vane, 1972). In vivo, the primary metabolic pathway involves oxidative O-dealkylation, producing N-(4-hydroxyphenyl)acetamide, C8H9NO3, a clinically significant analgesic (Nohmi et al., 1984). However, a minor fraction may undergo deacylation, leading to the formation of carcinogenic and kidney-damaging 4-alkoxyanilines Nohmi et al., 1984; Prescott, 1980). This study centers on the analysis of the title salt, 4-methoxyaniline hydrochloride (4-methoxyanilinium chloride or 4-MAC), I, aiming to expound not only its potential kidney-damaging properties but also provide structural data for exploring molecular targets through molecular docking and molecular dynamic simulations.
2. Structural commentary
At room temperature (298 K), I crystallizes in the orthorhombic Pbca with one formula unit in the The cell dimensions are a = 8.8778 (5), b = 8.4660 (5), c = 21.7236 (11) Å and V = 1632.73 (16) Å3. Cooling the sample causes a solid-state to a twinned structure with lower symmetry and two formula units in the At 250 K, the structure is still orthorhombic, but at 200 K, the is monoclinic P21/c with a = 8.3772 (11), b = 21.715 (3), c = 8.8466 (12) Å, β = 90.039 (4)° and V = 1609.3 (4) Å3. At T = 100 K, the monoclinic cell parameters are a = 8.3039 (6), b = 21.6993 (15), c = 8.8495 (6) Å, β = 90.077 (2)° and V = 1594.58 (19) Å3.
The , closely aligns with the published structure (Zhao, 2009) except that we find disorder in the NH hydrogen atoms, while Zhao treated them as ordered. Using Zhao's intensity data, we do see evidence of a second orientation of the NH3 group, and we also see it from our crystal when warmed to 298 K. The methoxy group in I is nearly coplanar with the rest of the molecule, with the torsion angle C7—O1—C4—C3 = −7.0 (2)°.
at 250 K, shown in Fig. 1The . The major difference between the two independent molecules is the conformation of the –NH3 group, in which one molecule has one set of the disordered positions in the 250 K structure and the second has the other. As in the 250 K structure, the methoxy groups are twisted only slightly out of the planes of the aromatic rings, with C7—O1—C4—C3 and C14—O2—C11—C10 torsion angles of −6.94 (12) and −9.35 (12)°, respectively.
of the 100 K structure is shown in Fig. 23. Supramolecular features
In both structures, the intermolecular interactions are predominantly N—H⋯Cl hydrogen bonds, as listed in Tables 1 and 2 and illustrated in Figs. 3 and 4. The N⋯Cl separations are in the range 3.1201 (8)–3.4047 (8) Å in the monoclinic 100 K structure and 3.1570 (15)–3.3323 (18) Å in the orthorhombic 250 K structure. In Fig. 4, it can be seen that for each NH3 group, two of the H atoms are involved in direct hydrogen bonds and the third in a bifurcated N—H⋯(Cl,Cl) bond with two acceptors. The graph set (Etter et al., 1990) patterns are centrosymmetric R42(8) rings and R22(4) rings. At 250 K, (001) sheets arise in the extended structure and at 100 K similar sheets propagate in the (010) plane, due to the change in unit-cell settings.
|
4. Database survey
A review of the literature revealed that the room temperature (298 K) structure of 4-methoxyanilinium chloride was previously reported (Zhao, 2009; Cambridge Structural Database refcode CUCTUQ). Similarly, the structure of 4-ethoxyanilinium chloride at 100 K has been documented (Fu, 2010; Hines et al., 2023). However, these studies did not provide information on phase transitions and twinning.
5. Synthesis and crystallization
A 7H10ClNO (CAS 20265-97-8 from AmBeed, Arlington Heights, IL, USA) in boiling water was allowed to pass through a short column of The resulting colorless solution (eluent) was left to cool to room temperature and evaporate slowly in the dark. Pink laths of I, prepared through this process, were suitable for X-ray diffraction studies.
of the title compound, C6. Refinement
Crystal data, data collection and structure . For the structure at 250 K, all the H atoms were located in difference maps and those on carbon were relocated to geometrically idealized positions with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C) for the aromatic C atoms and C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The N-bound H atoms were idealized as six half-populated sites at 60° torsional intervals with N—H = 0.90 Å and Uiso(H) = 1.5Ueq(N) and the torsion angle was refined. For the structure at 100 K, the H atoms were handled similarly, except that C—H distances were fixed at 0.95 Å for aromatic C atoms and 0.98 Å for the methyl group, and the H atoms on N were ordered with their positions individually refined. The for the monoclinic structure is (1 0 0, 0 −1 0, 0 0 −1) and the BASF parameter refined to 0.4484 (6).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989023010812/hb8089sup1.cif
contains datablocks I_250K, I_100K, global. DOI:Structure factors: contains datablock I_250K. DOI: https://doi.org/10.1107/S2056989023010812/hb8089I_250Ksup2.hkl
Structure factors: contains datablock I_100K. DOI: https://doi.org/10.1107/S2056989023010812/hb8089I_100Ksup3.hkl
C7H10NO+·Cl− | Dx = 1.304 Mg m−3 |
Mr = 159.61 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9997 reflections |
a = 8.8689 (4) Å | θ = 3.8–27.4° |
b = 8.4361 (3) Å | µ = 0.40 mm−1 |
c = 21.7319 (9) Å | T = 250 K |
V = 1625.96 (12) Å3 | Lath fragment, pink |
Z = 8 | 0.34 × 0.31 × 0.15 mm |
F(000) = 672 |
Bruker Kappa APEXII CCD diffractometer | 2717 independent reflections |
Radiation source: fine-focus sealed tube | 2019 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 31.6°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→13 |
Tmin = 0.896, Tmax = 0.942 | k = −12→12 |
73425 measured reflections | l = −32→32 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0348P)2 + 0.6343P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.24 e Å−3 |
2717 reflections | Δρmin = −0.21 e Å−3 |
93 parameters | Extinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0070 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.74847 (4) | 0.51434 (4) | 0.52125 (2) | 0.03992 (12) | |
O1 | 0.65326 (14) | 0.80202 (15) | 0.20491 (5) | 0.0514 (3) | |
N1 | 0.52441 (19) | 0.75043 (18) | 0.45535 (6) | 0.0547 (4) | |
H1N | 0.584233 | 0.818422 | 0.475901 | 0.082* | 0.5 |
H2N | 0.427238 | 0.776832 | 0.461481 | 0.082* | 0.5 |
H3N | 0.540574 | 0.651270 | 0.469129 | 0.082* | 0.5 |
H4N | 0.450464 | 0.679260 | 0.461773 | 0.082* | 0.5 |
H5N | 0.607459 | 0.720851 | 0.476193 | 0.082* | 0.5 |
H6N | 0.494123 | 0.846412 | 0.468545 | 0.082* | 0.5 |
C1 | 0.55894 (17) | 0.75820 (17) | 0.38936 (7) | 0.0388 (3) | |
C2 | 0.48090 (17) | 0.66401 (19) | 0.34891 (7) | 0.0427 (3) | |
H2 | 0.408003 | 0.592462 | 0.363560 | 0.051* | |
C3 | 0.51002 (17) | 0.67476 (19) | 0.28628 (7) | 0.0406 (3) | |
H3 | 0.456473 | 0.610978 | 0.258349 | 0.049* | |
C4 | 0.61767 (17) | 0.77925 (17) | 0.26521 (6) | 0.0371 (3) | |
C5 | 0.6976 (2) | 0.8710 (2) | 0.30673 (8) | 0.0481 (4) | |
H5 | 0.772702 | 0.940379 | 0.292416 | 0.058* | |
C6 | 0.6681 (2) | 0.8615 (2) | 0.36875 (7) | 0.0484 (4) | |
H6 | 0.721776 | 0.924909 | 0.396768 | 0.058* | |
C7 | 0.5863 (2) | 0.6992 (3) | 0.16061 (8) | 0.0638 (5) | |
H7A | 0.611485 | 0.590164 | 0.170382 | 0.096* | |
H7B | 0.624205 | 0.725123 | 0.119973 | 0.096* | |
H7C | 0.477664 | 0.712315 | 0.161343 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.03990 (18) | 0.04090 (19) | 0.03894 (18) | −0.00135 (14) | −0.00086 (16) | 0.00395 (13) |
O1 | 0.0576 (7) | 0.0614 (7) | 0.0351 (6) | 0.0028 (6) | 0.0091 (5) | 0.0037 (5) |
N1 | 0.0653 (9) | 0.0622 (9) | 0.0364 (7) | 0.0194 (7) | 0.0085 (6) | 0.0064 (6) |
C1 | 0.0407 (7) | 0.0429 (7) | 0.0328 (6) | 0.0138 (6) | 0.0038 (6) | 0.0053 (6) |
C2 | 0.0373 (7) | 0.0436 (8) | 0.0473 (8) | −0.0006 (6) | 0.0065 (6) | 0.0055 (6) |
C3 | 0.0375 (8) | 0.0435 (8) | 0.0407 (7) | 0.0009 (6) | 0.0001 (6) | −0.0035 (6) |
C4 | 0.0375 (7) | 0.0391 (7) | 0.0347 (7) | 0.0073 (6) | 0.0040 (6) | 0.0036 (5) |
C5 | 0.0484 (9) | 0.0496 (9) | 0.0463 (9) | −0.0129 (7) | 0.0036 (7) | 0.0052 (7) |
C6 | 0.0528 (9) | 0.0504 (9) | 0.0419 (8) | −0.0056 (7) | −0.0049 (7) | −0.0028 (7) |
C7 | 0.0643 (12) | 0.0896 (14) | 0.0374 (8) | 0.0102 (11) | 0.0031 (8) | −0.0106 (9) |
O1—C4 | 1.3615 (17) | C2—C3 | 1.388 (2) |
O1—C7 | 1.425 (2) | C2—H2 | 0.9400 |
N1—C1 | 1.4679 (19) | C3—C4 | 1.378 (2) |
N1—H1N | 0.9000 | C3—H3 | 0.9400 |
N1—H2N | 0.9000 | C4—C5 | 1.384 (2) |
N1—H3N | 0.9000 | C5—C6 | 1.375 (2) |
N1—H4N | 0.9000 | C5—H5 | 0.9400 |
N1—H5N | 0.9000 | C6—H6 | 0.9400 |
N1—H6N | 0.9000 | C7—H7A | 0.9700 |
C1—C2 | 1.372 (2) | C7—H7B | 0.9700 |
C1—C6 | 1.377 (2) | C7—H7C | 0.9700 |
C4—O1—C7 | 117.88 (14) | C4—C3—C2 | 119.77 (14) |
C1—N1—H1N | 109.5 | C4—C3—H3 | 120.1 |
C1—N1—H2N | 109.5 | C2—C3—H3 | 120.1 |
H1N—N1—H2N | 109.5 | O1—C4—C3 | 124.81 (14) |
C1—N1—H3N | 109.5 | O1—C4—C5 | 115.46 (14) |
H1N—N1—H3N | 109.5 | C3—C4—C5 | 119.73 (13) |
H2N—N1—H3N | 109.5 | C6—C5—C4 | 120.60 (15) |
C1—N1—H4N | 109.5 | C6—C5—H5 | 119.7 |
C1—N1—H5N | 109.5 | C4—C5—H5 | 119.7 |
H4N—N1—H5N | 109.5 | C5—C6—C1 | 119.28 (15) |
C1—N1—H6N | 109.5 | C5—C6—H6 | 120.4 |
H4N—N1—H6N | 109.5 | C1—C6—H6 | 120.4 |
H5N—N1—H6N | 109.5 | O1—C7—H7A | 109.5 |
C2—C1—C6 | 120.83 (14) | O1—C7—H7B | 109.5 |
C2—C1—N1 | 119.65 (14) | H7A—C7—H7B | 109.5 |
C6—C1—N1 | 119.51 (15) | O1—C7—H7C | 109.5 |
C1—C2—C3 | 119.76 (14) | H7A—C7—H7C | 109.5 |
C1—C2—H2 | 120.1 | H7B—C7—H7C | 109.5 |
C3—C2—H2 | 120.1 | ||
C6—C1—C2—C3 | −1.2 (2) | C2—C3—C4—C5 | 1.0 (2) |
N1—C1—C2—C3 | 177.97 (14) | O1—C4—C5—C6 | 178.05 (15) |
C1—C2—C3—C4 | 0.4 (2) | C3—C4—C5—C6 | −1.5 (2) |
C7—O1—C4—C3 | −7.0 (2) | C4—C5—C6—C1 | 0.7 (3) |
C7—O1—C4—C5 | 173.48 (15) | C2—C1—C6—C5 | 0.7 (2) |
C2—C3—C4—O1 | −178.58 (14) | N1—C1—C6—C5 | −178.52 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1i | 0.90 | 2.43 | 3.3265 (18) | 174 |
N1—H2N···Cl1ii | 0.90 | 2.40 | 3.1915 (15) | 147 |
N1—H3N···CL1 | 0.90 | 2.45 | 3.1570 (16) | 135 |
N1—H4N···Cl1iii | 0.90 | 2.43 | 3.3323 (18) | 180 |
N1—H5N···Cl1 | 0.90 | 2.36 | 3.1570 (15) | 148 |
N1—H6N···Cl1ii | 0.90 | 2.49 | 3.1915 (17) | 136 |
C6—H6···Cl1i | 0.94 | 2.82 | 3.6323 (16) | 145 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x−1/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z+1. |
C7H10NO+·Cl− | F(000) = 672 |
Mr = 159.61 | Dx = 1.330 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3039 (6) Å | Cell parameters from 9875 reflections |
b = 21.6993 (15) Å | θ = 3.4–41.5° |
c = 8.8495 (6) Å | µ = 0.41 mm−1 |
β = 90.077 (2)° | T = 100 K |
V = 1594.58 (19) Å3 | Needle fragment, pink |
Z = 8 | 0.43 × 0.41 × 0.21 mm |
Bruker Kappa APEXII CCD diffractometer | 10832 independent reflections |
Radiation source: fine-focus sealed tube | 9310 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 41.9°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→15 |
Tmin = 0.873, Tmax = 0.919 | k = −40→40 |
48397 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1702P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
10832 reflections | Δρmax = 0.47 e Å−3 |
202 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.46961 (2) | 0.52412 (2) | 0.74414 (2) | 0.01433 (3) | |
Cl2 | 1.00704 (2) | 0.51981 (2) | 0.75416 (2) | 0.01431 (3) | |
O1 | 0.81503 (9) | 0.79863 (3) | 0.36295 (8) | 0.01972 (12) | |
N1 | 0.75005 (10) | 0.54837 (3) | 0.50236 (8) | 0.01524 (11) | |
H11N | 0.8313 (18) | 0.5382 (6) | 0.5613 (16) | 0.023* | |
H12N | 0.7496 (18) | 0.5254 (6) | 0.4219 (16) | 0.023* | |
H13N | 0.6580 (18) | 0.5390 (6) | 0.5566 (17) | 0.023* | |
C1 | 0.75955 (9) | 0.61391 (3) | 0.46333 (8) | 0.01282 (11) | |
C2 | 0.66656 (10) | 0.65590 (4) | 0.54219 (9) | 0.01463 (13) | |
H2 | 0.592916 | 0.642048 | 0.616899 | 0.018* | |
C3 | 0.68159 (10) | 0.71877 (4) | 0.51130 (9) | 0.01510 (12) | |
H3 | 0.618985 | 0.747903 | 0.565734 | 0.018* | |
C4 | 0.78835 (10) | 0.73857 (3) | 0.40075 (9) | 0.01439 (12) | |
C5 | 0.87901 (11) | 0.69542 (4) | 0.31922 (10) | 0.01746 (14) | |
H5 | 0.949889 | 0.708935 | 0.241833 | 0.021* | |
C6 | 0.86556 (10) | 0.63310 (4) | 0.35115 (10) | 0.01644 (13) | |
H6 | 0.928009 | 0.603820 | 0.297051 | 0.020* | |
C7 | 0.71299 (15) | 0.84409 (4) | 0.43121 (12) | 0.02472 (19) | |
H7A | 0.600193 | 0.834617 | 0.408214 | 0.037* | |
H7B | 0.739987 | 0.884893 | 0.391123 | 0.037* | |
H7C | 0.729058 | 0.843809 | 0.540940 | 0.037* | |
O2 | 0.69262 (8) | 0.20673 (3) | 0.82982 (8) | 0.01905 (11) | |
N2 | 0.73702 (9) | 0.45944 (3) | 0.94929 (8) | 0.01440 (11) | |
H21N | 0.7316 (18) | 0.4677 (6) | 1.0489 (16) | 0.022* | |
H22N | 0.6576 (18) | 0.4795 (6) | 0.9008 (16) | 0.022* | |
H23N | 0.8253 (18) | 0.4776 (6) | 0.9085 (16) | 0.022* | |
C8 | 0.72962 (9) | 0.39304 (3) | 0.91915 (8) | 0.01249 (11) | |
C9 | 0.82458 (10) | 0.35313 (4) | 1.00292 (9) | 0.01498 (12) | |
H9 | 0.895113 | 0.368738 | 1.078368 | 0.018* | |
C10 | 0.81599 (10) | 0.28992 (3) | 0.97583 (9) | 0.01480 (12) | |
H10 | 0.880248 | 0.262235 | 1.033186 | 0.018* | |
C11 | 0.71267 (9) | 0.26745 (3) | 0.86417 (9) | 0.01383 (12) | |
C12 | 0.61959 (10) | 0.30835 (4) | 0.77920 (10) | 0.01777 (14) | |
H12 | 0.550715 | 0.293062 | 0.702026 | 0.021* | |
C13 | 0.62716 (10) | 0.37124 (4) | 0.80690 (10) | 0.01671 (13) | |
H13 | 0.563053 | 0.399067 | 0.749807 | 0.020* | |
C14 | 0.80131 (12) | 0.16348 (4) | 0.89757 (11) | 0.02172 (16) | |
H14A | 0.912339 | 0.174734 | 0.872250 | 0.033* | |
H14B | 0.778211 | 0.122036 | 0.859247 | 0.033* | |
H14C | 0.787721 | 0.164090 | 1.007547 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01254 (6) | 0.01532 (6) | 0.01511 (7) | −0.00041 (5) | −0.00015 (8) | 0.00016 (6) |
Cl2 | 0.01256 (6) | 0.01453 (6) | 0.01584 (7) | −0.00127 (5) | −0.00072 (8) | −0.00022 (6) |
O1 | 0.0248 (3) | 0.0133 (2) | 0.0211 (3) | −0.0012 (2) | −0.0017 (2) | 0.0031 (2) |
N1 | 0.0200 (3) | 0.0126 (2) | 0.0132 (3) | −0.0018 (2) | −0.0019 (2) | 0.00002 (19) |
C1 | 0.0144 (3) | 0.0126 (2) | 0.0114 (3) | −0.0006 (2) | −0.0012 (2) | −0.0003 (2) |
C2 | 0.0154 (3) | 0.0155 (3) | 0.0130 (3) | −0.0001 (2) | 0.0007 (2) | −0.0002 (2) |
C3 | 0.0168 (3) | 0.0149 (3) | 0.0136 (3) | 0.0019 (2) | −0.0001 (2) | −0.0010 (2) |
C4 | 0.0158 (3) | 0.0133 (3) | 0.0140 (3) | −0.0011 (2) | −0.0034 (2) | 0.0009 (2) |
C5 | 0.0187 (3) | 0.0169 (3) | 0.0168 (3) | −0.0015 (3) | 0.0047 (3) | 0.0013 (3) |
C6 | 0.0182 (3) | 0.0150 (3) | 0.0161 (3) | 0.0007 (2) | 0.0037 (3) | −0.0010 (2) |
C7 | 0.0372 (6) | 0.0143 (3) | 0.0226 (4) | 0.0052 (3) | −0.0034 (4) | 0.0003 (3) |
O2 | 0.0220 (3) | 0.0129 (2) | 0.0222 (3) | −0.0016 (2) | −0.0008 (2) | −0.0029 (2) |
N2 | 0.0182 (3) | 0.0126 (2) | 0.0124 (3) | −0.0008 (2) | 0.0008 (2) | 0.00002 (19) |
C8 | 0.0136 (3) | 0.0124 (2) | 0.0115 (3) | −0.0012 (2) | 0.0008 (2) | −0.0003 (2) |
C9 | 0.0166 (3) | 0.0149 (3) | 0.0134 (3) | −0.0003 (2) | −0.0026 (3) | −0.0014 (2) |
C10 | 0.0169 (3) | 0.0139 (3) | 0.0136 (3) | 0.0007 (2) | −0.0013 (2) | −0.0006 (2) |
C11 | 0.0147 (3) | 0.0129 (3) | 0.0139 (3) | −0.0023 (2) | 0.0023 (2) | −0.0014 (2) |
C12 | 0.0193 (3) | 0.0160 (3) | 0.0180 (4) | −0.0021 (2) | −0.0055 (3) | −0.0018 (2) |
C13 | 0.0181 (3) | 0.0153 (3) | 0.0167 (3) | −0.0010 (2) | −0.0050 (3) | 0.0011 (2) |
C14 | 0.0280 (4) | 0.0136 (3) | 0.0236 (4) | 0.0022 (3) | 0.0032 (3) | −0.0011 (3) |
O1—C4 | 1.3636 (10) | O2—C11 | 1.3624 (9) |
O1—C7 | 1.4343 (12) | O2—C14 | 1.4330 (11) |
N1—C1 | 1.4655 (10) | N2—C8 | 1.4667 (10) |
N1—H11N | 0.880 (15) | N2—H21N | 0.901 (14) |
N1—H12N | 0.870 (14) | N2—H22N | 0.899 (14) |
N1—H13N | 0.926 (15) | N2—H23N | 0.907 (15) |
C1—C2 | 1.3838 (11) | C8—C9 | 1.3856 (11) |
C1—C6 | 1.3915 (11) | C8—C13 | 1.3900 (11) |
C2—C3 | 1.3971 (11) | C9—C10 | 1.3941 (11) |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C3—C4 | 1.3893 (12) | C10—C11 | 1.3957 (11) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—C5 | 1.4020 (12) | C11—C12 | 1.3961 (11) |
C5—C6 | 1.3860 (11) | C12—C13 | 1.3879 (11) |
C5—H5 | 0.9500 | C12—H12 | 0.9500 |
C6—H6 | 0.9500 | C13—H13 | 0.9500 |
C7—H7A | 0.9800 | C14—H14A | 0.9800 |
C7—H7B | 0.9800 | C14—H14B | 0.9800 |
C7—H7C | 0.9800 | C14—H14C | 0.9800 |
C4—O1—C7 | 117.24 (7) | C11—O2—C14 | 117.60 (7) |
C1—N1—H11N | 109.9 (9) | C8—N2—H21N | 111.7 (8) |
C1—N1—H12N | 111.4 (9) | C8—N2—H22N | 111.0 (8) |
H11N—N1—H12N | 110.1 (13) | H21N—N2—H22N | 109.5 (12) |
C1—N1—H13N | 112.4 (8) | C8—N2—H23N | 112.8 (8) |
H11N—N1—H13N | 105.7 (12) | H21N—N2—H23N | 110.2 (13) |
H12N—N1—H13N | 107.2 (13) | H22N—N2—H23N | 101.1 (12) |
C2—C1—C6 | 121.11 (7) | C9—C8—C13 | 121.13 (7) |
C2—C1—N1 | 119.33 (7) | C9—C8—N2 | 119.54 (7) |
C6—C1—N1 | 119.53 (7) | C13—C8—N2 | 119.32 (7) |
C1—C2—C3 | 119.63 (8) | C8—C9—C10 | 119.60 (7) |
C1—C2—H2 | 120.2 | C8—C9—H9 | 120.2 |
C3—C2—H2 | 120.2 | C10—C9—H9 | 120.2 |
C4—C3—C2 | 119.81 (7) | C9—C10—C11 | 119.78 (7) |
C4—C3—H3 | 120.1 | C9—C10—H10 | 120.1 |
C2—C3—H3 | 120.1 | C11—C10—H10 | 120.1 |
O1—C4—C3 | 124.91 (7) | O2—C11—C10 | 124.79 (7) |
O1—C4—C5 | 115.12 (7) | O2—C11—C12 | 115.29 (7) |
C3—C4—C5 | 119.96 (7) | C10—C11—C12 | 119.91 (7) |
C6—C5—C4 | 120.22 (8) | C13—C12—C11 | 120.33 (7) |
C6—C5—H5 | 119.9 | C13—C12—H12 | 119.8 |
C4—C5—H5 | 119.9 | C11—C12—H12 | 119.8 |
C5—C6—C1 | 119.26 (7) | C12—C13—C8 | 119.23 (7) |
C5—C6—H6 | 120.4 | C12—C13—H13 | 120.4 |
C1—C6—H6 | 120.4 | C8—C13—H13 | 120.4 |
O1—C7—H7A | 109.5 | O2—C14—H14A | 109.5 |
O1—C7—H7B | 109.5 | O2—C14—H14B | 109.5 |
H7A—C7—H7B | 109.5 | H14A—C14—H14B | 109.5 |
O1—C7—H7C | 109.5 | O2—C14—H14C | 109.5 |
H7A—C7—H7C | 109.5 | H14A—C14—H14C | 109.5 |
H7B—C7—H7C | 109.5 | H14B—C14—H14C | 109.5 |
C6—C1—C2—C3 | −1.43 (12) | C13—C8—C9—C10 | −0.84 (12) |
N1—C1—C2—C3 | 176.47 (7) | N2—C8—C9—C10 | 179.11 (7) |
C1—C2—C3—C4 | 0.67 (12) | C8—C9—C10—C11 | 0.36 (12) |
C7—O1—C4—C3 | −6.94 (12) | C14—O2—C11—C10 | −9.35 (12) |
C7—O1—C4—C5 | 173.41 (8) | C14—O2—C11—C12 | 171.16 (8) |
C2—C3—C4—O1 | −178.79 (8) | C9—C10—C11—O2 | −178.87 (8) |
C2—C3—C4—C5 | 0.84 (12) | C9—C10—C11—C12 | 0.60 (12) |
O1—C4—C5—C6 | 178.02 (8) | O2—C11—C12—C13 | 178.42 (8) |
C3—C4—C5—C6 | −1.65 (12) | C10—C11—C12—C13 | −1.10 (13) |
C4—C5—C6—C1 | 0.91 (13) | C11—C12—C13—C8 | 0.63 (13) |
C2—C1—C6—C5 | 0.63 (12) | C9—C8—C13—C12 | 0.35 (13) |
N1—C1—C6—C5 | −177.26 (8) | N2—C8—C13—C12 | −179.60 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11N···Cl2 | 0.880 (15) | 2.279 (15) | 3.1450 (8) | 167.7 (13) |
N1—H12N···Cl1i | 0.870 (14) | 2.573 (14) | 3.2480 (7) | 135.2 (13) |
N1—H12N···Cl2ii | 0.870 (14) | 2.735 (15) | 3.3797 (8) | 132.1 (12) |
N1—H13N···Cl1 | 0.926 (15) | 2.304 (16) | 3.2080 (8) | 165.0 (13) |
N2—H21N···Cl1iii | 0.901 (14) | 2.487 (15) | 3.2318 (8) | 140.3 (12) |
N2—H21N···Cl2iv | 0.901 (14) | 2.795 (14) | 3.4047 (8) | 126.2 (11) |
N2—H22N···Cl1 | 0.899 (14) | 2.300 (15) | 3.1916 (8) | 171.3 (12) |
N2—H23N···Cl2 | 0.907 (15) | 2.234 (15) | 3.1201 (8) | 165.5 (13) |
C2—H2···Cl1 | 0.95 | 2.98 | 3.7487 (8) | 139 |
C6—H6···Cl2ii | 0.95 | 2.77 | 3.6055 (8) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y+1, −z+2. |
Funding information
Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P2O GM103424–21. The upgrade of the diffractometer was made possible by grant No. LEQSF (2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents. Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE.
References
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dalmann, R., Daulhac, L., Antri, M., Eschalier, A. & Mallet, C. (2015). Neuropharamacology 91, 63–70. Web of Science CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Flower, R. J. & Vane, J. R. (1972). Nature, 240, 410–411. CrossRef CAS PubMed Web of Science Google Scholar
Fu, X. (2010). Acta Cryst. E66, o1944. CrossRef IUCr Journals Google Scholar
Hines, J. E. III, Yerramsetty, S., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (refcode WIKRER, CCDC 2279486). CCDC, Cambridge, England. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525–4531. CrossRef CAS Google Scholar
Prescott, L. P. (1980). Br. J. Clin. Pharmacol. 10, 291S–298S. CrossRef PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, M. M. (2009). Acta Cryst. E65, o2378. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.