research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Temperature-dependent solid-state phase transition with twinning in the crystal structure of 4-meth­­oxy­anilinium chloride

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 15 December 2023; accepted 17 December 2023; online 1 January 2024)

At room temperature, the title salt, C7H10NO+·Cl, is ortho­rhom­bic, space group Pbca with Z′ = 1, as previously reported [Zhao (2009[Zhao, M. M. (2009). Acta Cryst. E65, o2378.]). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state phase transition to a twinned monoclinic P21/c structure with Z′ = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent mol­ecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the meth­oxy group is nearly coplanar with the rest of the mol­ecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended ortho­rhom­bic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane.

1. Chemical context

4-Alk­oxy­acetanilides (4-AAs), represented by phenacetin, or N-(4-eth­oxy­phen­yl)acetamide (C10H13NO2), played a pivotal role in introducing synthetic fever reduction and non-opioid analgesics to the global pharmaceutical market in the early 1900s. The analgesic effects of 4-AAs result from their impact on the sensory tracts of the spinal cord, while their anti­pyretic actions predominantly occur in the brain, where they lower the temperature set point (Dalmann et al., 2015[Dalmann, R., Daulhac, L., Antri, M., Eschalier, A. & Mallet, C. (2015). Neuropharamacology 91, 63-70.]; Flower & Vane, 1972[Flower, R. J. & Vane, J. R. (1972). Nature, 240, 410-411.]). In vivo, the primary metabolic pathway involves oxidative O-de­alkyl­ation, producing N-(4-hy­droxy­phen­yl)acetamide, C8H9NO3, a clinically significant analgesic (Nohmi et al., 1984[Nohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525-4531.]). However, a minor fraction may undergo de­acyl­ation, leading to the formation of carcinogenic and kidney-damaging 4-alk­oxy­anilines Nohmi et al., 1984[Nohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525-4531.]; Prescott, 1980[Prescott, L. P. (1980). Br. J. Clin. Pharmacol. 10, 291S-298S.]). This study centers on the crystal structure analysis of the title salt, 4-meth­oxy­aniline hydro­chloride (4-meth­oxy­anilinium chloride or 4-MAC), I, aiming to expound not only its potential kidney-damaging properties but also provide structural data for exploring mol­ecular targets through mol­ecular docking and mol­ecular dynamic simulations.

[Scheme 1]

2. Structural commentary

At room temperature (298 K), I crystallizes in the ortho­rhom­bic space group Pbca with one formula unit in the asymmetric unit. The cell dimensions are a = 8.8778 (5), b = 8.4660 (5), c = 21.7236 (11) Å and V = 1632.73 (16) Å3. Cooling the sample causes a solid-state phase transition to a twinned structure with lower symmetry and two formula units in the asymmetric unit. At 250 K, the structure is still ortho­rhom­bic, but at 200 K, the space group is monoclinic P21/c with a = 8.3772 (11), b = 21.715 (3), c = 8.8466 (12) Å, β = 90.039 (4)° and V = 1609.3 (4) Å3. At T = 100 K, the monoclinic cell parameters are a = 8.3039 (6), b = 21.6993 (15), c = 8.8495 (6) Å, β = 90.077 (2)° and V = 1594.58 (19) Å3.

The crystal structure at 250 K, shown in Fig. 1[link], closely aligns with the published structure (Zhao, 2009[Zhao, M. M. (2009). Acta Cryst. E65, o2378.]) except that we find disorder in the NH hydrogen atoms, while Zhao treated them as ordered. Using Zhao's intensity data, we do see evidence of a second orientation of the NH3 group, and we also see it from our crystal when warmed to 298 K. The meth­oxy group in I is nearly coplanar with the rest of the mol­ecule, with the torsion angle C7—O1—C4—C3 = −7.0 (2)°.

[Figure 1]
Figure 1
The asymmetric unit of the 250 K structure of I, with 50% displacement ellipsoids and hydrogen bonds indicated by blue dashed lines.

The asymmetric unit of the 100 K structure is shown in Fig. 2[link]. The major difference between the two independent mol­ecules is the conformation of the –NH3 group, in which one mol­ecule has one set of the disordered positions in the 250 K structure and the second has the other. As in the 250 K structure, the meth­oxy groups are twisted only slightly out of the planes of the aromatic rings, with C7—O1—C4—C3 and C14—O2—C11—C10 torsion angles of −6.94 (12) and −9.35 (12)°, respectively.

[Figure 2]
Figure 2
The asymmetric unit of the 100 K structure of I, with 50% displacement ellipsoids and hydrogen bonds indicated by blue dashed lines.

3. Supra­molecular features

In both structures, the inter­molecular inter­actions are predominantly N—H⋯Cl hydrogen bonds, as listed in Tables 1[link] and 2[link] and illustrated in Figs. 3[link] and 4[link]. The N⋯Cl separations are in the range 3.1201 (8)–3.4047 (8) Å in the monoclinic 100 K structure and 3.1570 (15)–3.3323 (18) Å in the ortho­rhom­bic 250 K structure. In Fig. 4[link], it can be seen that for each NH3 group, two of the H atoms are involved in direct hydrogen bonds and the third in a bifurcated N—H⋯(Cl,Cl) bond with two acceptors. The graph set (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) patterns are centrosymmetric R42(8) rings and R22(4) rings. At 250 K, (001) sheets arise in the extended structure and at 100 K similar sheets propagate in the (010) plane, due to the change in unit-cell settings.

Table 1
Hydrogen-bond geometry (Å, °) for I at 250 K[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.90 2.43 3.3265 (18) 174
N1—H2N⋯Cl1ii 0.90 2.40 3.1915 (15) 147
N1—H3N⋯CL1 0.90 2.45 3.1570 (16) 135
N1—H4N⋯Cl1iii 0.90 2.43 3.3323 (18) 180
N1—H5N⋯Cl1 0.90 2.36 3.1570 (15) 148
N1—H6N⋯Cl1ii 0.90 2.49 3.1915 (17) 136
C6—H6⋯Cl1i 0.94 2.82 3.6323 (16) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+1, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for I at 100 K[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯Cl2 0.880 (15) 2.279 (15) 3.1450 (8) 167.7 (13)
N1—H12N⋯Cl1i 0.870 (14) 2.573 (14) 3.2480 (7) 135.2 (13)
N1—H12N⋯Cl2ii 0.870 (14) 2.735 (15) 3.3797 (8) 132.1 (12)
N1—H13N⋯Cl1 0.926 (15) 2.304 (16) 3.2080 (8) 165.0 (13)
N2—H21N⋯Cl1iii 0.901 (14) 2.487 (15) 3.2318 (8) 140.3 (12)
N2—H21N⋯Cl2iv 0.901 (14) 2.795 (14) 3.4047 (8) 126.2 (11)
N2—H22N⋯Cl1 0.899 (14) 2.300 (15) 3.1916 (8) 171.3 (12)
N2—H23N⋯Cl2 0.907 (15) 2.234 (15) 3.1201 (8) 165.5 (13)
C2—H2⋯Cl1 0.95 2.98 3.7487 (8) 139
C6—H6⋯Cl2ii 0.95 2.77 3.6055 (8) 147
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+2]; (iv) [-x+2, -y+1, -z+2].
[Figure 3]
Figure 3
Hydrogen bonding in the 250 K structure of I.
[Figure 4]
Figure 4
Hydrogen bonding in the 100 K structure of I.

4. Database survey

A review of the literature revealed that the room temperature (298 K) structure of 4-meth­oxy­anilinium chloride was previously reported (Zhao, 2009[Zhao, M. M. (2009). Acta Cryst. E65, o2378.]; Cambridge Structural Database refcode CUCTUQ). Similarly, the structure of 4-eth­oxy­anilinium chloride at 100 K has been documented (Fu, 2010[Fu, X. (2010). Acta Cryst. E66, o1944.]; Hines et al., 2023[Hines, J. E. III, Yerramsetty, S., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (refcode WIKRER, CCDC 2279486). CCDC, Cambridge, England.]). However, these studies did not provide information on phase transitions and twinning.

5. Synthesis and crystallization

A saturated solution of the title compound, C7H10ClNO (CAS 20265-97-8 from AmBeed, Arlington Heights, IL, USA) in boiling water was allowed to pass through a short column of activated charcoal. The resulting colorless solution (eluent) was left to cool to room temperature and evaporate slowly in the dark. Pink laths of I, prepared through this process, were suitable for X-ray diffraction studies.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For the structure at 250 K, all the H atoms were located in difference maps and those on carbon were relocated to geometrically idealized positions with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C) for the aromatic C atoms and C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The N-bound H atoms were idealized as six half-populated sites at 60° torsional inter­vals with N—H = 0.90 Å and Uiso(H) = 1.5Ueq(N) and the torsion angle was refined. For the structure at 100 K, the H atoms were handled similarly, except that C—H distances were fixed at 0.95 Å for aromatic C atoms and 0.98 Å for the methyl group, and the H atoms on N were ordered with their positions individually refined. The twin law for the monoclinic structure is (1 0 0, 0 −1 0, 0 0 −1) and the BASF parameter refined to 0.4484 (6).

Table 3
Experimental details

  I at 250 K I at 100 K
Crystal data
Chemical formula C7H10NO+·Cl C7H10NO+·Cl
Mr 159.61 159.61
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 250 100
a, b, c (Å) 8.8689 (4), 8.4361 (3), 21.7319 (9) 8.3039 (6), 21.6993 (15), 8.8495 (6)
α, β, γ (°) 90, 90, 90 90, 90.077 (2), 90
V3) 1625.96 (12) 1594.58 (19)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.40 0.41
Crystal size (mm) 0.34 × 0.31 × 0.15 0.43 × 0.41 × 0.21
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.896, 0.942 0.873, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 73425, 2717, 2019 48397, 10832, 9310
Rint 0.050 0.033
(sin θ/λ)max−1) 0.737 0.940
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.08 0.033, 0.075, 1.06
No. of reflections 2717 10832
No. of parameters 93 202
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.22 0.47, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Methoxyanilinium chloride (I_250K) top
Crystal data top
C7H10NO+·ClDx = 1.304 Mg m3
Mr = 159.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9997 reflections
a = 8.8689 (4) Åθ = 3.8–27.4°
b = 8.4361 (3) ŵ = 0.40 mm1
c = 21.7319 (9) ÅT = 250 K
V = 1625.96 (12) Å3Lath fragment, pink
Z = 80.34 × 0.31 × 0.15 mm
F(000) = 672
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2717 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.050
φ and ω scansθmax = 31.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.896, Tmax = 0.942k = 1212
73425 measured reflectionsl = 3232
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.6343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.24 e Å3
2717 reflectionsΔρmin = 0.21 e Å3
93 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.74847 (4)0.51434 (4)0.52125 (2)0.03992 (12)
O10.65326 (14)0.80202 (15)0.20491 (5)0.0514 (3)
N10.52441 (19)0.75043 (18)0.45535 (6)0.0547 (4)
H1N0.5842330.8184220.4759010.082*0.5
H2N0.4272380.7768320.4614810.082*0.5
H3N0.5405740.6512700.4691290.082*0.5
H4N0.4504640.6792600.4617730.082*0.5
H5N0.6074590.7208510.4761930.082*0.5
H6N0.4941230.8464120.4685450.082*0.5
C10.55894 (17)0.75820 (17)0.38936 (7)0.0388 (3)
C20.48090 (17)0.66401 (19)0.34891 (7)0.0427 (3)
H20.4080030.5924620.3635600.051*
C30.51002 (17)0.67476 (19)0.28628 (7)0.0406 (3)
H30.4564730.6109780.2583490.049*
C40.61767 (17)0.77925 (17)0.26521 (6)0.0371 (3)
C50.6976 (2)0.8710 (2)0.30673 (8)0.0481 (4)
H50.7727020.9403790.2924160.058*
C60.6681 (2)0.8615 (2)0.36875 (7)0.0484 (4)
H60.7217760.9249090.3967680.058*
C70.5863 (2)0.6992 (3)0.16061 (8)0.0638 (5)
H7A0.6114850.5901640.1703820.096*
H7B0.6242050.7251230.1199730.096*
H7C0.4776640.7123150.1613430.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03990 (18)0.04090 (19)0.03894 (18)0.00135 (14)0.00086 (16)0.00395 (13)
O10.0576 (7)0.0614 (7)0.0351 (6)0.0028 (6)0.0091 (5)0.0037 (5)
N10.0653 (9)0.0622 (9)0.0364 (7)0.0194 (7)0.0085 (6)0.0064 (6)
C10.0407 (7)0.0429 (7)0.0328 (6)0.0138 (6)0.0038 (6)0.0053 (6)
C20.0373 (7)0.0436 (8)0.0473 (8)0.0006 (6)0.0065 (6)0.0055 (6)
C30.0375 (8)0.0435 (8)0.0407 (7)0.0009 (6)0.0001 (6)0.0035 (6)
C40.0375 (7)0.0391 (7)0.0347 (7)0.0073 (6)0.0040 (6)0.0036 (5)
C50.0484 (9)0.0496 (9)0.0463 (9)0.0129 (7)0.0036 (7)0.0052 (7)
C60.0528 (9)0.0504 (9)0.0419 (8)0.0056 (7)0.0049 (7)0.0028 (7)
C70.0643 (12)0.0896 (14)0.0374 (8)0.0102 (11)0.0031 (8)0.0106 (9)
Geometric parameters (Å, º) top
O1—C41.3615 (17)C2—C31.388 (2)
O1—C71.425 (2)C2—H20.9400
N1—C11.4679 (19)C3—C41.378 (2)
N1—H1N0.9000C3—H30.9400
N1—H2N0.9000C4—C51.384 (2)
N1—H3N0.9000C5—C61.375 (2)
N1—H4N0.9000C5—H50.9400
N1—H5N0.9000C6—H60.9400
N1—H6N0.9000C7—H7A0.9700
C1—C21.372 (2)C7—H7B0.9700
C1—C61.377 (2)C7—H7C0.9700
C4—O1—C7117.88 (14)C4—C3—C2119.77 (14)
C1—N1—H1N109.5C4—C3—H3120.1
C1—N1—H2N109.5C2—C3—H3120.1
H1N—N1—H2N109.5O1—C4—C3124.81 (14)
C1—N1—H3N109.5O1—C4—C5115.46 (14)
H1N—N1—H3N109.5C3—C4—C5119.73 (13)
H2N—N1—H3N109.5C6—C5—C4120.60 (15)
C1—N1—H4N109.5C6—C5—H5119.7
C1—N1—H5N109.5C4—C5—H5119.7
H4N—N1—H5N109.5C5—C6—C1119.28 (15)
C1—N1—H6N109.5C5—C6—H6120.4
H4N—N1—H6N109.5C1—C6—H6120.4
H5N—N1—H6N109.5O1—C7—H7A109.5
C2—C1—C6120.83 (14)O1—C7—H7B109.5
C2—C1—N1119.65 (14)H7A—C7—H7B109.5
C6—C1—N1119.51 (15)O1—C7—H7C109.5
C1—C2—C3119.76 (14)H7A—C7—H7C109.5
C1—C2—H2120.1H7B—C7—H7C109.5
C3—C2—H2120.1
C6—C1—C2—C31.2 (2)C2—C3—C4—C51.0 (2)
N1—C1—C2—C3177.97 (14)O1—C4—C5—C6178.05 (15)
C1—C2—C3—C40.4 (2)C3—C4—C5—C61.5 (2)
C7—O1—C4—C37.0 (2)C4—C5—C6—C10.7 (3)
C7—O1—C4—C5173.48 (15)C2—C1—C6—C50.7 (2)
C2—C3—C4—O1178.58 (14)N1—C1—C6—C5178.52 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.902.433.3265 (18)174
N1—H2N···Cl1ii0.902.403.1915 (15)147
N1—H3N···CL10.902.453.1570 (16)135
N1—H4N···Cl1iii0.902.433.3323 (18)180
N1—H5N···Cl10.902.363.1570 (15)148
N1—H6N···Cl1ii0.902.493.1915 (17)136
C6—H6···Cl1i0.942.823.6323 (16)145
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1.
4-Methoxyanilinium chloride (I_100K) top
Crystal data top
C7H10NO+·ClF(000) = 672
Mr = 159.61Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3039 (6) ÅCell parameters from 9875 reflections
b = 21.6993 (15) Åθ = 3.4–41.5°
c = 8.8495 (6) ŵ = 0.41 mm1
β = 90.077 (2)°T = 100 K
V = 1594.58 (19) Å3Needle fragment, pink
Z = 80.43 × 0.41 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
10832 independent reflections
Radiation source: fine-focus sealed tube9310 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.033
φ and ω scansθmax = 41.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.873, Tmax = 0.919k = 4040
48397 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1702P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
10832 reflectionsΔρmax = 0.47 e Å3
202 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46961 (2)0.52412 (2)0.74414 (2)0.01433 (3)
Cl21.00704 (2)0.51981 (2)0.75416 (2)0.01431 (3)
O10.81503 (9)0.79863 (3)0.36295 (8)0.01972 (12)
N10.75005 (10)0.54837 (3)0.50236 (8)0.01524 (11)
H11N0.8313 (18)0.5382 (6)0.5613 (16)0.023*
H12N0.7496 (18)0.5254 (6)0.4219 (16)0.023*
H13N0.6580 (18)0.5390 (6)0.5566 (17)0.023*
C10.75955 (9)0.61391 (3)0.46333 (8)0.01282 (11)
C20.66656 (10)0.65590 (4)0.54219 (9)0.01463 (13)
H20.5929160.6420480.6168990.018*
C30.68159 (10)0.71877 (4)0.51130 (9)0.01510 (12)
H30.6189850.7479030.5657340.018*
C40.78835 (10)0.73857 (3)0.40075 (9)0.01439 (12)
C50.87901 (11)0.69542 (4)0.31922 (10)0.01746 (14)
H50.9498890.7089350.2418330.021*
C60.86556 (10)0.63310 (4)0.35115 (10)0.01644 (13)
H60.9280090.6038200.2970510.020*
C70.71299 (15)0.84409 (4)0.43121 (12)0.02472 (19)
H7A0.6001930.8346170.4082140.037*
H7B0.7399870.8848930.3911230.037*
H7C0.7290580.8438090.5409400.037*
O20.69262 (8)0.20673 (3)0.82982 (8)0.01905 (11)
N20.73702 (9)0.45944 (3)0.94929 (8)0.01440 (11)
H21N0.7316 (18)0.4677 (6)1.0489 (16)0.022*
H22N0.6576 (18)0.4795 (6)0.9008 (16)0.022*
H23N0.8253 (18)0.4776 (6)0.9085 (16)0.022*
C80.72962 (9)0.39304 (3)0.91915 (8)0.01249 (11)
C90.82458 (10)0.35313 (4)1.00292 (9)0.01498 (12)
H90.8951130.3687381.0783680.018*
C100.81599 (10)0.28992 (3)0.97583 (9)0.01480 (12)
H100.8802480.2622351.0331860.018*
C110.71267 (9)0.26745 (3)0.86417 (9)0.01383 (12)
C120.61959 (10)0.30835 (4)0.77920 (10)0.01777 (14)
H120.5507150.2930620.7020260.021*
C130.62716 (10)0.37124 (4)0.80690 (10)0.01671 (13)
H130.5630530.3990670.7498070.020*
C140.80131 (12)0.16348 (4)0.89757 (11)0.02172 (16)
H14A0.9123390.1747340.8722500.033*
H14B0.7782110.1220360.8592470.033*
H14C0.7877210.1640901.0075470.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01254 (6)0.01532 (6)0.01511 (7)0.00041 (5)0.00015 (8)0.00016 (6)
Cl20.01256 (6)0.01453 (6)0.01584 (7)0.00127 (5)0.00072 (8)0.00022 (6)
O10.0248 (3)0.0133 (2)0.0211 (3)0.0012 (2)0.0017 (2)0.0031 (2)
N10.0200 (3)0.0126 (2)0.0132 (3)0.0018 (2)0.0019 (2)0.00002 (19)
C10.0144 (3)0.0126 (2)0.0114 (3)0.0006 (2)0.0012 (2)0.0003 (2)
C20.0154 (3)0.0155 (3)0.0130 (3)0.0001 (2)0.0007 (2)0.0002 (2)
C30.0168 (3)0.0149 (3)0.0136 (3)0.0019 (2)0.0001 (2)0.0010 (2)
C40.0158 (3)0.0133 (3)0.0140 (3)0.0011 (2)0.0034 (2)0.0009 (2)
C50.0187 (3)0.0169 (3)0.0168 (3)0.0015 (3)0.0047 (3)0.0013 (3)
C60.0182 (3)0.0150 (3)0.0161 (3)0.0007 (2)0.0037 (3)0.0010 (2)
C70.0372 (6)0.0143 (3)0.0226 (4)0.0052 (3)0.0034 (4)0.0003 (3)
O20.0220 (3)0.0129 (2)0.0222 (3)0.0016 (2)0.0008 (2)0.0029 (2)
N20.0182 (3)0.0126 (2)0.0124 (3)0.0008 (2)0.0008 (2)0.00002 (19)
C80.0136 (3)0.0124 (2)0.0115 (3)0.0012 (2)0.0008 (2)0.0003 (2)
C90.0166 (3)0.0149 (3)0.0134 (3)0.0003 (2)0.0026 (3)0.0014 (2)
C100.0169 (3)0.0139 (3)0.0136 (3)0.0007 (2)0.0013 (2)0.0006 (2)
C110.0147 (3)0.0129 (3)0.0139 (3)0.0023 (2)0.0023 (2)0.0014 (2)
C120.0193 (3)0.0160 (3)0.0180 (4)0.0021 (2)0.0055 (3)0.0018 (2)
C130.0181 (3)0.0153 (3)0.0167 (3)0.0010 (2)0.0050 (3)0.0011 (2)
C140.0280 (4)0.0136 (3)0.0236 (4)0.0022 (3)0.0032 (3)0.0011 (3)
Geometric parameters (Å, º) top
O1—C41.3636 (10)O2—C111.3624 (9)
O1—C71.4343 (12)O2—C141.4330 (11)
N1—C11.4655 (10)N2—C81.4667 (10)
N1—H11N0.880 (15)N2—H21N0.901 (14)
N1—H12N0.870 (14)N2—H22N0.899 (14)
N1—H13N0.926 (15)N2—H23N0.907 (15)
C1—C21.3838 (11)C8—C91.3856 (11)
C1—C61.3915 (11)C8—C131.3900 (11)
C2—C31.3971 (11)C9—C101.3941 (11)
C2—H20.9500C9—H90.9500
C3—C41.3893 (12)C10—C111.3957 (11)
C3—H30.9500C10—H100.9500
C4—C51.4020 (12)C11—C121.3961 (11)
C5—C61.3860 (11)C12—C131.3879 (11)
C5—H50.9500C12—H120.9500
C6—H60.9500C13—H130.9500
C7—H7A0.9800C14—H14A0.9800
C7—H7B0.9800C14—H14B0.9800
C7—H7C0.9800C14—H14C0.9800
C4—O1—C7117.24 (7)C11—O2—C14117.60 (7)
C1—N1—H11N109.9 (9)C8—N2—H21N111.7 (8)
C1—N1—H12N111.4 (9)C8—N2—H22N111.0 (8)
H11N—N1—H12N110.1 (13)H21N—N2—H22N109.5 (12)
C1—N1—H13N112.4 (8)C8—N2—H23N112.8 (8)
H11N—N1—H13N105.7 (12)H21N—N2—H23N110.2 (13)
H12N—N1—H13N107.2 (13)H22N—N2—H23N101.1 (12)
C2—C1—C6121.11 (7)C9—C8—C13121.13 (7)
C2—C1—N1119.33 (7)C9—C8—N2119.54 (7)
C6—C1—N1119.53 (7)C13—C8—N2119.32 (7)
C1—C2—C3119.63 (8)C8—C9—C10119.60 (7)
C1—C2—H2120.2C8—C9—H9120.2
C3—C2—H2120.2C10—C9—H9120.2
C4—C3—C2119.81 (7)C9—C10—C11119.78 (7)
C4—C3—H3120.1C9—C10—H10120.1
C2—C3—H3120.1C11—C10—H10120.1
O1—C4—C3124.91 (7)O2—C11—C10124.79 (7)
O1—C4—C5115.12 (7)O2—C11—C12115.29 (7)
C3—C4—C5119.96 (7)C10—C11—C12119.91 (7)
C6—C5—C4120.22 (8)C13—C12—C11120.33 (7)
C6—C5—H5119.9C13—C12—H12119.8
C4—C5—H5119.9C11—C12—H12119.8
C5—C6—C1119.26 (7)C12—C13—C8119.23 (7)
C5—C6—H6120.4C12—C13—H13120.4
C1—C6—H6120.4C8—C13—H13120.4
O1—C7—H7A109.5O2—C14—H14A109.5
O1—C7—H7B109.5O2—C14—H14B109.5
H7A—C7—H7B109.5H14A—C14—H14B109.5
O1—C7—H7C109.5O2—C14—H14C109.5
H7A—C7—H7C109.5H14A—C14—H14C109.5
H7B—C7—H7C109.5H14B—C14—H14C109.5
C6—C1—C2—C31.43 (12)C13—C8—C9—C100.84 (12)
N1—C1—C2—C3176.47 (7)N2—C8—C9—C10179.11 (7)
C1—C2—C3—C40.67 (12)C8—C9—C10—C110.36 (12)
C7—O1—C4—C36.94 (12)C14—O2—C11—C109.35 (12)
C7—O1—C4—C5173.41 (8)C14—O2—C11—C12171.16 (8)
C2—C3—C4—O1178.79 (8)C9—C10—C11—O2178.87 (8)
C2—C3—C4—C50.84 (12)C9—C10—C11—C120.60 (12)
O1—C4—C5—C6178.02 (8)O2—C11—C12—C13178.42 (8)
C3—C4—C5—C61.65 (12)C10—C11—C12—C131.10 (13)
C4—C5—C6—C10.91 (13)C11—C12—C13—C80.63 (13)
C2—C1—C6—C50.63 (12)C9—C8—C13—C120.35 (13)
N1—C1—C6—C5177.26 (8)N2—C8—C13—C12179.60 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···Cl20.880 (15)2.279 (15)3.1450 (8)167.7 (13)
N1—H12N···Cl1i0.870 (14)2.573 (14)3.2480 (7)135.2 (13)
N1—H12N···Cl2ii0.870 (14)2.735 (15)3.3797 (8)132.1 (12)
N1—H13N···Cl10.926 (15)2.304 (16)3.2080 (8)165.0 (13)
N2—H21N···Cl1iii0.901 (14)2.487 (15)3.2318 (8)140.3 (12)
N2—H21N···Cl2iv0.901 (14)2.795 (14)3.4047 (8)126.2 (11)
N2—H22N···Cl10.899 (14)2.300 (15)3.1916 (8)171.3 (12)
N2—H23N···Cl20.907 (15)2.234 (15)3.1201 (8)165.5 (13)
C2—H2···Cl10.952.983.7487 (8)139
C6—H6···Cl2ii0.952.773.6055 (8)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2.
 

Funding information

Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P2O GM103424–21. The upgrade of the diffractometer was made possible by grant No. LEQSF (2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents. Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE.

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalmann, R., Daulhac, L., Antri, M., Eschalier, A. & Mallet, C. (2015). Neuropharamacology 91, 63–70.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFlower, R. J. & Vane, J. R. (1972). Nature, 240, 410–411.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFu, X. (2010). Acta Cryst. E66, o1944.  CrossRef IUCr Journals Google Scholar
First citationHines, J. E. III, Yerramsetty, S., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (refcode WIKRER, CCDC 2279486). CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNohmi, T., Yoshikawa, K., Ishidate, M. Jr, Hiratsuka, A. & Watabe, T. (1984). Chem. Pharm. Bull. 32, 4525–4531.  CrossRef CAS Google Scholar
First citationPrescott, L. P. (1980). Br. J. Clin. Pharmacol. 10, 291S–298S.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, M. M. (2009). Acta Cryst. E65, o2378.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds