research communications
S,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetrahydro-1H,3H,4H,7H-3a,6:7,9a-diepoxybenzo[de]isochromene-4,5-dicarboxylate
and Hirshfeld surface analysis of diethyl (3aaOrganic Chemistry Department, Baku State University, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI "Geotechnological Problems of Oil, Gas and Chemistry", Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, dOrganic Chemistry Department, Faculty of Science, RUDN University, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetrahydrofuran and dihydrofuran rings adopt envelope conformations. The oxane ring is puckered. The features C—H⋯O hydrogen bonds, which link the molecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) interactions are the most significant contributors to the crystal packing.
Keywords: crystal structure; (1R,4S)-7-oxabicyclo[2.2.1]hept-2-ene; (1S,4S)-7-oxabicyclo[2.2.1]heptane; oxane; weak interactions; Hirshfeld surface analysis.
CCDC reference: 2319519
1. Chemical context
The intermolecular Diels–Alder (DA) reaction of furans is a powerful tool in organic and medicinal chemistry, offering a versatile and efficient approach to the synthesis of complex molecules with valuable applications (for reviews and books on the topic, see: Chen et al., 2018; Winkler 1996; Parvatkar et al., 2014; Shi & Wang, 2020; Hopf & Sherburn, 2012; Safavora et al., 2019). The DA reaction of furans is typically carried out under thermal conditions, but the use of high pressure has emerged as a powerful tool for enhancing the reactivity and selectivity of this reaction. High pressure can significantly lower the activation energy of the DA reaction, leading to faster reaction rates and improved yields (see reviews by Rulev & Zubkov, 2022; Schettino & Bini, 2007). On the other hand, by the attachment of functional groups, the DA reaction products can participate in various sorts of intermolecular interactions with interesting coordination, supramolecular, catalytic and solvatochromic properties (Gurbanov et al., 2020a,b; Khalilov et al., 2021; Mahmoudi et al., 2017a,b; Mahmudov et al., 2015). For example, attachment of carboxylate groups to organic molecules can create coordination sites and interesting supramolecular architectures involving monomeric, oligomeric or polymeric subunits in metal complexes, which affects their (Gurbanov et al., 2022a,b; Ma et al., 2017, 2021; Shikhaliyev et al., 2019). The present work showcases a facile methodology for the synthesis of compound 1a from a simple furan derivative and diethyl fumarate under high-pressure conditions. It is noteworthy that while several methods for the preparation of similar structures using more reactive dienophiles have been documented in the literature (Borisova et al., 2018a,b; Kvyatkovskaya et al., 2021a,b), this represents the first instance of such a reaction where thermal activation alone is insufficient to drive the transformation.
2. Structural commentary
In the title compound, (Fig. 1), the (1R,4S)-7-oxabicyclo[2.2.1]hept-2-ene (O11/C3B/C6A/C7–C9/C9A), (1S,4S)-7-oxabicyclo[2.2.1]heptane (O10/C3A/C3B/C4–C6/C6A) and and oxane (C1/O2/C3/C3A/C3B/C9A) rings are fused together. The hexane ring (C3B/C6A/C7–C9/C9A) tends towards a distorted boat conformation [the puckering parameters (Cremer & Pople, 1975) are QT = 1.0005 (15) Å, θ = 89.65 (9)° and φ = 300.58 (8)°], while the tetrahydrofuran (C3B/C6A/C7/O11/C9A) and dihydrofuran (C7–C9/C9A/O11) rings adopt envelope conformations, with puckering parameters Q(2) = 0.5625 (13) Å, φ(2) = 1.70 (14)° and Q(2) = 0.5143 (13) Å, φ(2) = 179.57 (17)°, respectively. The hexane ring (C3A/C3B/C4–C6/C6A) tends towards a distorted boat conformation [puckering parameters QT = 0.9758 (14) Å, θ = 91.04 (8)° and φ = 2.99 (8)°], while the tetrahydrofuran rings (C3A/C4–C6/O10 and C6/C6A/C3B/C3A/O10) adopt envelope conformations, with puckering parameters Q(2) = 0.5784 (13) Å, φ(2) = 185.10 (14)° and Q(2) = 0.5235 (13) Å, φ(2) = 357.36 (15)°, respectively. The oxane ring (C3A/C3B/C9A/C1/O2/C3) is puckered with puckering parameters QT = 0.5125 (14) Å, θ = 7.89 (15)° and φ = 3.1 (12)°. The C3A—C4—C12—O12, C3A—C4—C12—O13, C4—C12—O13—C13, C6—C5—C15—O15, C6—C5—C15—O16 and C5—C15—O16—C16 torsion angles are 107.12 (15), −72.14 (13), −177.31 (11), 120.28 (15), −60.17 (14) and 178.70 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
The ; Figs. 2, 3 and 4). C—H⋯π and π–π interactions are not observed in the structure.
of the title compound is stabilized by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to quantify the intermolecular interactions in the crystal. The Hirshfeld surfaces were mapped over dnorm (Fig. 5). The interactions listed in Table 2 play a key role in the molecular packing of the title compound. The most important interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (60.2%, Fig. 6b). The other major contributor is the O⋯H/H⋯O (35.4%, Fig. 6c) interaction. Other, smaller contributions are made by C⋯H/H⋯C (3.9%), O⋯O (0.3%), C⋯C (0.2%) and O⋯C/C⋯O (0.1%) interactions.
|
4. Database survey
Four related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016), viz. N-carbamothioylamino-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide (CSD refcode WAFPOK; Li, 2010), {3-hydroxymethyl-1-[2-(3-methoxyphenyl)ethyl]-7-oxabicyclo(2.2.1)hept-5-en-2-yl}methanol (SIMPUA; Wang & Peng, 2007), (1SR,2SR,4SR)-7-oxabicyclo(2.2.1)hept-5-ene-2-carboxylic acid (ETEYEH; Gartenmann Dickson et al., 2004) and (1S*,2R*,5S*,6S*,7R*)-5-hydroxy-4-(4-methoxyphenyl)-10-oxa-4-azatricyclo(5.2.1.02,6)dec-8-en-one (DIWLEB; Gökçe et al., 2008).
The compound WAFPOK comprises a π interactions, leading to a di-periodic supramolecular structure.
of chiral molecules containing four stereogenic centres. The cyclohexane ring tends towards a boat conformation, while the tetrahydrofuran and dihydrofuran rings adopt envelope conformations. The dihedral angle between the thiosemicarbazide fragment and the fused-ring system is 77.20 (10)°. The is stabilized by two intermolecular N—H⋯O hydrogen bonds. SIMPUA is an oxabicyclo[2.2.1]hept-5- ene with two exo-oriented hydroxymethyl groups, which are not parallel to each other. The molecules are linked to each other by hydrogen bonds, resulting in a supramolecular network. Intermolecular O—H⋯O hydrogen bonding is observed between the hydroxyl groups. In ETEYEH, the molecules are connected by O—H⋯O hydrogen bonds, forming centrosymmetric dimers. The structure of DIWLEB comprises a of chiral molecules containing five stereogenic centres. The cyclohexane ring tends towards a boat conformation and the two tetrahydrofuran rings adopt envelope conformations. Molecules are linked into sheets parallel to (100) by a combination of O—H⋯O, C—H⋯O and C—H⋯5. Synthesis and crystallization
A solution of diethyl fumarate (850 mg, 4.95 mmol, 1.1 equiv) and difurfuryl ether (800 mg, 4.5 mmol) in methanol (21 mL) was placed in a Teflon ampoule. The reaction mixture was then held at 15 kbar and r.t. for two days in a piston-cylinder type steel pressure chamber. The obtained methanol solution was concentrated in vacuo. The resulting light-yellow oil was solidified in hexane and then recrystallized from ethyl acetate to isolate diastereomer 1a exclusively (Fig. 7). The residue was filtered off and dried under reduced pressure in a vacuum desiccator to constant weight, yielding the target product as white crystals. White crystals, 0.32 g, 0.94 mmol, yield is 21%, Rf = 0.7 (`Sorbfil' plates for CHCl3); mp: 418.1–419.1 K. A single-crystal of compound 1a was obtained by slow evaporation from ethyl acetate at 298 K.
1H NMR (700 MHz, CDCl3, 298 K) δ 6.40 (d, J = 5.7 Hz, 1H, CH=CH), 6.20 (d, J = 5.7 Hz, 1H, CH=CH), 5.02 (s, 1H, CH), 4.83 (s, 1H, CH), 4.38 (d, J = 12.8 Hz, 1H, from CH2), 4.27 (d, J = 12.9 Hz, 1H, from CH2), 4.23–4.13 (m, 4H, 2OCH2CH3), 4.02 (d, J = 12.9 Hz, 1H, from CH2), 3.89 (d, J = 12.8 Hz, 1H, from CH2), 3.19 (d, J = 5.2 Hz, 1H, CH), 3.12 (d, J = 5.2 Hz, 1H, CH), 2.13 (d, J = 6.4 Hz, 1H, CH), 1.75 (d, J = 6.3 Hz, 1H, CH), 1.36–1.14 (m, 6H, 2OCH2CH3) . 13C NMR (175 MHz, CDCl3, 298 K) δ 171.69, 170.50, 138.05, 136.58, 84.04, 82.64, 82.26, 81.65, 66.67, 66.29, 61.52 (2C), 53.12, 52.70, 49.90, 43.15, 14.34, 14.25. IR νmax/cm−1 (tablet KBr): 3440, 2982, 2950, 2910, 2859, 1728, 1473, 1311, 1211, 1174, 1093, 1029, 973, 912, 856, 697. HRMS (ESI-TOF): calculated for C18H23O7 [M + H]+ 351.1443; found 351.1440.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were included in the using the riding-model approximation with C—H distances of 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). Two reflections (0 1 1 and 1 1 0), affected by the incident beam-stop, were omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2319519
https://doi.org/10.1107/S2056989023010794/jy2042sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023010794/jy2042Isup2.hkl
C18H22O7 | F(000) = 744 |
Mr = 350.35 | Dx = 1.408 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1566 (4) Å | Cell parameters from 5852 reflections |
b = 14.1907 (9) Å | θ = 2.5–29.9° |
c = 16.2737 (10) Å | µ = 0.11 mm−1 |
β = 91.329 (2)° | T = 100 K |
V = 1652.27 (17) Å3 | Bulk, colourless |
Z = 4 | 0.40 × 0.36 × 0.34 mm |
Bruker KAPPA APEXII area-detector diffractometer | 3615 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.051 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015). | θmax = 30.3°, θmin = 2.9° |
Tmin = 0.941, Tmax = 1.000 | h = −10→10 |
28552 measured reflections | k = −20→18 |
4921 independent reflections | l = −23→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.5731P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4921 reflections | Δρmax = 0.35 e Å−3 |
226 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.65003 (13) | 0.14690 (7) | 0.39784 (6) | 0.0185 (2) | |
O10 | 0.32231 (13) | 0.27216 (6) | 0.41424 (6) | 0.01429 (19) | |
O11 | 0.28123 (13) | 0.08569 (7) | 0.44881 (6) | 0.0166 (2) | |
O12 | 0.20009 (15) | 0.28745 (9) | 0.14509 (7) | 0.0289 (3) | |
O13 | 0.51089 (13) | 0.30191 (7) | 0.16601 (6) | 0.0202 (2) | |
O15 | 0.20749 (15) | 0.50604 (7) | 0.32809 (7) | 0.0275 (3) | |
O16 | −0.06545 (14) | 0.45134 (7) | 0.37426 (6) | 0.0203 (2) | |
C1 | 0.56703 (19) | 0.05898 (10) | 0.37326 (9) | 0.0190 (3) | |
H1A | 0.604785 | 0.009304 | 0.412996 | 0.023* | |
H1B | 0.613288 | 0.040808 | 0.318629 | 0.023* | |
C3B | 0.28585 (17) | 0.15148 (9) | 0.31737 (8) | 0.0127 (2) | |
H3BA | 0.276226 | 0.137729 | 0.257158 | 0.015* | |
C3A | 0.39716 (17) | 0.24133 (9) | 0.33732 (8) | 0.0129 (2) | |
C3 | 0.60532 (18) | 0.22335 (10) | 0.34389 (8) | 0.0167 (3) | |
H3A | 0.652818 | 0.209205 | 0.288583 | 0.020* | |
H3B | 0.668881 | 0.281058 | 0.364234 | 0.020* | |
C4 | 0.32813 (18) | 0.32304 (9) | 0.28048 (8) | 0.0132 (2) | |
H4A | 0.406592 | 0.379971 | 0.292317 | 0.016* | |
C5 | 0.13032 (18) | 0.34034 (9) | 0.31390 (8) | 0.0139 (2) | |
H5A | 0.033387 | 0.321017 | 0.271973 | 0.017* | |
C6 | 0.12801 (18) | 0.27188 (9) | 0.38872 (8) | 0.0144 (3) | |
H6A | 0.040849 | 0.291342 | 0.432769 | 0.017* | |
C6A | 0.09390 (18) | 0.17152 (9) | 0.35618 (8) | 0.0141 (2) | |
H6AA | −0.012435 | 0.168001 | 0.315333 | 0.017* | |
C7 | 0.08827 (19) | 0.09147 (9) | 0.42186 (9) | 0.0173 (3) | |
H7A | −0.003793 | 0.100706 | 0.466452 | 0.021* | |
C8 | 0.0674 (2) | 0.00021 (10) | 0.37333 (10) | 0.0224 (3) | |
H8A | −0.041834 | −0.037460 | 0.367396 | 0.027* | |
C9A | 0.35656 (18) | 0.06594 (9) | 0.36921 (8) | 0.0155 (3) | |
C9 | 0.2335 (2) | −0.01604 (9) | 0.34091 (9) | 0.0210 (3) | |
H9A | 0.267854 | −0.067681 | 0.307329 | 0.025* | |
C12 | 0.33375 (18) | 0.30231 (9) | 0.18944 (8) | 0.0136 (2) | |
C13 | 0.5500 (2) | 0.28738 (11) | 0.07909 (8) | 0.0200 (3) | |
H13A | 0.568211 | 0.348732 | 0.051437 | 0.024* | |
H13B | 0.444317 | 0.254289 | 0.051389 | 0.024* | |
C14 | 0.7242 (2) | 0.22918 (11) | 0.07489 (10) | 0.0259 (3) | |
H14A | 0.754364 | 0.218155 | 0.017244 | 0.039* | |
H14B | 0.827848 | 0.262688 | 0.102366 | 0.039* | |
H14C | 0.704464 | 0.168635 | 0.102318 | 0.039* | |
C15 | 0.10027 (19) | 0.44187 (9) | 0.33870 (8) | 0.0159 (3) | |
C16 | −0.1128 (2) | 0.54538 (10) | 0.40327 (9) | 0.0216 (3) | |
H16A | −0.109745 | 0.591211 | 0.357452 | 0.026* | |
H16B | −0.022582 | 0.565926 | 0.446699 | 0.026* | |
C17 | −0.3058 (2) | 0.53933 (13) | 0.43679 (13) | 0.0369 (4) | |
H17A | −0.343372 | 0.601375 | 0.457067 | 0.055* | |
H17B | −0.393486 | 0.518921 | 0.393188 | 0.055* | |
H17C | −0.306732 | 0.493754 | 0.482017 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0118 (4) | 0.0270 (5) | 0.0167 (5) | 0.0022 (4) | −0.0019 (4) | 0.0041 (4) |
O10 | 0.0130 (4) | 0.0189 (4) | 0.0110 (4) | 0.0006 (3) | 0.0019 (3) | −0.0018 (3) |
O11 | 0.0142 (4) | 0.0204 (5) | 0.0150 (5) | 0.0032 (4) | 0.0017 (4) | 0.0033 (4) |
O12 | 0.0162 (5) | 0.0536 (7) | 0.0168 (5) | 0.0001 (5) | −0.0023 (4) | −0.0039 (5) |
O13 | 0.0136 (5) | 0.0351 (6) | 0.0121 (5) | −0.0026 (4) | 0.0021 (4) | −0.0042 (4) |
O15 | 0.0267 (6) | 0.0169 (5) | 0.0394 (7) | −0.0021 (4) | 0.0097 (5) | −0.0038 (4) |
O16 | 0.0207 (5) | 0.0145 (4) | 0.0260 (6) | 0.0047 (4) | 0.0069 (4) | −0.0019 (4) |
C1 | 0.0142 (6) | 0.0225 (7) | 0.0204 (7) | 0.0070 (5) | 0.0014 (5) | 0.0027 (5) |
C3B | 0.0105 (5) | 0.0150 (6) | 0.0126 (6) | 0.0016 (4) | 0.0000 (5) | −0.0006 (4) |
C3A | 0.0113 (6) | 0.0171 (6) | 0.0102 (6) | 0.0008 (4) | 0.0015 (5) | −0.0012 (4) |
C3 | 0.0108 (6) | 0.0244 (7) | 0.0148 (6) | 0.0006 (5) | 0.0006 (5) | 0.0034 (5) |
C4 | 0.0129 (6) | 0.0148 (6) | 0.0120 (6) | −0.0005 (4) | 0.0017 (5) | −0.0005 (4) |
C5 | 0.0125 (6) | 0.0143 (6) | 0.0149 (6) | 0.0014 (5) | 0.0019 (5) | −0.0010 (5) |
C6 | 0.0115 (6) | 0.0164 (6) | 0.0153 (6) | 0.0024 (5) | 0.0028 (5) | 0.0006 (5) |
C6A | 0.0103 (6) | 0.0147 (6) | 0.0175 (6) | 0.0011 (4) | 0.0016 (5) | 0.0027 (5) |
C7 | 0.0117 (6) | 0.0178 (6) | 0.0224 (7) | 0.0011 (5) | 0.0023 (5) | 0.0043 (5) |
C8 | 0.0204 (7) | 0.0155 (6) | 0.0310 (8) | −0.0027 (5) | −0.0031 (6) | 0.0049 (6) |
C9A | 0.0143 (6) | 0.0164 (6) | 0.0158 (6) | 0.0037 (5) | 0.0005 (5) | 0.0003 (5) |
C9 | 0.0245 (7) | 0.0132 (6) | 0.0251 (7) | 0.0030 (5) | −0.0033 (6) | 0.0009 (5) |
C12 | 0.0146 (6) | 0.0126 (6) | 0.0134 (6) | 0.0008 (4) | 0.0007 (5) | 0.0022 (4) |
C13 | 0.0203 (7) | 0.0295 (7) | 0.0103 (6) | 0.0035 (6) | 0.0025 (5) | −0.0019 (5) |
C14 | 0.0276 (8) | 0.0308 (8) | 0.0194 (7) | 0.0090 (6) | 0.0048 (6) | −0.0007 (6) |
C15 | 0.0180 (6) | 0.0166 (6) | 0.0132 (6) | 0.0035 (5) | 0.0008 (5) | 0.0006 (5) |
C16 | 0.0267 (7) | 0.0154 (6) | 0.0226 (7) | 0.0093 (5) | 0.0013 (6) | −0.0026 (5) |
C17 | 0.0280 (9) | 0.0320 (9) | 0.0512 (12) | 0.0115 (7) | 0.0102 (8) | −0.0112 (8) |
O2—C3 | 1.4274 (16) | C5—C15 | 1.5130 (18) |
O2—C1 | 1.4347 (17) | C5—C6 | 1.5580 (18) |
O10—C3A | 1.4410 (15) | C5—H5A | 1.0000 |
O10—C6 | 1.4420 (15) | C6—C6A | 1.5370 (18) |
O11—C7 | 1.4414 (16) | C6—H6A | 1.0000 |
O11—C9A | 1.4420 (16) | C6A—C7 | 1.5609 (18) |
O12—C12 | 1.2035 (16) | C6A—H6AA | 1.0000 |
O13—C12 | 1.3323 (16) | C7—C8 | 1.522 (2) |
O13—C13 | 1.4630 (16) | C7—H7A | 1.0000 |
O15—C15 | 1.2058 (17) | C8—C9 | 1.332 (2) |
O16—C15 | 1.3384 (16) | C8—H8A | 0.9500 |
O16—C16 | 1.4581 (16) | C9A—C9 | 1.5241 (19) |
C1—C9A | 1.5094 (18) | C9—H9A | 0.9500 |
C1—H1A | 0.9900 | C13—C14 | 1.498 (2) |
C1—H1B | 0.9900 | C13—H13A | 0.9900 |
C3B—C3A | 1.5341 (18) | C13—H13B | 0.9900 |
C3B—C6A | 1.5515 (17) | C14—H14A | 0.9800 |
C3B—C9A | 1.5561 (18) | C14—H14B | 0.9800 |
C3B—H3BA | 1.0000 | C14—H14C | 0.9800 |
C3A—C3 | 1.5127 (17) | C16—C17 | 1.499 (2) |
C3A—C4 | 1.5565 (18) | C16—H16A | 0.9900 |
C3—H3A | 0.9900 | C16—H16B | 0.9900 |
C3—H3B | 0.9900 | C17—H17A | 0.9800 |
C4—C12 | 1.5120 (18) | C17—H17B | 0.9800 |
C4—C5 | 1.5478 (18) | C17—H17C | 0.9800 |
C4—H4A | 1.0000 | ||
C3—O2—C1 | 113.82 (10) | C3B—C6A—H6AA | 112.8 |
C3A—O10—C6 | 97.15 (9) | C7—C6A—H6AA | 112.8 |
C7—O11—C9A | 96.51 (10) | O11—C7—C8 | 101.02 (10) |
C12—O13—C13 | 118.82 (11) | O11—C7—C6A | 102.12 (10) |
C15—O16—C16 | 116.54 (11) | C8—C7—C6A | 105.52 (11) |
O2—C1—C9A | 111.20 (10) | O11—C7—H7A | 115.4 |
O2—C1—H1A | 109.4 | C8—C7—H7A | 115.4 |
C9A—C1—H1A | 109.4 | C6A—C7—H7A | 115.4 |
O2—C1—H1B | 109.4 | C9—C8—C7 | 105.96 (12) |
C9A—C1—H1B | 109.4 | C9—C8—H8A | 127.0 |
H1A—C1—H1B | 108.0 | C7—C8—H8A | 127.0 |
C3A—C3B—C6A | 102.82 (10) | O11—C9A—C1 | 111.53 (11) |
C3A—C3B—C9A | 111.90 (10) | O11—C9A—C9 | 101.20 (11) |
C6A—C3B—C9A | 101.66 (10) | C1—C9A—C9 | 122.17 (11) |
C3A—C3B—H3BA | 113.2 | O11—C9A—C3B | 102.22 (10) |
C6A—C3B—H3BA | 113.1 | C1—C9A—C3B | 112.73 (11) |
C9A—C3B—H3BA | 113.1 | C9—C9A—C3B | 104.67 (11) |
O10—C3A—C3 | 112.03 (10) | C8—C9—C9A | 105.25 (12) |
O10—C3A—C3B | 103.56 (10) | C8—C9—H9A | 127.4 |
C3—C3A—C3B | 112.36 (10) | C9A—C9—H9A | 127.4 |
O10—C3A—C4 | 99.83 (9) | O12—C12—O13 | 125.17 (12) |
C3—C3A—C4 | 117.78 (11) | O12—C12—C4 | 125.66 (12) |
C3B—C3A—C4 | 109.72 (10) | O13—C12—C4 | 109.17 (11) |
O2—C3—C3A | 112.21 (11) | O13—C13—C14 | 107.45 (12) |
O2—C3—H3A | 109.2 | O13—C13—H13A | 110.2 |
C3A—C3—H3A | 109.2 | C14—C13—H13A | 110.2 |
O2—C3—H3B | 109.2 | O13—C13—H13B | 110.2 |
C3A—C3—H3B | 109.2 | C14—C13—H13B | 110.2 |
H3A—C3—H3B | 107.9 | H13A—C13—H13B | 108.5 |
C12—C4—C5 | 114.86 (11) | C13—C14—H14A | 109.5 |
C12—C4—C3A | 114.96 (10) | C13—C14—H14B | 109.5 |
C5—C4—C3A | 100.93 (10) | H14A—C14—H14B | 109.5 |
C12—C4—H4A | 108.6 | C13—C14—H14C | 109.5 |
C5—C4—H4A | 108.6 | H14A—C14—H14C | 109.5 |
C3A—C4—H4A | 108.6 | H14B—C14—H14C | 109.5 |
C15—C5—C4 | 112.43 (11) | O15—C15—O16 | 124.01 (12) |
C15—C5—C6 | 112.40 (11) | O15—C15—C5 | 125.88 (12) |
C4—C5—C6 | 101.66 (10) | O16—C15—C5 | 110.11 (11) |
C15—C5—H5A | 110.0 | O16—C16—C17 | 106.76 (12) |
C4—C5—H5A | 110.0 | O16—C16—H16A | 110.4 |
C6—C5—H5A | 110.0 | C17—C16—H16A | 110.4 |
O10—C6—C6A | 104.25 (10) | O16—C16—H16B | 110.4 |
O10—C6—C5 | 101.29 (10) | C17—C16—H16B | 110.4 |
C6A—C6—C5 | 108.24 (11) | H16A—C16—H16B | 108.6 |
O10—C6—H6A | 114.0 | C16—C17—H17A | 109.5 |
C6A—C6—H6A | 114.0 | C16—C17—H17B | 109.5 |
C5—C6—H6A | 114.0 | H17A—C17—H17B | 109.5 |
C6—C6A—C3B | 100.08 (10) | C16—C17—H17C | 109.5 |
C6—C6A—C7 | 116.41 (11) | H17A—C17—H17C | 109.5 |
C3B—C6A—C7 | 100.52 (10) | H17B—C17—H17C | 109.5 |
C6—C6A—H6AA | 112.8 | ||
C3—O2—C1—C9A | −59.58 (14) | C9A—O11—C7—C8 | 50.63 (11) |
C6—O10—C3A—C3 | −173.99 (10) | C9A—O11—C7—C6A | −58.08 (11) |
C6—O10—C3A—C3B | −52.67 (11) | C6—C6A—C7—O11 | −70.74 (13) |
C6—O10—C3A—C4 | 60.53 (10) | C3B—C6A—C7—O11 | 36.17 (12) |
C6A—C3B—C3A—O10 | 31.09 (12) | C6—C6A—C7—C8 | −175.97 (11) |
C9A—C3B—C3A—O10 | −77.27 (12) | C3B—C6A—C7—C8 | −69.05 (12) |
C6A—C3B—C3A—C3 | 152.18 (11) | O11—C7—C8—C9 | −32.10 (14) |
C9A—C3B—C3A—C3 | 43.82 (14) | C6A—C7—C8—C9 | 73.94 (14) |
C6A—C3B—C3A—C4 | −74.76 (12) | C7—O11—C9A—C1 | 177.58 (10) |
C9A—C3B—C3A—C4 | 176.89 (10) | C7—O11—C9A—C9 | −51.00 (11) |
C1—O2—C3—C3A | 59.76 (14) | C7—O11—C9A—C3B | 56.88 (11) |
O10—C3A—C3—O2 | 64.99 (14) | O2—C1—C9A—O11 | −63.19 (14) |
C3B—C3A—C3—O2 | −51.11 (15) | O2—C1—C9A—C9 | 177.15 (12) |
C4—C3A—C3—O2 | 179.91 (11) | O2—C1—C9A—C3B | 51.15 (15) |
O10—C3A—C4—C12 | −163.65 (10) | C3A—C3B—C9A—O11 | 75.48 (12) |
C3—C3A—C4—C12 | 74.92 (15) | C6A—C3B—C9A—O11 | −33.62 (12) |
C3B—C3A—C4—C12 | −55.30 (14) | C3A—C3B—C9A—C1 | −44.38 (15) |
O10—C3A—C4—C5 | −39.44 (11) | C6A—C3B—C9A—C1 | −153.48 (11) |
C3—C3A—C4—C5 | −160.87 (11) | C3A—C3B—C9A—C9 | −179.32 (11) |
C3B—C3A—C4—C5 | 68.91 (12) | C6A—C3B—C9A—C9 | 71.58 (12) |
C12—C4—C5—C15 | −110.49 (13) | C7—C8—C9—C9A | −0.35 (15) |
C3A—C4—C5—C15 | 125.24 (11) | O11—C9A—C9—C8 | 32.70 (14) |
C12—C4—C5—C6 | 129.10 (11) | C1—C9A—C9—C8 | 157.22 (13) |
C3A—C4—C5—C6 | 4.83 (12) | C3B—C9A—C9—C8 | −73.26 (14) |
C3A—O10—C6—C6A | 54.98 (11) | C13—O13—C12—O12 | 3.4 (2) |
C3A—O10—C6—C5 | −57.36 (10) | C13—O13—C12—C4 | −177.31 (11) |
C15—C5—C6—O10 | −89.24 (12) | C5—C4—C12—O12 | −9.39 (19) |
C4—C5—C6—O10 | 31.18 (12) | C3A—C4—C12—O12 | 107.12 (15) |
C15—C5—C6—C6A | 161.48 (10) | C5—C4—C12—O13 | 171.36 (10) |
C4—C5—C6—C6A | −78.09 (12) | C3A—C4—C12—O13 | −72.14 (13) |
O10—C6—C6A—C3B | −34.93 (12) | C12—O13—C13—C14 | −143.18 (13) |
C5—C6—C6A—C3B | 72.31 (12) | C16—O16—C15—O15 | −1.7 (2) |
O10—C6—C6A—C7 | 72.24 (13) | C16—O16—C15—C5 | 178.70 (11) |
C5—C6—C6A—C7 | 179.48 (10) | C4—C5—C15—O15 | 6.3 (2) |
C3A—C3B—C6A—C6 | 2.12 (12) | C6—C5—C15—O15 | 120.28 (15) |
C9A—C3B—C6A—C6 | 118.07 (10) | C4—C5—C15—O16 | −174.16 (11) |
C3A—C3B—C6A—C7 | −117.38 (11) | C6—C5—C15—O16 | −60.17 (14) |
C9A—C3B—C6A—C7 | −1.44 (12) | C15—O16—C16—C17 | 177.50 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O13 | 0.99 | 2.58 | 3.1604 (17) | 118 |
C9—H9A···O13i | 0.95 | 2.47 | 3.1692 (17) | 131 |
C13—H13A···O2ii | 0.99 | 2.58 | 3.1905 (17) | 120 |
C13—H13B···O10ii | 0.99 | 2.41 | 3.2193 (17) | 139 |
C14—H14C···O15i | 0.98 | 2.64 | 3.5669 (19) | 158 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2. |
Contact | Distance | Symmetry operation |
H3A···H6AA | 2.49 | 1 + x, y, z |
O10···H13B | 2.41 | x, 1/2 - y, 1/2 + z |
H16B···H16B | 2.57 | -x, 1 - y, 1 - z |
H1A···O11 | 2.73 | 1 - x, -y, 1 - z |
H17A···H13B | 2.29 | -x, 1/2 + y, 1/2 - z |
O13···H9A | 2.47 | 1 - x, 1/2 + y, 1/2 - z |
H7A···C8 | 3.02 | -x, -y, 1 - z |
H6A···H14A | 2.50 | -1 + x, 1/2 - y, 1/2 + z |
Acknowledgements
NDS and NAG thank Baku State University and Azerbaijan State Oil and Industry University, respectively, for financial support. The author's contributions are as follows. Conceptualization, MA and AB; synthesis, AGP, NAG and EVN; X-ray analysis, NDS and ZA; writing (review and editing of the manuscript) MA and AB; funding acquisition, NDS, NAG, AGP and EVN; supervision, MA and AB.
Funding information
Funding for this research was provided by: the Russian Science Foundation (contract No. 23–23-00577).
References
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA. Google Scholar
Chen, L., Chen, K. & Zhu, S. (2018). Chem 4, 1208–1262. CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gartenmann Dickson, L., Hauser, J., Blaser, A., Reymond, J.-L. & Bürgi, H.-B. (2004). Acta Cryst. E60, o381–o382. CrossRef IUCr Journals Google Scholar
Gökçe, A. G., Çelik, C., Aygün, M., Öcal, N. & Büyükgüngör, O. (2008). Acta Cryst. C64, o98–o100. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Hopf, H. & Sherburn, M. S. (2012). Angew. Chem. Int. Ed. 51, 2298–2338. CrossRef CAS Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497–19505. Web of Science CSD CrossRef CAS Google Scholar
Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400–3407. Web of Science CSD CrossRef CAS Google Scholar
Li, J. (2010). Acta Cryst. E66, o3327. CrossRef IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987. Web of Science CSD CrossRef CAS Google Scholar
Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888. Web of Science CrossRef CAS Google Scholar
Rulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320–2355. CrossRef CAS PubMed Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185. CAS Google Scholar
Schettino, V. & Bini, R. (2007). Chem. Soc. Rev. 36, 869–880. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, T.-H. & Wang, M.-X. (2020). CCS Chem, 2, 916–931. Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wang, Y.-W. & Peng, Y. (2007). Acta Cryst. E63, o4352. CrossRef IUCr Journals Google Scholar
Winkler, J. D. (1996). Chem. Rev. 96, 167–176. CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.