research communications
and Hirshfeld surface analysis of dimethyl 4-hydroxy-5,4′-dimethyl-2′-(toluene-4-sulfonylamino)biphenyl-2,3-dicarboxylate
aDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI Geotechnological Problems of Oil, Gas and Chemistry, Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, bRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C25H25NO7S, the molecular conformation is stabilized by intramolecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The molecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, molecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming molecular layers parallel to the (100) plane. C—H⋯π interactions are observed between these layers.
Keywords: crystal structure; hydrogen bonds; Hirshfeld surface analysis; [4 + 2] cycloaddition; furan; arylsulfonamides.
CCDC reference: 2314397
1. Chemical context
Furan contains a system of conjugated s-cis-double bonds, closed through an oxygen atom, and as a result, this heterocycle easily participates in Diels–Alder reactions. The [4 + 2] cycloaddition of furan with acetylenedicarboxylic acid (as alkynes) was performed for the first time to find a simple route for the preparation of Cantharidin (Diels & Alder, 1931). Furan reacts with of acetylenedicarboxylic acid when heated to 373 K. The 7-oxabicyclo[2.2.1]heptene scaffold, the product of the reaction between furans and has great synthetic potential as a useful tool for the design of a broad diversity of substances with various practical properties. These cycloadducts have been used to construct polycyclic aromatic hydrocarbons (Eda et al., 2015; Criado et al., 2013). The annulated 7-oxabicyclo[2.2.1]heptane moiety also acts as a framework for synthesis of molecular tweezers (Murphy et al., 2016; Warrener et al., 1999), high-molecular-weight materials (Margetić et al., 2010; Vogel et al., 1999) and various supramolecular systems (Abdelhamid et al., 2011; Akbari Afkhami et al., 2017; Khalilov et al., 2021; Safarova et al., 2019). Under acid catalysis, cycloaddition intermediates can be converted into cyclohexenoles, or substituted aromatic hydrocarbons (Zaytsev et al., 2019; Zubkov et al., 2012a,b). In this work, we continued our investigations of the cycloaddition of dimethyl acetylenedicarboxylate (DMAD) with substituted furans (Zubkov et al., 2009; Borisova et al., 2018a,b). In particular, in the course of the thermic [4 + 2] cycloaddition between DMAD and sulfamide 2, an interesting sequence of reaction steps was observed: a cleavage of the epoxy bridge and a sigmatropic shift of the methyl group (Fig. 1). On the other hand, the biological and as well as coordination ability of the new sulfamide derivative 1 can be dictated by the non-covalent bond-donor or acceptor character of the substituents (Gurbanov et al., 2022a,b; Kopylovich et al., 2011a,b; Mahmoudi et al., 2017a,b; Mahmudov et al., 2013).
2. Structural commentary
In the title compound (Fig. 2), the molecular conformation is stabilized by intramolecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. Molecules of the title compound are bent at the S atom with a C17—S1—N1—C12 torsion angle of −70.86 (11)°. The benzene ring (C11–C16) attached to the N atom makes a dihedral angle of 77.99 (6)° with the benzene ring (C1–C6) having the OH group, and these rings make angles of 26.98 (6) and 57.58 (6)°, respectively, with the benzene ring (C17–C22) attached to the S atom. The geometric parameters of the title compound are normal and comparable to those of the related compound listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming molecular layers parallel to the (100) plane (Table 1, Figs. 3, 4 and 5). C—H⋯π interactions (Table 1) between these layers also add to the crystal cohesion.
To quantify the intermolecular interactions, a Hirshfeld surface analysis was performed and CrystalExplorer17.5 (Spackman et al., 2021) was used to generate the accompanying two-dimensional fingerprint plots. Fig. 6 shows the Hirshfeld surface mapped over dnorm. On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal to the sum of the van der Waals radii are indicated by white spots. The C—H⋯O and N—H⋯O interactions (Tables 1 and 2) are represented by the two most significant red spots on the dnorm surface.
|
Fig. 7 depicts the two-dimensional fingerprint plots of (di, de) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important intermolecular interactions are H⋯H contacts, contributing 52.3% to the overall crystal packing. Other interactions and their respective contributions are O⋯H/H⋯O (27.0%), C⋯H/H⋯C (15.2%), O⋯C/C⋯O (2.5%), O⋯O (2.0%) and N⋯H/H⋯N (1.1%). The Hirshfeld surface analysis confirms the significance of H-atom interactions in the packing formation. The significant frequency of H⋯H and O⋯H/H⋯O interactions implies that van der Waals interactions and hydrogen bonding are important in crystal packing (Hathwar et al., 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the N,4-dimethylbenzene-1-sulfonamide unit, resulted in two hits, CSD refcodes EVOJAB (Shakuntala, et al., 2011a) and EVOFAX (Shakuntala, et al., 2011b).
The molecule of EVOJAB (Shakuntala, et al., 2011a) is twisted about the N—S bond with a C—SO2—NH—C torsion angle of 44.55 (17)°. The two aromatic rings are inclined to each other by 66.2 (1)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into infinite chains parallel to the b axis. Molecules of EVOFAX (Shakuntala, et al., 2011b), are bent at the S atom with a C—SO2—NH—C torsion angle of 57.7 (2)°. The benzene rings are rotated relative to each other by 68.1 (1)°. In the crystal, N—H⋯O(S) hydrogen bonds pack the molecules into infinite chains parallel to the b axis.
5. Synthesis and crystallization
Dimethyl but-2-ynedioate (87.6 µL, 0.7 mmol) was added to a solution of 4-methyl-N-(5-methyl-2-(5-methylfuran-2-yl)phenyl)benzenesulfonamide (100 mg, 0.3 mmol) in o-xylene (5 mL). The mixture was refluxed for 5 h. After cooling of the reaction to r.t, the solvent was evaporated under reduced pressure and the crude product was purified by (eluent: from hexane to ethyl acetate). The title compound was obtained as a colourless powder, yield 68%, 97 mg (0.2 mmol); m.p. > 523 K (with decomp.). A single crystal of the title compound was grown from a mixture of hexane and ethyl acetate. IR (KBr), ν (cm−1): br. 3277 (NH, OH), 1745, 1671 (CO2), 1353 (νas SO2), 1238 (C—OH), 1172 (νs SO2). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 11.31 (s, 1H, OH), 7.52 (s, 1H, NH), 7.42 (d, J = 8.2, 2H, H Ar), 7.18 (d, J = 8.2, 2H, H Ar), 6.96 (d, J = 7.6, 1H, H Ar), 6.85 (d, J = 7.6, 1H, H Ar), 6.71 (s, 1H, H Ar), 6.08 (s, 1H, H Ar), 3.92 (s, 3H, OCH3), 3.51 (s, 3H, OCH3), 2.43 (s, 3H, CH3), 2.39 (s, 3H, CH3), 2.06 (s, 3H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 169.5, 168.7, 159.9, 143.3, 139.4, 137.3, 136.9, 134.1, 133.0, 130.7, 129.5 (2C), 129.4, 128.5, 127.1 (2C), 126.3, 125.7, 124.7, 107.9, 53.1, 52.3, 21.6, 21.4, 16.0. MS (ESI) m/z: [M + H]+ 484. Elemental analysis calculated (%) for C25H25NO7S: C 62.10, H 5.21, N 2.90, S 6.63; found: C 61.87, H 5.48, N 3.09, S 6.37.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were included in the using the riding-model approximation with C—H distances of 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the NH and OH groups were found in a difference map and refined freely [N1—H1N = 0.836 (18) Å and O1—H1O = 0.91 (2) Å].
details are summarized in Table 3
|
Supporting information
CCDC reference: 2314397
https://doi.org/10.1107/S205698902301071X/jy2041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902301071X/jy2041Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902301071X/jy2041Isup3.cml
C25H25NO7S | F(000) = 1016 |
Mr = 483.52 | Dx = 1.354 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.52978 (9) Å | Cell parameters from 26913 reflections |
b = 18.87277 (12) Å | θ = 4.4–77.8° |
c = 10.63916 (7) Å | µ = 1.61 mm−1 |
β = 109.4092 (8)° | T = 100 K |
V = 2372.88 (3) Å3 | Prism, colourless |
Z = 4 | 0.22 × 0.20 × 0.15 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 4842 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.044 |
φ and ω scans | θmax = 77.8°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −15→15 |
Tmin = 0.654, Tmax = 1.000 | k = −22→23 |
37027 measured reflections | l = −13→13 |
5051 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0419P)2 + 1.207P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5051 reflections | Δρmax = 0.33 e Å−3 |
321 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.00097 (9) |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.47540 (2) | 0.47876 (2) | 0.28445 (3) | 0.01572 (9) | |
O1 | 0.87334 (8) | 0.69147 (5) | 0.70753 (10) | 0.0219 (2) | |
H1O | 0.8780 (19) | 0.6776 (12) | 0.791 (2) | 0.054 (6)* | |
O2 | 0.87491 (9) | 0.61396 (5) | 0.90556 (9) | 0.0289 (2) | |
O3 | 0.83061 (9) | 0.49945 (5) | 0.87207 (9) | 0.0254 (2) | |
O4 | 0.75736 (8) | 0.38919 (5) | 0.63886 (9) | 0.0229 (2) | |
O5 | 0.94306 (8) | 0.41300 (5) | 0.73522 (9) | 0.0245 (2) | |
O6 | 0.40571 (7) | 0.48386 (5) | 0.36703 (9) | 0.01983 (19) | |
O7 | 0.43510 (7) | 0.44113 (5) | 0.16051 (8) | 0.01987 (19) | |
N1 | 0.59121 (9) | 0.43960 (5) | 0.37778 (10) | 0.0167 (2) | |
H1N | 0.6110 (15) | 0.4544 (9) | 0.4562 (18) | 0.028 (4)* | |
C1 | 0.85341 (10) | 0.63093 (6) | 0.63507 (12) | 0.0172 (2) | |
C2 | 0.84786 (10) | 0.56433 (6) | 0.69114 (12) | 0.0165 (2) | |
C3 | 0.82958 (10) | 0.50356 (6) | 0.60943 (12) | 0.0155 (2) | |
C4 | 0.81082 (10) | 0.51001 (6) | 0.47363 (12) | 0.0159 (2) | |
C5 | 0.81682 (10) | 0.57750 (7) | 0.42116 (12) | 0.0181 (2) | |
H5 | 0.8049 | 0.5819 | 0.3285 | 0.022* | |
C6 | 0.83940 (10) | 0.63786 (6) | 0.49899 (12) | 0.0188 (2) | |
C7 | 0.85359 (10) | 0.56214 (7) | 0.83223 (12) | 0.0193 (2) | |
C8 | 0.82815 (14) | 0.49568 (9) | 1.00727 (14) | 0.0332 (3) | |
H8A | 0.7721 | 0.5293 | 1.0178 | 0.050* | |
H8B | 0.9030 | 0.5076 | 1.0700 | 0.050* | |
H8C | 0.8077 | 0.4476 | 1.0254 | 0.050* | |
C9 | 0.83582 (10) | 0.42959 (6) | 0.66379 (11) | 0.0175 (2) | |
C10 | 0.95930 (14) | 0.34207 (8) | 0.78924 (16) | 0.0360 (4) | |
H10A | 0.9373 | 0.3076 | 0.7161 | 0.054* | |
H10B | 0.9125 | 0.3352 | 0.8460 | 0.054* | |
H10C | 1.0391 | 0.3352 | 0.8423 | 0.054* | |
C11 | 0.78777 (10) | 0.44813 (6) | 0.38084 (11) | 0.0161 (2) | |
C12 | 0.67941 (10) | 0.41792 (6) | 0.32872 (11) | 0.0160 (2) | |
C13 | 0.65792 (10) | 0.36524 (6) | 0.23203 (12) | 0.0183 (2) | |
H13 | 0.5840 | 0.3457 | 0.1970 | 0.022* | |
C14 | 0.74280 (11) | 0.34054 (7) | 0.18550 (12) | 0.0193 (2) | |
C15 | 0.85138 (11) | 0.36831 (7) | 0.24215 (13) | 0.0210 (3) | |
H15 | 0.9113 | 0.3506 | 0.2151 | 0.025* | |
C16 | 0.87306 (10) | 0.42142 (7) | 0.33738 (12) | 0.0201 (3) | |
H16 | 0.9475 | 0.4399 | 0.3737 | 0.024* | |
C17 | 0.51190 (10) | 0.56517 (6) | 0.25010 (12) | 0.0178 (2) | |
C18 | 0.50126 (11) | 0.62124 (7) | 0.32991 (13) | 0.0222 (3) | |
H18 | 0.4745 | 0.6133 | 0.4024 | 0.027* | |
C19 | 0.53028 (12) | 0.68894 (7) | 0.30225 (13) | 0.0224 (3) | |
H19 | 0.5228 | 0.7273 | 0.3565 | 0.027* | |
C20 | 0.57021 (10) | 0.70204 (7) | 0.19664 (12) | 0.0198 (2) | |
C21 | 0.58170 (11) | 0.64480 (7) | 0.11927 (12) | 0.0211 (3) | |
H21 | 0.6100 | 0.6526 | 0.0480 | 0.025* | |
C22 | 0.55246 (11) | 0.57649 (7) | 0.14447 (12) | 0.0197 (2) | |
H22 | 0.5600 | 0.5380 | 0.0904 | 0.024* | |
C23 | 0.59565 (12) | 0.77675 (7) | 0.16557 (13) | 0.0250 (3) | |
H23A | 0.5250 | 0.8006 | 0.1147 | 0.037* | |
H23B | 0.6466 | 0.7758 | 0.1128 | 0.037* | |
H23C | 0.6319 | 0.8025 | 0.2489 | 0.037* | |
C24 | 0.71670 (12) | 0.28600 (7) | 0.07589 (14) | 0.0264 (3) | |
H24A | 0.6916 | 0.2420 | 0.1064 | 0.040* | |
H24B | 0.7849 | 0.2767 | 0.0528 | 0.040* | |
H24C | 0.6566 | 0.3038 | −0.0027 | 0.040* | |
C25 | 0.85016 (13) | 0.70949 (7) | 0.44329 (14) | 0.0273 (3) | |
H25A | 0.9281 | 0.7264 | 0.4826 | 0.041* | |
H25B | 0.7985 | 0.7427 | 0.4645 | 0.041* | |
H25C | 0.8308 | 0.7061 | 0.3463 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01611 (15) | 0.01641 (15) | 0.01492 (15) | −0.00118 (10) | 0.00555 (11) | −0.00276 (10) |
O1 | 0.0258 (5) | 0.0150 (4) | 0.0243 (5) | −0.0007 (3) | 0.0075 (4) | −0.0048 (3) |
O2 | 0.0414 (6) | 0.0258 (5) | 0.0193 (4) | −0.0024 (4) | 0.0098 (4) | −0.0067 (4) |
O3 | 0.0356 (5) | 0.0253 (5) | 0.0150 (4) | −0.0039 (4) | 0.0081 (4) | 0.0016 (4) |
O4 | 0.0268 (5) | 0.0180 (4) | 0.0221 (4) | −0.0035 (4) | 0.0057 (4) | 0.0021 (3) |
O5 | 0.0248 (5) | 0.0180 (4) | 0.0243 (5) | 0.0032 (4) | −0.0005 (4) | 0.0032 (4) |
O6 | 0.0185 (4) | 0.0218 (4) | 0.0211 (4) | −0.0015 (3) | 0.0091 (4) | −0.0028 (3) |
O7 | 0.0205 (4) | 0.0210 (4) | 0.0166 (4) | −0.0011 (3) | 0.0041 (3) | −0.0050 (3) |
N1 | 0.0180 (5) | 0.0184 (5) | 0.0138 (5) | −0.0011 (4) | 0.0056 (4) | −0.0025 (4) |
C1 | 0.0146 (5) | 0.0162 (6) | 0.0198 (6) | 0.0002 (4) | 0.0043 (4) | −0.0032 (4) |
C2 | 0.0148 (5) | 0.0173 (6) | 0.0166 (5) | 0.0004 (4) | 0.0043 (4) | −0.0011 (4) |
C3 | 0.0139 (5) | 0.0153 (6) | 0.0166 (5) | 0.0002 (4) | 0.0042 (4) | 0.0002 (4) |
C4 | 0.0138 (5) | 0.0169 (6) | 0.0163 (5) | −0.0005 (4) | 0.0041 (4) | −0.0002 (4) |
C5 | 0.0176 (5) | 0.0202 (6) | 0.0148 (5) | −0.0012 (4) | 0.0033 (4) | 0.0009 (4) |
C6 | 0.0176 (6) | 0.0165 (6) | 0.0202 (6) | −0.0004 (4) | 0.0036 (5) | 0.0026 (5) |
C7 | 0.0182 (6) | 0.0207 (6) | 0.0178 (6) | 0.0016 (5) | 0.0042 (5) | −0.0006 (5) |
C8 | 0.0423 (8) | 0.0419 (9) | 0.0158 (6) | −0.0051 (7) | 0.0099 (6) | 0.0034 (6) |
C9 | 0.0223 (6) | 0.0167 (6) | 0.0125 (5) | 0.0014 (5) | 0.0044 (4) | −0.0001 (4) |
C10 | 0.0417 (9) | 0.0202 (7) | 0.0336 (8) | 0.0070 (6) | −0.0043 (6) | 0.0068 (6) |
C11 | 0.0179 (6) | 0.0163 (6) | 0.0130 (5) | −0.0001 (4) | 0.0036 (4) | 0.0005 (4) |
C12 | 0.0178 (5) | 0.0152 (5) | 0.0153 (5) | 0.0009 (4) | 0.0059 (4) | 0.0014 (4) |
C13 | 0.0186 (6) | 0.0170 (6) | 0.0183 (6) | −0.0010 (4) | 0.0045 (5) | −0.0016 (4) |
C14 | 0.0223 (6) | 0.0170 (6) | 0.0169 (5) | 0.0028 (5) | 0.0043 (5) | −0.0011 (4) |
C15 | 0.0199 (6) | 0.0229 (6) | 0.0206 (6) | 0.0042 (5) | 0.0074 (5) | −0.0020 (5) |
C16 | 0.0175 (6) | 0.0226 (6) | 0.0193 (6) | −0.0008 (5) | 0.0048 (5) | −0.0013 (5) |
C17 | 0.0181 (6) | 0.0178 (6) | 0.0163 (5) | 0.0003 (4) | 0.0042 (4) | −0.0008 (4) |
C18 | 0.0284 (7) | 0.0220 (6) | 0.0190 (6) | −0.0007 (5) | 0.0114 (5) | −0.0021 (5) |
C19 | 0.0293 (7) | 0.0184 (6) | 0.0203 (6) | 0.0013 (5) | 0.0094 (5) | −0.0023 (5) |
C20 | 0.0199 (6) | 0.0192 (6) | 0.0177 (6) | 0.0006 (5) | 0.0029 (5) | 0.0018 (5) |
C21 | 0.0245 (6) | 0.0244 (6) | 0.0150 (5) | 0.0001 (5) | 0.0073 (5) | 0.0006 (5) |
C22 | 0.0230 (6) | 0.0206 (6) | 0.0161 (5) | 0.0007 (5) | 0.0072 (5) | −0.0027 (5) |
C23 | 0.0301 (7) | 0.0206 (6) | 0.0233 (6) | −0.0013 (5) | 0.0076 (5) | 0.0032 (5) |
C24 | 0.0261 (7) | 0.0250 (7) | 0.0262 (7) | 0.0035 (5) | 0.0062 (5) | −0.0093 (5) |
C25 | 0.0354 (7) | 0.0187 (6) | 0.0243 (7) | −0.0053 (5) | 0.0054 (6) | 0.0031 (5) |
S1—O6 | 1.4330 (9) | C11—C16 | 1.3922 (17) |
S1—O7 | 1.4338 (9) | C11—C12 | 1.4056 (17) |
S1—N1 | 1.6372 (11) | C12—C13 | 1.3911 (17) |
S1—C17 | 1.7643 (13) | C13—C14 | 1.3940 (17) |
O1—C1 | 1.3543 (14) | C13—H13 | 0.9500 |
O1—H1O | 0.91 (2) | C14—C15 | 1.3942 (18) |
O2—C7 | 1.2239 (16) | C14—C24 | 1.5076 (17) |
O3—C7 | 1.3203 (16) | C15—C16 | 1.3864 (18) |
O3—C8 | 1.4507 (16) | C15—H15 | 0.9500 |
O4—C9 | 1.2020 (16) | C16—H16 | 0.9500 |
O5—C9 | 1.3425 (15) | C17—C18 | 1.3907 (17) |
O5—C10 | 1.4444 (16) | C17—C22 | 1.3952 (17) |
N1—C12 | 1.4298 (15) | C18—C19 | 1.3864 (18) |
N1—H1N | 0.836 (18) | C18—H18 | 0.9500 |
C1—C2 | 1.4029 (17) | C19—C20 | 1.3955 (18) |
C1—C6 | 1.4054 (17) | C19—H19 | 0.9500 |
C2—C3 | 1.4112 (16) | C20—C21 | 1.3943 (18) |
C2—C7 | 1.4794 (17) | C20—C23 | 1.5064 (17) |
C3—C4 | 1.3899 (16) | C21—C22 | 1.3904 (18) |
C3—C9 | 1.5031 (16) | C21—H21 | 0.9500 |
C4—C5 | 1.4028 (17) | C22—H22 | 0.9500 |
C4—C11 | 1.4941 (16) | C23—H23A | 0.9800 |
C5—C6 | 1.3811 (17) | C23—H23B | 0.9800 |
C5—H5 | 0.9500 | C23—H23C | 0.9800 |
C6—C25 | 1.4999 (17) | C24—H24A | 0.9800 |
C8—H8A | 0.9800 | C24—H24B | 0.9800 |
C8—H8B | 0.9800 | C24—H24C | 0.9800 |
C8—H8C | 0.9800 | C25—H25A | 0.9800 |
C10—H10A | 0.9800 | C25—H25B | 0.9800 |
C10—H10B | 0.9800 | C25—H25C | 0.9800 |
C10—H10C | 0.9800 | ||
O6—S1—O7 | 119.80 (5) | C13—C12—C11 | 120.39 (11) |
O6—S1—N1 | 104.85 (5) | C13—C12—N1 | 119.43 (11) |
O7—S1—N1 | 107.72 (5) | C11—C12—N1 | 120.16 (10) |
O6—S1—C17 | 108.52 (6) | C12—C13—C14 | 121.23 (11) |
O7—S1—C17 | 107.68 (6) | C12—C13—H13 | 119.4 |
N1—S1—C17 | 107.72 (6) | C14—C13—H13 | 119.4 |
C1—O1—H1O | 104.7 (14) | C13—C14—C15 | 118.09 (11) |
C7—O3—C8 | 116.17 (11) | C13—C14—C24 | 120.53 (11) |
C9—O5—C10 | 115.05 (11) | C15—C14—C24 | 121.37 (11) |
C12—N1—S1 | 123.00 (8) | C16—C15—C14 | 120.91 (11) |
C12—N1—H1N | 116.8 (12) | C16—C15—H15 | 119.5 |
S1—N1—H1N | 111.3 (12) | C14—C15—H15 | 119.5 |
O1—C1—C2 | 122.66 (11) | C15—C16—C11 | 121.26 (11) |
O1—C1—C6 | 116.37 (11) | C15—C16—H16 | 119.4 |
C2—C1—C6 | 120.97 (11) | C11—C16—H16 | 119.4 |
C1—C2—C3 | 119.15 (11) | C18—C17—C22 | 120.65 (12) |
C1—C2—C7 | 117.65 (11) | C18—C17—S1 | 119.52 (10) |
C3—C2—C7 | 123.06 (11) | C22—C17—S1 | 119.82 (9) |
C4—C3—C2 | 120.39 (11) | C19—C18—C17 | 119.11 (12) |
C4—C3—C9 | 116.77 (10) | C19—C18—H18 | 120.4 |
C2—C3—C9 | 122.74 (10) | C17—C18—H18 | 120.4 |
C3—C4—C5 | 118.70 (11) | C18—C19—C20 | 121.58 (12) |
C3—C4—C11 | 123.18 (11) | C18—C19—H19 | 119.2 |
C5—C4—C11 | 118.10 (10) | C20—C19—H19 | 119.2 |
C6—C5—C4 | 122.53 (11) | C21—C20—C19 | 118.23 (12) |
C6—C5—H5 | 118.7 | C21—C20—C23 | 121.65 (12) |
C4—C5—H5 | 118.7 | C19—C20—C23 | 120.08 (12) |
C5—C6—C1 | 118.13 (11) | C22—C21—C20 | 121.27 (11) |
C5—C6—C25 | 122.27 (11) | C22—C21—H21 | 119.4 |
C1—C6—C25 | 119.60 (11) | C20—C21—H21 | 119.4 |
O2—C7—O3 | 122.41 (12) | C21—C22—C17 | 119.15 (11) |
O2—C7—C2 | 123.45 (12) | C21—C22—H22 | 120.4 |
O3—C7—C2 | 114.12 (11) | C17—C22—H22 | 120.4 |
O3—C8—H8A | 109.5 | C20—C23—H23A | 109.5 |
O3—C8—H8B | 109.5 | C20—C23—H23B | 109.5 |
H8A—C8—H8B | 109.5 | H23A—C23—H23B | 109.5 |
O3—C8—H8C | 109.5 | C20—C23—H23C | 109.5 |
H8A—C8—H8C | 109.5 | H23A—C23—H23C | 109.5 |
H8B—C8—H8C | 109.5 | H23B—C23—H23C | 109.5 |
O4—C9—O5 | 124.64 (11) | C14—C24—H24A | 109.5 |
O4—C9—C3 | 124.75 (11) | C14—C24—H24B | 109.5 |
O5—C9—C3 | 110.41 (10) | H24A—C24—H24B | 109.5 |
O5—C10—H10A | 109.5 | C14—C24—H24C | 109.5 |
O5—C10—H10B | 109.5 | H24A—C24—H24C | 109.5 |
H10A—C10—H10B | 109.5 | H24B—C24—H24C | 109.5 |
O5—C10—H10C | 109.5 | C6—C25—H25A | 109.5 |
H10A—C10—H10C | 109.5 | C6—C25—H25B | 109.5 |
H10B—C10—H10C | 109.5 | H25A—C25—H25B | 109.5 |
C16—C11—C12 | 118.01 (11) | C6—C25—H25C | 109.5 |
C16—C11—C4 | 120.09 (11) | H25A—C25—H25C | 109.5 |
C12—C11—C4 | 121.80 (11) | H25B—C25—H25C | 109.5 |
O6—S1—N1—C12 | 173.68 (9) | C3—C4—C11—C16 | −102.44 (14) |
O7—S1—N1—C12 | 45.03 (11) | C5—C4—C11—C16 | 75.74 (15) |
C17—S1—N1—C12 | −70.86 (11) | C3—C4—C11—C12 | 81.40 (15) |
O1—C1—C2—C3 | −178.41 (11) | C5—C4—C11—C12 | −100.42 (14) |
C6—C1—C2—C3 | 0.95 (17) | C16—C11—C12—C13 | −2.95 (17) |
O1—C1—C2—C7 | 5.80 (17) | C4—C11—C12—C13 | 173.28 (11) |
C6—C1—C2—C7 | −174.84 (11) | C16—C11—C12—N1 | 175.10 (11) |
C1—C2—C3—C4 | −3.68 (17) | C4—C11—C12—N1 | −8.66 (17) |
C7—C2—C3—C4 | 171.87 (11) | S1—N1—C12—C13 | −65.05 (14) |
C1—C2—C3—C9 | 172.71 (11) | S1—N1—C12—C11 | 116.88 (11) |
C7—C2—C3—C9 | −11.74 (18) | C11—C12—C13—C14 | 0.72 (18) |
C2—C3—C4—C5 | 3.56 (17) | N1—C12—C13—C14 | −177.35 (11) |
C9—C3—C4—C5 | −173.04 (10) | C12—C13—C14—C15 | 2.31 (19) |
C2—C3—C4—C11 | −178.27 (11) | C12—C13—C14—C24 | −176.98 (12) |
C9—C3—C4—C11 | 5.13 (17) | C13—C14—C15—C16 | −3.09 (19) |
C3—C4—C5—C6 | −0.73 (18) | C24—C14—C15—C16 | 176.20 (12) |
C11—C4—C5—C6 | −178.99 (11) | C14—C15—C16—C11 | 0.8 (2) |
C4—C5—C6—C1 | −1.93 (18) | C12—C11—C16—C15 | 2.20 (18) |
C4—C5—C6—C25 | 177.57 (12) | C4—C11—C16—C15 | −174.11 (11) |
O1—C1—C6—C5 | −178.81 (11) | O6—S1—C17—C18 | 18.25 (12) |
C2—C1—C6—C5 | 1.80 (18) | O7—S1—C17—C18 | 149.32 (10) |
O1—C1—C6—C25 | 1.68 (17) | N1—S1—C17—C18 | −94.76 (11) |
C2—C1—C6—C25 | −177.72 (12) | O6—S1—C17—C22 | −162.58 (10) |
C8—O3—C7—O2 | 2.03 (19) | O7—S1—C17—C22 | −31.51 (12) |
C8—O3—C7—C2 | −176.26 (11) | N1—S1—C17—C22 | 84.42 (11) |
C1—C2—C7—O2 | −8.10 (18) | C22—C17—C18—C19 | 0.8 (2) |
C3—C2—C7—O2 | 176.29 (12) | S1—C17—C18—C19 | 179.92 (10) |
C1—C2—C7—O3 | 170.16 (11) | C17—C18—C19—C20 | −0.2 (2) |
C3—C2—C7—O3 | −5.45 (17) | C18—C19—C20—C21 | −0.7 (2) |
C10—O5—C9—O4 | −3.35 (18) | C18—C19—C20—C23 | 177.09 (12) |
C10—O5—C9—C3 | −178.35 (11) | C19—C20—C21—C22 | 1.12 (19) |
C4—C3—C9—O4 | −68.07 (16) | C23—C20—C21—C22 | −176.63 (12) |
C2—C3—C9—O4 | 115.42 (14) | C20—C21—C22—C17 | −0.61 (19) |
C4—C3—C9—O5 | 106.91 (12) | C18—C17—C22—C21 | −0.35 (19) |
C2—C3—C9—O5 | −69.60 (14) | S1—C17—C22—C21 | −179.51 (9) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4 | 0.836 (18) | 2.507 (18) | 3.0185 (14) | 120.5 (15) |
N1—H1N···O6i | 0.836 (18) | 2.280 (18) | 3.0643 (14) | 156.4 (18) |
O1—H1O···O2 | 0.91 (2) | 1.72 (2) | 2.5596 (14) | 152 (2) |
C13—H13···O7 | 0.95 | 2.53 | 3.0022 (16) | 111 |
C18—H18···O6 | 0.95 | 2.58 | 2.9370 (16) | 103 |
C24—H24A···O4ii | 0.98 | 2.60 | 3.3784 (16) | 137 |
C25—H25C···O1iii | 0.98 | 2.59 | 3.2177 (17) | 122 |
C16—H16···Cg1iv | 0.95 | 2.61 | 3.4780 (14) | 153 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H15···O1 | 2.67 | 2 - x, 1 - y, 1 - z |
H1O···H25C | 2.40 | x, 3/2 - y, 1/2 + z |
H10C···O2 | 2.71 | 2 - x, 1 - y, 2 - z |
H1N···O6 | 2.28 | 1 - x, 1 - y, 1 - z |
O4···H24A | 2.60 | x, 1/2 - y, 1/2 + z |
H22···H22 | 2.47 | 1 - x, 1 - y, -z |
H8C···C15 | 2.65 | x, y, 1 + z |
H13···H19 | 2.57 | 1 - x, -1/2 + y, 1/2 - z |
Acknowledgements
GMB and SA thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems" RUDN. The author's contributions are as follows. Conceptualization, MA and AB; synthesis, NAG, GMB and SA; X-ray analysis, VNK, ZA and MA; writing (review and editing of the manuscript) MA and AB; funding acquisition, GMB and SA; supervision, MA and AB.
Funding information
Funding for this research was provided by: the Russian Science Foundation (https://rscf.ru/project/22-73-00127/).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun. 54, 2850–2853. CrossRef CAS Google Scholar
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840–4850. CrossRef CAS PubMed Google Scholar
Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649. Web of Science CSD CrossRef CAS PubMed Google Scholar
Diels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257–266. CrossRef Google Scholar
Eda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun. 51, 5963–5966. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Margetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluor. Chem. 131, 408–416. Google Scholar
Murphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707–8720. CrossRef CAS PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. St. 234, 1183–1185. Google Scholar
Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o2178. CrossRef IUCr Journals Google Scholar
Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2160. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642. Web of Science CrossRef CAS Google Scholar
Warrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199–202. CrossRef CAS Google Scholar
Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204. Web of Science CSD CrossRef Google Scholar
Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv. 2, 4103–4109. CrossRef CAS Google Scholar
Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem Heterocycl Compd, 48, 514-524. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.