research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of dieth­yl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetra­hydro-1H,3H,4H,7H-3a,6:7,9a-di­ep­oxy­benzo[de]isochromene-4,5-di­carboxyl­ate

crossmark logo

aOrganic Chemistry Department, Baku State University, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI "Geotechnological Problems of Oil, Gas and Chemistry", Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, dOrganic Chemistry Department, Faculty of Science, RUDN University, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 11 December 2023; accepted 15 December 2023; online 1 January 2024)

In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

The inter­molecular Diels–Alder (DA) reaction of furans is a powerful tool in organic and medicinal chemistry, offering a versatile and efficient approach to the synthesis of complex mol­ecules with valuable applications (for reviews and books on the topic, see: Chen et al., 2018[Chen, L., Chen, K. & Zhu, S. (2018). Chem 4, 1208-1262.]; Winkler 1996[Winkler, J. D. (1996). Chem. Rev. 96, 167-176.]; Parvatkar et al., 2014[Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857-2888.]; Shi & Wang, 2020[Shi, T.-H. & Wang, M.-X. (2020). CCS Chem, 2, 916-931.]; Hopf & Sherburn, 2012[Hopf, H. & Sherburn, M. S. (2012). Angew. Chem. Int. Ed. 51, 2298-2338.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183-1185.]). The DA reaction of furans is typically carried out under thermal conditions, but the use of high pressure has emerged as a powerful tool for enhancing the reactivity and selectivity of this reaction. High pressure can significantly lower the activation energy of the DA reaction, leading to faster reaction rates and improved yields (see reviews by Rulev & Zubkov, 2022[Rulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320-2355.]; Schettino & Bini, 2007[Schettino, V. & Bini, R. (2007). Chem. Soc. Rev. 36, 869-880.]). On the other hand, by the attachment of functional groups, the DA reaction products can participate in various sorts of inter­molecular inter­actions with inter­esting coordination, supra­molecular, catalytic and solvatochromic properties (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833-14837.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2015[Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979-25987.]). For example, attachment of carb­oxyl­ate groups to organic mol­ecules can create coordination sites and inter­esting supra­molecular architectures involving monomeric, oligomeric or polymeric subunits in metal complexes, which affects their catalytic activity (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Ma et al., 2017[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17-23.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). The present work showcases a facile methodology for the synthesis of compound 1a from a simple furan derivative and diethyl fumarate under high-pressure conditions. It is noteworthy that while several methods for the preparation of similar structures using more reactive dienophiles have been documented in the literature (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]; Kvyatkovskaya et al., 2021a[Kvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497-19505.],b[Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400-3407.]), this represents the first instance of such a reaction where thermal activation alone is insufficient to drive the transformation.

[Scheme 1]

2. Structural commentary

In the title compound, (Fig. 1[link]), the (1R,4S)-7-oxabi­cyclo­[2.2.1]hept-2-ene (O11/C3B/C6A/C7–C9/C9A), (1S,4S)-7-oxabi­cyclo­[2.2.1]heptane (O10/C3A/C3B/C4–C6/C6A) and and oxane (C1/O2/C3/C3A/C3B/C9A) rings are fused together. The hexane ring (C3B/C6A/C7–C9/C9A) tends towards a distorted boat conformation [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 1.0005 (15) Å, θ = 89.65 (9)° and φ = 300.58 (8)°], while the tetra­hydro­furan (C3B/C6A/C7/O11/C9A) and di­hydro­furan (C7–C9/C9A/O11) rings adopt envelope conformations, with puckering parameters Q(2) = 0.5625 (13) Å, φ(2) = 1.70 (14)° and Q(2) = 0.5143 (13) Å, φ(2) = 179.57 (17)°, respectively. The hexane ring (C3A/C3B/C4–C6/C6A) tends towards a distorted boat conformation [puckering parameters QT = 0.9758 (14) Å, θ = 91.04 (8)° and φ = 2.99 (8)°], while the tetra­hydro­furan rings (C3A/C4–C6/O10 and C6/C6A/C3B/C3A/O10) adopt envelope conformations, with puckering parameters Q(2) = 0.5784 (13) Å, φ(2) = 185.10 (14)° and Q(2) = 0.5235 (13) Å, φ(2) = 357.36 (15)°, respectively. The oxane ring (C3A/C3B/C9A/C1/O2/C3) is puckered with puckering parameters QT = 0.5125 (14) Å, θ = 7.89 (15)° and φ = 3.1 (12)°. The C3A—C4—C12—O12, C3A—C4—C12—O13, C4—C12—O13—C13, C6—C5—C15—O15, C6—C5—C15—O16 and C5—C15—O16—C16 torsion angles are 107.12 (15), −72.14 (13), −177.31 (11), 120.28 (15), −60.17 (14) and 178.70 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The crystal structure of the title compound is stabilized by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 2[link], 3[link] and 4[link]). C—H⋯π and ππ inter­actions are not observed in the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O13 0.99 2.58 3.1604 (17) 118
C9—H9A⋯O13i 0.95 2.47 3.1692 (17) 131
C13—H13A⋯O2ii 0.99 2.58 3.1905 (17) 120
C13—H13B⋯O10ii 0.99 2.41 3.2193 (17) 139
C14—H14C⋯O15i 0.98 2.64 3.5669 (19) 158
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title complex, showing the C—H⋯O inter­actions along the a axis as dashed lines.
[Figure 3]
Figure 3
View of the crystal structure of the title complex, along the b axis; the same inter­actions are as in Fig. 2[link].
[Figure 4]
Figure 4
View of the crystal structure of the title complex, along the c axis; the same inter­actions are as in Fig. 2[link].

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The Hirshfeld surfaces were mapped over dnorm (Fig. 5[link]). The inter­actions listed in Table 2[link] play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (60.2%, Fig. 6[link]b). The other major contributor is the O⋯H/H⋯O (35.4%, Fig. 6[link]c) inter­action. Other, smaller contributions are made by C⋯H/H⋯C (3.9%), O⋯O (0.3%), C⋯C (0.2%) and O⋯C/C⋯O (0.1%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H3A⋯H6AA 2.49 1 + x, y, z
O10⋯H13B 2.41 x, [{1\over 2}] − y, [{1\over 2}] + z
H16B⋯H16B 2.57 x, 1 − y, 1 − z
H1A⋯O11 2.73 1 − x, −y, 1 − z
H17A⋯H13B 2.29 x, [{1\over 2}] + y, [{1\over 2}] − z
O13⋯H9A 2.47 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H7A⋯C8 3.02 x, −y, 1 − z
H6A⋯H14A 2.50 −1 + x, [{1\over 2}] − y, [{1\over 2}] + z
[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.1982 to +1.2419 a.u.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H and (c) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

Four related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. N-carbamo­thioyl­amino-7-oxabi­cyclo­[2.2.1]hept-5-ene-2,3-dicarboximide (CSD refcode WAFPOK; Li, 2010[Li, J. (2010). Acta Cryst. E66, o3327.]), {3-hy­droxy­methyl-1-[2-(3-methoxy­phen­yl)eth­yl]-7-oxabi­cyclo­(2.2.1)hept-5-en-2-yl}methanol (SIMPUA; Wang & Peng, 2007[Wang, Y.-W. & Peng, Y. (2007). Acta Cryst. E63, o4352.]), (1SR,2SR,4SR)-7-oxabi­cyclo­(2.2.1)hept-5-ene-2-carb­oxy­lic acid (ETEYEH; Gartenmann Dickson et al., 2004[Gartenmann Dickson, L., Hauser, J., Blaser, A., Reymond, J.-L. & Bürgi, H.-B. (2004). Acta Cryst. E60, o381-o382.]) and (1S*,2R*,5S*,6S*,7R*)-5-hy­droxy-4-(4-meth­oxy­phen­yl)-10-oxa-4-aza­tri­cyclo­(5.2.1.02,6)dec-8-en-one (DIWLEB; Gökçe et al., 2008[Gökçe, A. G., Çelik, C., Aygün, M., Öcal, N. & Büyükgüngör, O. (2008). Acta Cryst. C64, o98-o100.]).

The compound WAFPOK comprises a racemic mixture of chiral mol­ecules containing four stereogenic centres. The cyclo­hexane ring tends towards a boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The dihedral angle between the thio­semicarbazide fragment and the fused-ring system is 77.20 (10)°. The crystal structure is stabilized by two inter­molecular N—H⋯O hydrogen bonds. SIMPUA is an oxabi­cyclo­[2.2.1]hept-5- ene with two exo-oriented hy­droxy­methyl groups, which are not parallel to each other. The mol­ecules are linked to each other by hydrogen bonds, resulting in a supra­molecular network. Inter­molecular O—H⋯O hydrogen bonding is observed between the hydroxyl groups. In ETEYEH, the mol­ecules are connected by O—H⋯O hydrogen bonds, forming centrosymmetric dimers. The structure of DIWLEB comprises a racemic mixture of chiral mol­ecules containing five stereogenic centres. The cyclo­hexane ring tends towards a boat conformation and the two tetra­hydro­furan rings adopt envelope conformations. Mol­ecules are linked into sheets parallel to (100) by a combination of O—H⋯O, C—H⋯O and C—H⋯π inter­actions, leading to a di-periodic supra­molecular structure.

5. Synthesis and crystallization

A solution of diethyl fumarate (850 mg, 4.95 mmol, 1.1 equiv) and difurfuryl ether (800 mg, 4.5 mmol) in methanol (21 mL) was placed in a Teflon ampoule. The reaction mixture was then held at 15 kbar and r.t. for two days in a piston-cylinder type steel pressure chamber. The obtained methanol solution was concentrated in vacuo. The resulting light-yellow oil was solidified in hexane and then recrystallized from ethyl acetate to isolate diastereomer 1a exclusively (Fig. 7[link]). The residue was filtered off and dried under reduced pressure in a vacuum desiccator to constant weight, yielding the target product as white crystals. White crystals, 0.32 g, 0.94 mmol, yield is 21%, Rf = 0.7 (`Sorbfil' plates for thin-layer chromatography, CHCl3); mp: 418.1–419.1 K. A single-crystal of compound 1a was obtained by slow evaporation from ethyl acetate at 298 K.

[Figure 7]
Figure 7
Reaction mechanism.

1H NMR (700 MHz, CDCl3, 298 K) δ 6.40 (d, J = 5.7 Hz, 1H, CH=CH), 6.20 (d, J = 5.7 Hz, 1H, CH=CH), 5.02 (s, 1H, CH), 4.83 (s, 1H, CH), 4.38 (d, J = 12.8 Hz, 1H, from CH2), 4.27 (d, J = 12.9 Hz, 1H, from CH2), 4.23–4.13 (m, 4H, 2OCH2CH3), 4.02 (d, J = 12.9 Hz, 1H, from CH2), 3.89 (d, J = 12.8 Hz, 1H, from CH2), 3.19 (d, J = 5.2 Hz, 1H, CH), 3.12 (d, J = 5.2 Hz, 1H, CH), 2.13 (d, J = 6.4 Hz, 1H, CH), 1.75 (d, J = 6.3 Hz, 1H, CH), 1.36–1.14 (m, 6H, 2OCH2CH3) . 13C NMR (175 MHz, CDCl3, 298 K) δ 171.69, 170.50, 138.05, 136.58, 84.04, 82.64, 82.26, 81.65, 66.67, 66.29, 61.52 (2C), 53.12, 52.70, 49.90, 43.15, 14.34, 14.25. IR νmax/cm−1 (tablet KBr): 3440, 2982, 2950, 2910, 2859, 1728, 1473, 1311, 1211, 1174, 1093, 1029, 973, 912, 856, 697. HRMS (ESI-TOF): calculated for C18H23O7 [M + H]+ 351.1443; found 351.1440.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were included in the refinement using the riding-model approximation with C—H distances of 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). Two reflections (0 1 1 and 1 1 0), affected by the incident beam-stop, were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C18H22O7
Mr 350.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.1566 (4), 14.1907 (9), 16.2737 (10)
β (°) 91.329 (2)
V3) 1652.27 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.36 × 0.34
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.941, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28552, 4921, 3615
Rint 0.051
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.03
No. of reflections 4921
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Diethyl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetrahydro-1H,3H,4H,7H-3a,6:7,9a-diepoxybenzo[de]isochromene-4,5-dicarboxylate top
Crystal data top
C18H22O7F(000) = 744
Mr = 350.35Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1566 (4) ÅCell parameters from 5852 reflections
b = 14.1907 (9) Åθ = 2.5–29.9°
c = 16.2737 (10) ŵ = 0.11 mm1
β = 91.329 (2)°T = 100 K
V = 1652.27 (17) Å3Bulk, colourless
Z = 40.40 × 0.36 × 0.34 mm
Data collection top
Bruker KAPPA APEXII area-detector
diffractometer
3615 reflections with I > 2σ(I)
φ and ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
θmax = 30.3°, θmin = 2.9°
Tmin = 0.941, Tmax = 1.000h = 1010
28552 measured reflectionsk = 2018
4921 independent reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.5731P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4921 reflectionsΔρmax = 0.35 e Å3
226 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.65003 (13)0.14690 (7)0.39784 (6)0.0185 (2)
O100.32231 (13)0.27216 (6)0.41424 (6)0.01429 (19)
O110.28123 (13)0.08569 (7)0.44881 (6)0.0166 (2)
O120.20009 (15)0.28745 (9)0.14509 (7)0.0289 (3)
O130.51089 (13)0.30191 (7)0.16601 (6)0.0202 (2)
O150.20749 (15)0.50604 (7)0.32809 (7)0.0275 (3)
O160.06545 (14)0.45134 (7)0.37426 (6)0.0203 (2)
C10.56703 (19)0.05898 (10)0.37326 (9)0.0190 (3)
H1A0.6047850.0093040.4129960.023*
H1B0.6132880.0408080.3186290.023*
C3B0.28585 (17)0.15148 (9)0.31737 (8)0.0127 (2)
H3BA0.2762260.1377290.2571580.015*
C3A0.39716 (17)0.24133 (9)0.33732 (8)0.0129 (2)
C30.60532 (18)0.22335 (10)0.34389 (8)0.0167 (3)
H3A0.6528180.2092050.2885830.020*
H3B0.6688810.2810580.3642340.020*
C40.32813 (18)0.32304 (9)0.28048 (8)0.0132 (2)
H4A0.4065920.3799710.2923170.016*
C50.13032 (18)0.34034 (9)0.31390 (8)0.0139 (2)
H5A0.0333870.3210170.2719730.017*
C60.12801 (18)0.27188 (9)0.38872 (8)0.0144 (3)
H6A0.0408490.2913420.4327690.017*
C6A0.09390 (18)0.17152 (9)0.35618 (8)0.0141 (2)
H6AA0.0124350.1680010.3153330.017*
C70.08827 (19)0.09147 (9)0.42186 (9)0.0173 (3)
H7A0.0037930.1007060.4664520.021*
C80.0674 (2)0.00021 (10)0.37333 (10)0.0224 (3)
H8A0.0418340.0374600.3673960.027*
C9A0.35656 (18)0.06594 (9)0.36921 (8)0.0155 (3)
C90.2335 (2)0.01604 (9)0.34091 (9)0.0210 (3)
H9A0.2678540.0676810.3073290.025*
C120.33375 (18)0.30231 (9)0.18944 (8)0.0136 (2)
C130.5500 (2)0.28738 (11)0.07909 (8)0.0200 (3)
H13A0.5682110.3487320.0514370.024*
H13B0.4443170.2542890.0513890.024*
C140.7242 (2)0.22918 (11)0.07489 (10)0.0259 (3)
H14A0.7543640.2181550.0172440.039*
H14B0.8278480.2626880.1023660.039*
H14C0.7044640.1686350.1023180.039*
C150.10027 (19)0.44187 (9)0.33870 (8)0.0159 (3)
C160.1128 (2)0.54538 (10)0.40327 (9)0.0216 (3)
H16A0.1097450.5912110.3574520.026*
H16B0.0225820.5659260.4466990.026*
C170.3058 (2)0.53933 (13)0.43679 (13)0.0369 (4)
H17A0.3433720.6013750.4570670.055*
H17B0.3934860.5189210.3931880.055*
H17C0.3067320.4937540.4820170.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0118 (4)0.0270 (5)0.0167 (5)0.0022 (4)0.0019 (4)0.0041 (4)
O100.0130 (4)0.0189 (4)0.0110 (4)0.0006 (3)0.0019 (3)0.0018 (3)
O110.0142 (4)0.0204 (5)0.0150 (5)0.0032 (4)0.0017 (4)0.0033 (4)
O120.0162 (5)0.0536 (7)0.0168 (5)0.0001 (5)0.0023 (4)0.0039 (5)
O130.0136 (5)0.0351 (6)0.0121 (5)0.0026 (4)0.0021 (4)0.0042 (4)
O150.0267 (6)0.0169 (5)0.0394 (7)0.0021 (4)0.0097 (5)0.0038 (4)
O160.0207 (5)0.0145 (4)0.0260 (6)0.0047 (4)0.0069 (4)0.0019 (4)
C10.0142 (6)0.0225 (7)0.0204 (7)0.0070 (5)0.0014 (5)0.0027 (5)
C3B0.0105 (5)0.0150 (6)0.0126 (6)0.0016 (4)0.0000 (5)0.0006 (4)
C3A0.0113 (6)0.0171 (6)0.0102 (6)0.0008 (4)0.0015 (5)0.0012 (4)
C30.0108 (6)0.0244 (7)0.0148 (6)0.0006 (5)0.0006 (5)0.0034 (5)
C40.0129 (6)0.0148 (6)0.0120 (6)0.0005 (4)0.0017 (5)0.0005 (4)
C50.0125 (6)0.0143 (6)0.0149 (6)0.0014 (5)0.0019 (5)0.0010 (5)
C60.0115 (6)0.0164 (6)0.0153 (6)0.0024 (5)0.0028 (5)0.0006 (5)
C6A0.0103 (6)0.0147 (6)0.0175 (6)0.0011 (4)0.0016 (5)0.0027 (5)
C70.0117 (6)0.0178 (6)0.0224 (7)0.0011 (5)0.0023 (5)0.0043 (5)
C80.0204 (7)0.0155 (6)0.0310 (8)0.0027 (5)0.0031 (6)0.0049 (6)
C9A0.0143 (6)0.0164 (6)0.0158 (6)0.0037 (5)0.0005 (5)0.0003 (5)
C90.0245 (7)0.0132 (6)0.0251 (7)0.0030 (5)0.0033 (6)0.0009 (5)
C120.0146 (6)0.0126 (6)0.0134 (6)0.0008 (4)0.0007 (5)0.0022 (4)
C130.0203 (7)0.0295 (7)0.0103 (6)0.0035 (6)0.0025 (5)0.0019 (5)
C140.0276 (8)0.0308 (8)0.0194 (7)0.0090 (6)0.0048 (6)0.0007 (6)
C150.0180 (6)0.0166 (6)0.0132 (6)0.0035 (5)0.0008 (5)0.0006 (5)
C160.0267 (7)0.0154 (6)0.0226 (7)0.0093 (5)0.0013 (6)0.0026 (5)
C170.0280 (9)0.0320 (9)0.0512 (12)0.0115 (7)0.0102 (8)0.0112 (8)
Geometric parameters (Å, º) top
O2—C31.4274 (16)C5—C151.5130 (18)
O2—C11.4347 (17)C5—C61.5580 (18)
O10—C3A1.4410 (15)C5—H5A1.0000
O10—C61.4420 (15)C6—C6A1.5370 (18)
O11—C71.4414 (16)C6—H6A1.0000
O11—C9A1.4420 (16)C6A—C71.5609 (18)
O12—C121.2035 (16)C6A—H6AA1.0000
O13—C121.3323 (16)C7—C81.522 (2)
O13—C131.4630 (16)C7—H7A1.0000
O15—C151.2058 (17)C8—C91.332 (2)
O16—C151.3384 (16)C8—H8A0.9500
O16—C161.4581 (16)C9A—C91.5241 (19)
C1—C9A1.5094 (18)C9—H9A0.9500
C1—H1A0.9900C13—C141.498 (2)
C1—H1B0.9900C13—H13A0.9900
C3B—C3A1.5341 (18)C13—H13B0.9900
C3B—C6A1.5515 (17)C14—H14A0.9800
C3B—C9A1.5561 (18)C14—H14B0.9800
C3B—H3BA1.0000C14—H14C0.9800
C3A—C31.5127 (17)C16—C171.499 (2)
C3A—C41.5565 (18)C16—H16A0.9900
C3—H3A0.9900C16—H16B0.9900
C3—H3B0.9900C17—H17A0.9800
C4—C121.5120 (18)C17—H17B0.9800
C4—C51.5478 (18)C17—H17C0.9800
C4—H4A1.0000
C3—O2—C1113.82 (10)C3B—C6A—H6AA112.8
C3A—O10—C697.15 (9)C7—C6A—H6AA112.8
C7—O11—C9A96.51 (10)O11—C7—C8101.02 (10)
C12—O13—C13118.82 (11)O11—C7—C6A102.12 (10)
C15—O16—C16116.54 (11)C8—C7—C6A105.52 (11)
O2—C1—C9A111.20 (10)O11—C7—H7A115.4
O2—C1—H1A109.4C8—C7—H7A115.4
C9A—C1—H1A109.4C6A—C7—H7A115.4
O2—C1—H1B109.4C9—C8—C7105.96 (12)
C9A—C1—H1B109.4C9—C8—H8A127.0
H1A—C1—H1B108.0C7—C8—H8A127.0
C3A—C3B—C6A102.82 (10)O11—C9A—C1111.53 (11)
C3A—C3B—C9A111.90 (10)O11—C9A—C9101.20 (11)
C6A—C3B—C9A101.66 (10)C1—C9A—C9122.17 (11)
C3A—C3B—H3BA113.2O11—C9A—C3B102.22 (10)
C6A—C3B—H3BA113.1C1—C9A—C3B112.73 (11)
C9A—C3B—H3BA113.1C9—C9A—C3B104.67 (11)
O10—C3A—C3112.03 (10)C8—C9—C9A105.25 (12)
O10—C3A—C3B103.56 (10)C8—C9—H9A127.4
C3—C3A—C3B112.36 (10)C9A—C9—H9A127.4
O10—C3A—C499.83 (9)O12—C12—O13125.17 (12)
C3—C3A—C4117.78 (11)O12—C12—C4125.66 (12)
C3B—C3A—C4109.72 (10)O13—C12—C4109.17 (11)
O2—C3—C3A112.21 (11)O13—C13—C14107.45 (12)
O2—C3—H3A109.2O13—C13—H13A110.2
C3A—C3—H3A109.2C14—C13—H13A110.2
O2—C3—H3B109.2O13—C13—H13B110.2
C3A—C3—H3B109.2C14—C13—H13B110.2
H3A—C3—H3B107.9H13A—C13—H13B108.5
C12—C4—C5114.86 (11)C13—C14—H14A109.5
C12—C4—C3A114.96 (10)C13—C14—H14B109.5
C5—C4—C3A100.93 (10)H14A—C14—H14B109.5
C12—C4—H4A108.6C13—C14—H14C109.5
C5—C4—H4A108.6H14A—C14—H14C109.5
C3A—C4—H4A108.6H14B—C14—H14C109.5
C15—C5—C4112.43 (11)O15—C15—O16124.01 (12)
C15—C5—C6112.40 (11)O15—C15—C5125.88 (12)
C4—C5—C6101.66 (10)O16—C15—C5110.11 (11)
C15—C5—H5A110.0O16—C16—C17106.76 (12)
C4—C5—H5A110.0O16—C16—H16A110.4
C6—C5—H5A110.0C17—C16—H16A110.4
O10—C6—C6A104.25 (10)O16—C16—H16B110.4
O10—C6—C5101.29 (10)C17—C16—H16B110.4
C6A—C6—C5108.24 (11)H16A—C16—H16B108.6
O10—C6—H6A114.0C16—C17—H17A109.5
C6A—C6—H6A114.0C16—C17—H17B109.5
C5—C6—H6A114.0H17A—C17—H17B109.5
C6—C6A—C3B100.08 (10)C16—C17—H17C109.5
C6—C6A—C7116.41 (11)H17A—C17—H17C109.5
C3B—C6A—C7100.52 (10)H17B—C17—H17C109.5
C6—C6A—H6AA112.8
C3—O2—C1—C9A59.58 (14)C9A—O11—C7—C850.63 (11)
C6—O10—C3A—C3173.99 (10)C9A—O11—C7—C6A58.08 (11)
C6—O10—C3A—C3B52.67 (11)C6—C6A—C7—O1170.74 (13)
C6—O10—C3A—C460.53 (10)C3B—C6A—C7—O1136.17 (12)
C6A—C3B—C3A—O1031.09 (12)C6—C6A—C7—C8175.97 (11)
C9A—C3B—C3A—O1077.27 (12)C3B—C6A—C7—C869.05 (12)
C6A—C3B—C3A—C3152.18 (11)O11—C7—C8—C932.10 (14)
C9A—C3B—C3A—C343.82 (14)C6A—C7—C8—C973.94 (14)
C6A—C3B—C3A—C474.76 (12)C7—O11—C9A—C1177.58 (10)
C9A—C3B—C3A—C4176.89 (10)C7—O11—C9A—C951.00 (11)
C1—O2—C3—C3A59.76 (14)C7—O11—C9A—C3B56.88 (11)
O10—C3A—C3—O264.99 (14)O2—C1—C9A—O1163.19 (14)
C3B—C3A—C3—O251.11 (15)O2—C1—C9A—C9177.15 (12)
C4—C3A—C3—O2179.91 (11)O2—C1—C9A—C3B51.15 (15)
O10—C3A—C4—C12163.65 (10)C3A—C3B—C9A—O1175.48 (12)
C3—C3A—C4—C1274.92 (15)C6A—C3B—C9A—O1133.62 (12)
C3B—C3A—C4—C1255.30 (14)C3A—C3B—C9A—C144.38 (15)
O10—C3A—C4—C539.44 (11)C6A—C3B—C9A—C1153.48 (11)
C3—C3A—C4—C5160.87 (11)C3A—C3B—C9A—C9179.32 (11)
C3B—C3A—C4—C568.91 (12)C6A—C3B—C9A—C971.58 (12)
C12—C4—C5—C15110.49 (13)C7—C8—C9—C9A0.35 (15)
C3A—C4—C5—C15125.24 (11)O11—C9A—C9—C832.70 (14)
C12—C4—C5—C6129.10 (11)C1—C9A—C9—C8157.22 (13)
C3A—C4—C5—C64.83 (12)C3B—C9A—C9—C873.26 (14)
C3A—O10—C6—C6A54.98 (11)C13—O13—C12—O123.4 (2)
C3A—O10—C6—C557.36 (10)C13—O13—C12—C4177.31 (11)
C15—C5—C6—O1089.24 (12)C5—C4—C12—O129.39 (19)
C4—C5—C6—O1031.18 (12)C3A—C4—C12—O12107.12 (15)
C15—C5—C6—C6A161.48 (10)C5—C4—C12—O13171.36 (10)
C4—C5—C6—C6A78.09 (12)C3A—C4—C12—O1372.14 (13)
O10—C6—C6A—C3B34.93 (12)C12—O13—C13—C14143.18 (13)
C5—C6—C6A—C3B72.31 (12)C16—O16—C15—O151.7 (2)
O10—C6—C6A—C772.24 (13)C16—O16—C15—C5178.70 (11)
C5—C6—C6A—C7179.48 (10)C4—C5—C15—O156.3 (2)
C3A—C3B—C6A—C62.12 (12)C6—C5—C15—O15120.28 (15)
C9A—C3B—C6A—C6118.07 (10)C4—C5—C15—O16174.16 (11)
C3A—C3B—C6A—C7117.38 (11)C6—C5—C15—O1660.17 (14)
C9A—C3B—C6A—C71.44 (12)C15—O16—C16—C17177.50 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O130.992.583.1604 (17)118
C9—H9A···O13i0.952.473.1692 (17)131
C13—H13A···O2ii0.992.583.1905 (17)120
C13—H13B···O10ii0.992.413.2193 (17)139
C14—H14C···O15i0.982.643.5669 (19)158
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H3A···H6AA2.491 + x, y, z
O10···H13B2.41x, 1/2 - y, 1/2 + z
H16B···H16B2.57-x, 1 - y, 1 - z
H1A···O112.731 - x, -y, 1 - z
H17A···H13B2.29-x, 1/2 + y, 1/2 - z
O13···H9A2.471 - x, 1/2 + y, 1/2 - z
H7A···C83.02-x, -y, 1 - z
H6A···H14A2.50-1 + x, 1/2 - y, 1/2 + z
 

Acknowledgements

NDS and NAG thank Baku State University and Azerbaijan State Oil and Industry University, respectively, for financial support. The author's contributions are as follows. Conceptualization, MA and AB; synthesis, AGP, NAG and EVN; X-ray analysis, NDS and ZA; writing (review and editing of the manuscript) MA and AB; funding acquisition, NDS, NAG, AGP and EVN; supervision, MA and AB.

Funding information

Funding for this research was provided by: the Russian Science Foundation (contract No. 23–23-00577).

References

First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationChen, L., Chen, K. & Zhu, S. (2018). Chem 4, 1208–1262.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGartenmann Dickson, L., Hauser, J., Blaser, A., Reymond, J.-L. & Bürgi, H.-B. (2004). Acta Cryst. E60, o381–o382.  CrossRef IUCr Journals Google Scholar
First citationGökçe, A. G., Çelik, C., Aygün, M., Öcal, N. & Büyükgüngör, O. (2008). Acta Cryst. C64, o98–o100.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationHopf, H. & Sherburn, M. S. (2012). Angew. Chem. Int. Ed. 51, 2298–2338.  CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497–19505.  Web of Science CSD CrossRef CAS Google Scholar
First citationKvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400–3407.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. (2010). Acta Cryst. E66, o3327.  CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.  Web of Science CSD CrossRef CAS Google Scholar
First citationParvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.  Web of Science CrossRef CAS Google Scholar
First citationRulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320–2355.  CrossRef CAS PubMed Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185.  CAS Google Scholar
First citationSchettino, V. & Bini, R. (2007). Chem. Soc. Rev. 36, 869–880.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, T.-H. & Wang, M.-X. (2020). CCS Chem, 2, 916–931.  Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y.-W. & Peng, Y. (2007). Acta Cryst. E63, o4352.  CrossRef IUCr Journals Google Scholar
First citationWinkler, J. D. (1996). Chem. Rev. 96, 167–176.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds