research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl 4-hy­dr­oxy-5,4′-di­methyl-2′-(toluene-4-sulfonyl­amino)­bi­phenyl-2,3-di­carboxyl­ate

crossmark logo

aDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI Geotechnological Problems of Oil, Gas and Chemistry, Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, bRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 29 November 2023; accepted 14 December 2023; online 1 January 2024)

In the title compound, C25H25NO7S, the mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The mol­ecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (100) plane. C—H⋯π inter­actions are observed between these layers.

1. Chemical context

Furan contains a system of conjugated s-cis-double bonds, closed through an oxygen atom, and as a result, this heterocycle easily participates in Diels–Alder reactions. The [4 + 2] cyclo­addition of furan with acetyl­enedi­carb­oxy­lic acid esters (as alkynes) was performed for the first time to find a simple route for the preparation of Cantharidin (Diels & Alder, 1931[Diels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257-266.]). Furan reacts with esters of acetyl­enedi­carb­oxy­lic acid when heated to 373 K. The 7-oxabi­cyclo­[2.2.1]heptene scaffold, the product of the reaction between furans and alkynes, has great synthetic potential as a useful tool for the design of a broad diversity of substances with various practical properties. These cyclo­adducts have been used to construct polycyclic aromatic hydro­carbons (Eda et al., 2015[Eda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun. 51, 5963-5966.]; Criado et al., 2013[Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637-12649.]). The annulated 7-oxabi­cyclo­[2.2.1]heptane moiety also acts as a framework for synthesis of mol­ecular tweezers (Murphy et al., 2016[Murphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707-8720.]; Warrener et al., 1999[Warrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199-202.]), high-mol­ecular-weight materials (Margetić et al., 2010[Margetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluor. Chem. 131, 408-416.]; Vogel et al., 1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.]) and various supra­molecular systems (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safarova et al., 2019[Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. St. 234, 1183-1185.]). Under acid catalysis, cyclo­addition inter­mediates can be converted into phenols, cyclo­hexenoles, or substituted aromatic hydro­carbons (Zaytsev et al., 2019[Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.]; Zubkov et al., 2012a[Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem Heterocycl Compd, 48, 514-524.],b[Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv. 2, 4103-4109.]). In this work, we continued our investigations of the cyclo­addition of dimethyl acetyl­enedi­carboxyl­ate (DMAD) with substituted furans (Zubkov et al., 2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.]; Borisova et al., 2018a[Borisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun. 54, 2850-2853.],b[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840-4850.]). In particular, in the course of the thermic [4 + 2] cyclo­addition between DMAD and sulfamide 2, an inter­esting sequence of reaction steps was observed: a cleavage of the ep­oxy bridge and a sigmatropic shift of the methyl group (Fig. 1[link]). On the other hand, the biological and catalytic activity as well as coordination ability of the new sulfamide derivative 1 can be dictated by the non-covalent bond-donor or acceptor character of the substituents (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175-180.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 4-hy­droxy-5,4′-dimethyl-2′-(toluene-4-sulfonyl­amino)­biphenyl-2,3-di­carb­oxy­lic acid dimethyl ester (1).

2. Structural commentary

In the title compound (Fig. 2[link]), the mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. Mol­ecules of the title compound are bent at the S atom with a C17—S1—N1—C12 torsion angle of −70.86 (11)°. The benzene ring (C11–C16) attached to the N atom makes a dihedral angle of 77.99 (6)° with the benzene ring (C1–C6) having the OH group, and these rings make angles of 26.98 (6) and 57.58 (6)°, respectively, with the benzene ring (C17–C22) attached to the S atom. The geometric parameters of the title compound are normal and comparable to those of the related compound listed in the Database survey section.

[Figure 2]
Figure 2
Structure and atomic numbering scheme of the title compound, shown as 50% probability ellipsoids.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (100) plane (Table 1[link], Figs. 3[link], 4[link] and 5[link]). C—H⋯π inter­actions (Table 1[link]) between these layers also add to the crystal cohesion.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.836 (18) 2.507 (18) 3.0185 (14) 120.5 (15)
N1—H1N⋯O6i 0.836 (18) 2.280 (18) 3.0643 (14) 156.4 (18)
O1—H1O⋯O2 0.91 (2) 1.72 (2) 2.5596 (14) 152 (2)
C24—H24A⋯O4ii 0.98 2.60 3.3784 (16) 137
C25—H25C⋯O1iii 0.98 2.59 3.2177 (17) 122
C16—H16⋯Cg1iv 0.95 2.61 3.4780 (14) 153
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
Packing of mol­ecules in the title compound with the N—H⋯O, O–H⋯O and C—H⋯O hydrogen bonds, viewed along the a axis.
[Figure 4]
Figure 4
Packing of mol­ecules in the title compound, viewed along the b axis.
[Figure 5]
Figure 5
Packing of mol­ecules in the title compound, viewed along the c axis.

To qu­antify the inter­molecular inter­actions, a Hirshfeld surface analysis was performed and CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate the accompanying two-dimensional fingerprint plots. Fig. 6[link] shows the Hirshfeld surface mapped over dnorm. On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal to the sum of the van der Waals radii are indicated by white spots. The C—H⋯O and N—H⋯O inter­actions (Tables 1[link] and 2[link]) are represented by the two most significant red spots on the dnorm surface.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H15⋯O1 2.67 2 − x, 1 − y, 1 − z
H1O⋯H25C 2.40 x, [{3\over 2}] − y, [{1\over 2}] + z
H10C⋯O2 2.71 2 − x, 1 − y, 2 − z
H1N⋯O6 2.28 1 − x, 1 − y, 1 − z
O4⋯H24A 2.60 x, [{1\over 2}] − y, [{1\over 2}] + z
H22⋯H22 2.47 1 − x, 1 − y, −z
H8C⋯C15 2.65 x, y, 1 + z
H13⋯H19 2.57 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
[Figure 6]
Figure 6
(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound.

Fig. 7[link] depicts the two-dimensional fingerprint plots of (di, de) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important inter­molecular inter­actions are H⋯H contacts, contributing 52.3% to the overall crystal packing. Other inter­actions and their respective contributions are O⋯H/H⋯O (27.0%), C⋯H/H⋯C (15.2%), O⋯C/C⋯O (2.5%), O⋯O (2.0%) and N⋯H/H⋯N (1.1%). The Hirshfeld surface analysis confirms the significance of H-atom inter­actions in the packing formation. The significant frequency of H⋯H and O⋯H/H⋯O inter­actions implies that van der Waals inter­actions and hydrogen bonding are important in crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 7]
Figure 7
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N,4-di­methyl­benzene-1-sulfonamide unit, resulted in two hits, CSD refcodes EVOJAB (Shakuntala, et al., 2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o2178.]) and EVOFAX (Shakuntala, et al., 2011b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2160.]).

The mol­ecule of EVOJAB (Shakuntala, et al., 2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o2178.]) is twisted about the N—S bond with a C—SO2—NH—C torsion angle of 44.55 (17)°. The two aromatic rings are inclined to each other by 66.2 (1)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains parallel to the b axis. Mol­ecules of EVOFAX (Shakuntala, et al., 2011b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2160.]), are bent at the S atom with a C—SO2—NH—C torsion angle of 57.7 (2)°. The benzene rings are rotated relative to each other by 68.1 (1)°. In the crystal, N—H⋯O(S) hydrogen bonds pack the mol­ecules into infinite chains parallel to the b axis.

5. Synthesis and crystallization

Dimethyl but-2-ynedioate (87.6 µL, 0.7 mmol) was added to a solution of 4-methyl-N-(5-methyl-2-(5-methyl­furan-2-yl)phen­yl)benzene­sulfonamide (100 mg, 0.3 mmol) in o-xylene (5 mL). The mixture was refluxed for 5 h. After cooling of the reaction to r.t, the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (eluent: from hexane to ethyl acetate). The title compound was obtained as a colourless powder, yield 68%, 97 mg (0.2 mmol); m.p. > 523 K (with decomp.). A single crystal of the title compound was grown from a mixture of hexane and ethyl acetate. IR (KBr), ν (cm−1): br. 3277 (NH, OH), 1745, 1671 (CO2), 1353 (νas SO2), 1238 (C—OH), 1172 (νs SO2). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 11.31 (s, 1H, OH), 7.52 (s, 1H, NH), 7.42 (d, J = 8.2, 2H, H Ar), 7.18 (d, J = 8.2, 2H, H Ar), 6.96 (d, J = 7.6, 1H, H Ar), 6.85 (d, J = 7.6, 1H, H Ar), 6.71 (s, 1H, H Ar), 6.08 (s, 1H, H Ar), 3.92 (s, 3H, OCH3), 3.51 (s, 3H, OCH3), 2.43 (s, 3H, CH3), 2.39 (s, 3H, CH3), 2.06 (s, 3H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ 169.5, 168.7, 159.9, 143.3, 139.4, 137.3, 136.9, 134.1, 133.0, 130.7, 129.5 (2C), 129.4, 128.5, 127.1 (2C), 126.3, 125.7, 124.7, 107.9, 53.1, 52.3, 21.6, 21.4, 16.0. MS (ESI) m/z: [M + H]+ 484. Elemental analysis calculated (%) for C25H25NO7S: C 62.10, H 5.21, N 2.90, S 6.63; found: C 61.87, H 5.48, N 3.09, S 6.37.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were included in the refinement using the riding-model approximation with C—H distances of 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the NH and OH groups were found in a difference map and refined freely [N1—H1N = 0.836 (18) Å and O1—H1O = 0.91 (2) Å].

Table 3
Experimental details

Crystal data
Chemical formula C25H25NO7S
Mr 483.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.52978 (9), 18.87277 (12), 10.63916 (7)
β (°) 109.4092 (8)
V3) 2372.88 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.61
Crystal size (mm) 0.22 × 0.20 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.654, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37027, 5051, 4842
Rint 0.044
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.03
No. of reflections 5051
No. of parameters 321
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Dimethyl 4-hydroxy-5,4'-dimethyl-2'-{[(4-methylphenyl)sulfonyl]amino}biphenyl-\ 2,3-dicarboxylate top
Crystal data top
C25H25NO7SF(000) = 1016
Mr = 483.52Dx = 1.354 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.52978 (9) ÅCell parameters from 26913 reflections
b = 18.87277 (12) Åθ = 4.4–77.8°
c = 10.63916 (7) ŵ = 1.61 mm1
β = 109.4092 (8)°T = 100 K
V = 2372.88 (3) Å3Prism, colourless
Z = 40.22 × 0.20 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4842 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.044
φ and ω scansθmax = 77.8°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1515
Tmin = 0.654, Tmax = 1.000k = 2223
37027 measured reflectionsl = 1313
5051 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.207P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5051 reflectionsΔρmax = 0.33 e Å3
321 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00097 (9)
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47540 (2)0.47876 (2)0.28445 (3)0.01572 (9)
O10.87334 (8)0.69147 (5)0.70753 (10)0.0219 (2)
H1O0.8780 (19)0.6776 (12)0.791 (2)0.054 (6)*
O20.87491 (9)0.61396 (5)0.90556 (9)0.0289 (2)
O30.83061 (9)0.49945 (5)0.87207 (9)0.0254 (2)
O40.75736 (8)0.38919 (5)0.63886 (9)0.0229 (2)
O50.94306 (8)0.41300 (5)0.73522 (9)0.0245 (2)
O60.40571 (7)0.48386 (5)0.36703 (9)0.01983 (19)
O70.43510 (7)0.44113 (5)0.16051 (8)0.01987 (19)
N10.59121 (9)0.43960 (5)0.37778 (10)0.0167 (2)
H1N0.6110 (15)0.4544 (9)0.4562 (18)0.028 (4)*
C10.85341 (10)0.63093 (6)0.63507 (12)0.0172 (2)
C20.84786 (10)0.56433 (6)0.69114 (12)0.0165 (2)
C30.82958 (10)0.50356 (6)0.60943 (12)0.0155 (2)
C40.81082 (10)0.51001 (6)0.47363 (12)0.0159 (2)
C50.81682 (10)0.57750 (7)0.42116 (12)0.0181 (2)
H50.80490.58190.32850.022*
C60.83940 (10)0.63786 (6)0.49899 (12)0.0188 (2)
C70.85359 (10)0.56214 (7)0.83223 (12)0.0193 (2)
C80.82815 (14)0.49568 (9)1.00727 (14)0.0332 (3)
H8A0.77210.52931.01780.050*
H8B0.90300.50761.07000.050*
H8C0.80770.44761.02540.050*
C90.83582 (10)0.42959 (6)0.66379 (11)0.0175 (2)
C100.95930 (14)0.34207 (8)0.78924 (16)0.0360 (4)
H10A0.93730.30760.71610.054*
H10B0.91250.33520.84600.054*
H10C1.03910.33520.84230.054*
C110.78777 (10)0.44813 (6)0.38084 (11)0.0161 (2)
C120.67941 (10)0.41792 (6)0.32872 (11)0.0160 (2)
C130.65792 (10)0.36524 (6)0.23203 (12)0.0183 (2)
H130.58400.34570.19700.022*
C140.74280 (11)0.34054 (7)0.18550 (12)0.0193 (2)
C150.85138 (11)0.36831 (7)0.24215 (13)0.0210 (3)
H150.91130.35060.21510.025*
C160.87306 (10)0.42142 (7)0.33738 (12)0.0201 (3)
H160.94750.43990.37370.024*
C170.51190 (10)0.56517 (6)0.25010 (12)0.0178 (2)
C180.50126 (11)0.62124 (7)0.32991 (13)0.0222 (3)
H180.47450.61330.40240.027*
C190.53028 (12)0.68894 (7)0.30225 (13)0.0224 (3)
H190.52280.72730.35650.027*
C200.57021 (10)0.70204 (7)0.19664 (12)0.0198 (2)
C210.58170 (11)0.64480 (7)0.11927 (12)0.0211 (3)
H210.61000.65260.04800.025*
C220.55246 (11)0.57649 (7)0.14447 (12)0.0197 (2)
H220.56000.53800.09040.024*
C230.59565 (12)0.77675 (7)0.16557 (13)0.0250 (3)
H23A0.52500.80060.11470.037*
H23B0.64660.77580.11280.037*
H23C0.63190.80250.24890.037*
C240.71670 (12)0.28600 (7)0.07589 (14)0.0264 (3)
H24A0.69160.24200.10640.040*
H24B0.78490.27670.05280.040*
H24C0.65660.30380.00270.040*
C250.85016 (13)0.70949 (7)0.44329 (14)0.0273 (3)
H25A0.92810.72640.48260.041*
H25B0.79850.74270.46450.041*
H25C0.83080.70610.34630.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01611 (15)0.01641 (15)0.01492 (15)0.00118 (10)0.00555 (11)0.00276 (10)
O10.0258 (5)0.0150 (4)0.0243 (5)0.0007 (3)0.0075 (4)0.0048 (3)
O20.0414 (6)0.0258 (5)0.0193 (4)0.0024 (4)0.0098 (4)0.0067 (4)
O30.0356 (5)0.0253 (5)0.0150 (4)0.0039 (4)0.0081 (4)0.0016 (4)
O40.0268 (5)0.0180 (4)0.0221 (4)0.0035 (4)0.0057 (4)0.0021 (3)
O50.0248 (5)0.0180 (4)0.0243 (5)0.0032 (4)0.0005 (4)0.0032 (4)
O60.0185 (4)0.0218 (4)0.0211 (4)0.0015 (3)0.0091 (4)0.0028 (3)
O70.0205 (4)0.0210 (4)0.0166 (4)0.0011 (3)0.0041 (3)0.0050 (3)
N10.0180 (5)0.0184 (5)0.0138 (5)0.0011 (4)0.0056 (4)0.0025 (4)
C10.0146 (5)0.0162 (6)0.0198 (6)0.0002 (4)0.0043 (4)0.0032 (4)
C20.0148 (5)0.0173 (6)0.0166 (5)0.0004 (4)0.0043 (4)0.0011 (4)
C30.0139 (5)0.0153 (6)0.0166 (5)0.0002 (4)0.0042 (4)0.0002 (4)
C40.0138 (5)0.0169 (6)0.0163 (5)0.0005 (4)0.0041 (4)0.0002 (4)
C50.0176 (5)0.0202 (6)0.0148 (5)0.0012 (4)0.0033 (4)0.0009 (4)
C60.0176 (6)0.0165 (6)0.0202 (6)0.0004 (4)0.0036 (5)0.0026 (5)
C70.0182 (6)0.0207 (6)0.0178 (6)0.0016 (5)0.0042 (5)0.0006 (5)
C80.0423 (8)0.0419 (9)0.0158 (6)0.0051 (7)0.0099 (6)0.0034 (6)
C90.0223 (6)0.0167 (6)0.0125 (5)0.0014 (5)0.0044 (4)0.0001 (4)
C100.0417 (9)0.0202 (7)0.0336 (8)0.0070 (6)0.0043 (6)0.0068 (6)
C110.0179 (6)0.0163 (6)0.0130 (5)0.0001 (4)0.0036 (4)0.0005 (4)
C120.0178 (5)0.0152 (5)0.0153 (5)0.0009 (4)0.0059 (4)0.0014 (4)
C130.0186 (6)0.0170 (6)0.0183 (6)0.0010 (4)0.0045 (5)0.0016 (4)
C140.0223 (6)0.0170 (6)0.0169 (5)0.0028 (5)0.0043 (5)0.0011 (4)
C150.0199 (6)0.0229 (6)0.0206 (6)0.0042 (5)0.0074 (5)0.0020 (5)
C160.0175 (6)0.0226 (6)0.0193 (6)0.0008 (5)0.0048 (5)0.0013 (5)
C170.0181 (6)0.0178 (6)0.0163 (5)0.0003 (4)0.0042 (4)0.0008 (4)
C180.0284 (7)0.0220 (6)0.0190 (6)0.0007 (5)0.0114 (5)0.0021 (5)
C190.0293 (7)0.0184 (6)0.0203 (6)0.0013 (5)0.0094 (5)0.0023 (5)
C200.0199 (6)0.0192 (6)0.0177 (6)0.0006 (5)0.0029 (5)0.0018 (5)
C210.0245 (6)0.0244 (6)0.0150 (5)0.0001 (5)0.0073 (5)0.0006 (5)
C220.0230 (6)0.0206 (6)0.0161 (5)0.0007 (5)0.0072 (5)0.0027 (5)
C230.0301 (7)0.0206 (6)0.0233 (6)0.0013 (5)0.0076 (5)0.0032 (5)
C240.0261 (7)0.0250 (7)0.0262 (7)0.0035 (5)0.0062 (5)0.0093 (5)
C250.0354 (7)0.0187 (6)0.0243 (7)0.0053 (5)0.0054 (6)0.0031 (5)
Geometric parameters (Å, º) top
S1—O61.4330 (9)C11—C161.3922 (17)
S1—O71.4338 (9)C11—C121.4056 (17)
S1—N11.6372 (11)C12—C131.3911 (17)
S1—C171.7643 (13)C13—C141.3940 (17)
O1—C11.3543 (14)C13—H130.9500
O1—H1O0.91 (2)C14—C151.3942 (18)
O2—C71.2239 (16)C14—C241.5076 (17)
O3—C71.3203 (16)C15—C161.3864 (18)
O3—C81.4507 (16)C15—H150.9500
O4—C91.2020 (16)C16—H160.9500
O5—C91.3425 (15)C17—C181.3907 (17)
O5—C101.4444 (16)C17—C221.3952 (17)
N1—C121.4298 (15)C18—C191.3864 (18)
N1—H1N0.836 (18)C18—H180.9500
C1—C21.4029 (17)C19—C201.3955 (18)
C1—C61.4054 (17)C19—H190.9500
C2—C31.4112 (16)C20—C211.3943 (18)
C2—C71.4794 (17)C20—C231.5064 (17)
C3—C41.3899 (16)C21—C221.3904 (18)
C3—C91.5031 (16)C21—H210.9500
C4—C51.4028 (17)C22—H220.9500
C4—C111.4941 (16)C23—H23A0.9800
C5—C61.3811 (17)C23—H23B0.9800
C5—H50.9500C23—H23C0.9800
C6—C251.4999 (17)C24—H24A0.9800
C8—H8A0.9800C24—H24B0.9800
C8—H8B0.9800C24—H24C0.9800
C8—H8C0.9800C25—H25A0.9800
C10—H10A0.9800C25—H25B0.9800
C10—H10B0.9800C25—H25C0.9800
C10—H10C0.9800
O6—S1—O7119.80 (5)C13—C12—C11120.39 (11)
O6—S1—N1104.85 (5)C13—C12—N1119.43 (11)
O7—S1—N1107.72 (5)C11—C12—N1120.16 (10)
O6—S1—C17108.52 (6)C12—C13—C14121.23 (11)
O7—S1—C17107.68 (6)C12—C13—H13119.4
N1—S1—C17107.72 (6)C14—C13—H13119.4
C1—O1—H1O104.7 (14)C13—C14—C15118.09 (11)
C7—O3—C8116.17 (11)C13—C14—C24120.53 (11)
C9—O5—C10115.05 (11)C15—C14—C24121.37 (11)
C12—N1—S1123.00 (8)C16—C15—C14120.91 (11)
C12—N1—H1N116.8 (12)C16—C15—H15119.5
S1—N1—H1N111.3 (12)C14—C15—H15119.5
O1—C1—C2122.66 (11)C15—C16—C11121.26 (11)
O1—C1—C6116.37 (11)C15—C16—H16119.4
C2—C1—C6120.97 (11)C11—C16—H16119.4
C1—C2—C3119.15 (11)C18—C17—C22120.65 (12)
C1—C2—C7117.65 (11)C18—C17—S1119.52 (10)
C3—C2—C7123.06 (11)C22—C17—S1119.82 (9)
C4—C3—C2120.39 (11)C19—C18—C17119.11 (12)
C4—C3—C9116.77 (10)C19—C18—H18120.4
C2—C3—C9122.74 (10)C17—C18—H18120.4
C3—C4—C5118.70 (11)C18—C19—C20121.58 (12)
C3—C4—C11123.18 (11)C18—C19—H19119.2
C5—C4—C11118.10 (10)C20—C19—H19119.2
C6—C5—C4122.53 (11)C21—C20—C19118.23 (12)
C6—C5—H5118.7C21—C20—C23121.65 (12)
C4—C5—H5118.7C19—C20—C23120.08 (12)
C5—C6—C1118.13 (11)C22—C21—C20121.27 (11)
C5—C6—C25122.27 (11)C22—C21—H21119.4
C1—C6—C25119.60 (11)C20—C21—H21119.4
O2—C7—O3122.41 (12)C21—C22—C17119.15 (11)
O2—C7—C2123.45 (12)C21—C22—H22120.4
O3—C7—C2114.12 (11)C17—C22—H22120.4
O3—C8—H8A109.5C20—C23—H23A109.5
O3—C8—H8B109.5C20—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
O3—C8—H8C109.5C20—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
O4—C9—O5124.64 (11)C14—C24—H24A109.5
O4—C9—C3124.75 (11)C14—C24—H24B109.5
O5—C9—C3110.41 (10)H24A—C24—H24B109.5
O5—C10—H10A109.5C14—C24—H24C109.5
O5—C10—H10B109.5H24A—C24—H24C109.5
H10A—C10—H10B109.5H24B—C24—H24C109.5
O5—C10—H10C109.5C6—C25—H25A109.5
H10A—C10—H10C109.5C6—C25—H25B109.5
H10B—C10—H10C109.5H25A—C25—H25B109.5
C16—C11—C12118.01 (11)C6—C25—H25C109.5
C16—C11—C4120.09 (11)H25A—C25—H25C109.5
C12—C11—C4121.80 (11)H25B—C25—H25C109.5
O6—S1—N1—C12173.68 (9)C3—C4—C11—C16102.44 (14)
O7—S1—N1—C1245.03 (11)C5—C4—C11—C1675.74 (15)
C17—S1—N1—C1270.86 (11)C3—C4—C11—C1281.40 (15)
O1—C1—C2—C3178.41 (11)C5—C4—C11—C12100.42 (14)
C6—C1—C2—C30.95 (17)C16—C11—C12—C132.95 (17)
O1—C1—C2—C75.80 (17)C4—C11—C12—C13173.28 (11)
C6—C1—C2—C7174.84 (11)C16—C11—C12—N1175.10 (11)
C1—C2—C3—C43.68 (17)C4—C11—C12—N18.66 (17)
C7—C2—C3—C4171.87 (11)S1—N1—C12—C1365.05 (14)
C1—C2—C3—C9172.71 (11)S1—N1—C12—C11116.88 (11)
C7—C2—C3—C911.74 (18)C11—C12—C13—C140.72 (18)
C2—C3—C4—C53.56 (17)N1—C12—C13—C14177.35 (11)
C9—C3—C4—C5173.04 (10)C12—C13—C14—C152.31 (19)
C2—C3—C4—C11178.27 (11)C12—C13—C14—C24176.98 (12)
C9—C3—C4—C115.13 (17)C13—C14—C15—C163.09 (19)
C3—C4—C5—C60.73 (18)C24—C14—C15—C16176.20 (12)
C11—C4—C5—C6178.99 (11)C14—C15—C16—C110.8 (2)
C4—C5—C6—C11.93 (18)C12—C11—C16—C152.20 (18)
C4—C5—C6—C25177.57 (12)C4—C11—C16—C15174.11 (11)
O1—C1—C6—C5178.81 (11)O6—S1—C17—C1818.25 (12)
C2—C1—C6—C51.80 (18)O7—S1—C17—C18149.32 (10)
O1—C1—C6—C251.68 (17)N1—S1—C17—C1894.76 (11)
C2—C1—C6—C25177.72 (12)O6—S1—C17—C22162.58 (10)
C8—O3—C7—O22.03 (19)O7—S1—C17—C2231.51 (12)
C8—O3—C7—C2176.26 (11)N1—S1—C17—C2284.42 (11)
C1—C2—C7—O28.10 (18)C22—C17—C18—C190.8 (2)
C3—C2—C7—O2176.29 (12)S1—C17—C18—C19179.92 (10)
C1—C2—C7—O3170.16 (11)C17—C18—C19—C200.2 (2)
C3—C2—C7—O35.45 (17)C18—C19—C20—C210.7 (2)
C10—O5—C9—O43.35 (18)C18—C19—C20—C23177.09 (12)
C10—O5—C9—C3178.35 (11)C19—C20—C21—C221.12 (19)
C4—C3—C9—O468.07 (16)C23—C20—C21—C22176.63 (12)
C2—C3—C9—O4115.42 (14)C20—C21—C22—C170.61 (19)
C4—C3—C9—O5106.91 (12)C18—C17—C22—C210.35 (19)
C2—C3—C9—O569.60 (14)S1—C17—C22—C21179.51 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.836 (18)2.507 (18)3.0185 (14)120.5 (15)
N1—H1N···O6i0.836 (18)2.280 (18)3.0643 (14)156.4 (18)
O1—H1O···O20.91 (2)1.72 (2)2.5596 (14)152 (2)
C13—H13···O70.952.533.0022 (16)111
C18—H18···O60.952.582.9370 (16)103
C24—H24A···O4ii0.982.603.3784 (16)137
C25—H25C···O1iii0.982.593.2177 (17)122
C16—H16···Cg1iv0.952.613.4780 (14)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H15···O12.672 - x, 1 - y, 1 - z
H1O···H25C2.40x, 3/2 - y, 1/2 + z
H10C···O22.712 - x, 1 - y, 2 - z
H1N···O62.281 - x, 1 - y, 1 - z
O4···H24A2.60x, 1/2 - y, 1/2 + z
H22···H222.471 - x, 1 - y, -z
H8C···C152.65x, y, 1 + z
H13···H192.571 - x, -1/2 + y, 1/2 - z
 

Acknowledgements

GMB and SA thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems" RUDN. The author's contributions are as follows. Conceptualization, MA and AB; synthesis, NAG, GMB and SA; X-ray analysis, VNK, ZA and MA; writing (review and editing of the manuscript) MA and AB; funding acquisition, GMB and SA; supervision, MA and AB.

Funding information

Funding for this research was provided by: the Russian Science Foundation (https://rscf.ru/project/22-73-00127/).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun. 54, 2850–2853.  CrossRef CAS Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840–4850.  CrossRef CAS PubMed Google Scholar
First citationCriado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDiels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257–266.  CrossRef Google Scholar
First citationEda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun. 51, 5963–5966.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMargetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluor. Chem. 131, 408–416.  Google Scholar
First citationMurphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707–8720.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. St. 234, 1183–1185.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o2178.  CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2160.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.  Web of Science CrossRef CAS Google Scholar
First citationWarrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199–202.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett. 60, 151204.  Web of Science CSD CrossRef Google Scholar
First citationZubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv. 2, 4103–4109.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem Heterocycl Compd, 48, 514-524.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds