research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-benzyl-2-[bis­(1H-pyrrol-2-yl)methyl]thiophene

crossmark logo

aOrganic Chemistry Department, Baku State University, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI "Geotechnological Problems of Oil, Gas and Chemistry", Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, dRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, eZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 11 December 2023; accepted 15 December 2023; online 1 January 2024)

In the title compound, C20H18N2S, the asymmetric unit comprises two similar mol­ecules (A and B). In mol­ecule A, the central thio­phene ring makes dihedral angles of 89.96 (12) and 57.39 (13)° with the 1H-pyrrole rings, which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring. In mol­ecule B, the corresponding dihedral angles are 89.49 (13), 54.64 (12)°, 83.62 (14)° and 85.67 (11)°, respectively. In the crystal, mol­ecular pairs are bonded to each other by N—H⋯N inter­actions. N—H⋯π and C—H⋯π inter­actions further connect the mol­ecules, forming a three-dimensional network. A Hirshfeld surface analysis indicates that H⋯H (57.1% for mol­ecule A; 57.3% for mol­ecule B), C⋯H/H⋯C (30.7% for mol­ecules A and B) and S⋯H/H⋯S (6.2% for mol­ecule A; 6.4% for mol­ecule B) inter­actions are the most important contributors to the crystal packing.

1. Chemical context

Dipyrro­methanes (Nascimento et al., 2019[Nascimento, B. F. O., Lopes, S. M. M., Pineiro, M. & Pinho e Melo, T. M. V. D. (2019). Molecules, 24, 4348-4374.]) are well-known synthetic scaffolds for the synthesis of porphyrins (Lindsey, 2010[Lindsey, J. S. (2010). Acc. Chem. Res. 43, 300-311.]; Yedukondalu, et al., 2011[Yedukondalu, M. & Ravikanth, M. (2011). Coord. Chem. Rev. 255, 547-573.]), calixpyrroles (Gale et al., 2001[Gale, P. A., Anzenbacher, P. & Sessler, J. S. (2001). Coord. Chem. Rev. 222, 57-102.]) and chlorins (Taniguchi et al., 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]), corroles (Orłowski et al., 2017[Orłowski, R., Gryko, D. & Gryko, D. T. (2017). Chem. Rev. 117, 3102-3137.]). Other important uses of dipyrro­methanes include the synthesis of dipyrromethines and their complexes (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst Struct. 234, 1183-1185.]; Wood et al., 2007[Wood, T. E. & Thompson, A. (2007). Chem. Rev. 107, 1831-1861.]), as fluorescent markers or in coordination compounds, including borondipyrromethenes, known as BODIPYs. The synthesis of dipyrro­methanes is generally based on the acid-catalyzed condensation of pyrrole with aldehydes or acyl­chlorides in an organic solvent. Despite the large number of examples of the synthesis of dipyrro­methanes, there is a lack of literature data on the synthesis of thio­phene-substituted dipyrro­methanes. Therefore, we used 3-benzyl­thio­phene­carboxaldehyde (Zaytsev et al., 2023[Zaytsev, V. P., Surina, N. S., Pokazeev, K. M., Shelukho, E. R., Yakovleva, E. D., Nadirova, M. A., Novikov, R. A., Khrustalev, V. N. & Zubkov, F. I. (2023). Tetrahedron Lett. 120, 154434-154438.]), which, when reacted with pyrrole, gives the target dipyrro­methane 1 in 70% yield (Fig. 1[link]). On the other hand, attachment of a thio­phene or pyrrole moiety to the organic mol­ecules can lead to various sorts of inter­molecular non-covalent inter­actions, resulting in inter­esting coordination, catalytic supra­molecular, and solvatochromic properties (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833-14837.];Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2015[Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979-25987.]). For example, attachment of a pyrrole moiety to ligands can create additional coord­ination sites and inter­esting supra­molecular architectures, which may affect their catalytic activity (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Ma et al., 2017[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17-23.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 3-benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene (1).

2. Structural commentary

As shown Fig. 2[link], the title compound crystallizes with two independent mol­ecules (A with the atom S1 and B with the atom S2) in the asymmetric unit. In mol­ecule A, the central thio­phene ring (S1/C2–C5) makes dihedral angles of 89.96 (12) and 57.39 (13)°, respectively, with the 1H-pyrrole rings (N1/C13–C16 and N2/C17–C20), which are bent at 83.22 (14)° relative to each other, and makes an angle of 85.98 (11)° with the phenyl ring (C7–C12). In mol­ecule B, the central thio­phene ring (S2/C22–C25) makes dihedral angles of 89.49 (13) and 54.64 (12)°, respectively, with the 1H-pyrrole rings (N3/C33–C36 and N4/C37–C40), which are bent at 83.62 (14)° relative to each other, and makes an angle of 85.67 (11)° with the phenyl ring (C27–C32). There is a weak inter­molecular N4—H4N⋯S2 inter­action (Table 1[link]) in mol­ecule B. Fig. 3[link] shows the overlay of mol­ecules A and B in the asymmetric unit (r.m.s. deviation 0.055 Å). Bond lengths and angles in the mol­ecules of the title compound are comparable with those of closely related structures detailed in section 4 (Database survey).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–8 are the centroids of the S1/C2–C5, N1/C13–C16, N2/C17–C20, C7–C12, S2/C22–C25, N3/C33–C36, N4/C37–C40 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.87 (3) 2.61 (3) 3.270 (3) 134 (3)
N4—H4N⋯S2 0.91 (3) 2.86 (3) 3.191 (2) 103 (2)
N1—H1NCg6 0.87 (3) 2.65 (3) 3.300 (2) 133 (3)
N2—H2NCg7 0.84 (3) 2.53 (3) 3.249 (2) 145 (3)
N3—H3NCg3 0.87 (3) 2.70 (3) 3.335 (2) 131 (3)
N4—H4NCg2 0.91 (3) 2.51 (3) 3.207 (2) 134 (3)
C5—H5⋯Cg8i 0.95 2.98 3.931 (3) 177
C6—H6BCg8ii 0.99 2.79 3.697 (3) 153
C10—H10⋯Cg7iii 0.95 2.86 3.544 (3) 130
C11—H11⋯Cg5iii 0.95 2.98 3.874 (3) 157
C25—H25⋯Cg4iv 0.95 2.98 3.924 (3) 176
C26—H26ACg4v 0.99 2.77 3.684 (3) 153
C30—H30⋯Cg3vi 0.95 2.88 3.585 (3) 132
C31—H31⋯Cg1vi 0.95 2.97 3.863 (3) 156
Symmetry codes: (i) [y-1, -x+2, z+{\script{1\over 4}}]; (ii) [y, -x+1, z+{\script{1\over 4}}]; (iii) [y-1, -x+1, z+{\script{1\over 4}}]; (iv) [-y+2, x+1, z-{\script{1\over 4}}]; (v) [-y+1, x, z-{\script{1\over 4}}]; (vi) [-y+1, x+1, z-{\script{1\over 4}}].
[Figure 2]
Figure 2
View of the two independent mol­ecules, A and B, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 3]
Figure 3
Overlay ball and stick image of the two independent mol­ecules (A and B) in the asymmetric unit of the title compound. Color code: carbon (gray), hydrogen (white), nitro­gen (blue) and sulfur (yellow).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecular pairs are bonded to each other by N1—H1N⋯N3 inter­actions (Tables 1[link] and 2[link]). N—H⋯π and C–H⋯π inter­actions further connect the mol­ecules, forming a three-dimensional network (Table 1[link]; Figs, 4[link], 5[link] and 6[link]). π-π- stacking inter­actions are not observed.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
C5⋯H18 3.01 x, 1 + y, z
H10⋯C40 3.01 −1 + y, 1 − x, [{1\over 4}] + z
H2N⋯C40 2.42 x, y, z
H4⋯C25 2.97 −1 + y, 2 − x, [{1\over 4}] + z
H1⋯C29 2.79 y, 1 − x, [{1\over 4}] + z
H15⋯H35 2.53 x, 1 + y, z
H16⋯H20 2.51 1 + x, y, z
H16⋯H39 2.42 1 + x, y, z
H19⋯H40 2.30 1 x, −1 + y, z
H6A⋯H26B 2.43 y, 2 − x, [{1\over 4}] + z
H15⋯H19 2.59 1 + x, 1 + y, z
C25⋯H38 3.02 1 + x, y, z
H35⋯H20 2.42 1 + x, y, z
H36⋯H40 2.51 x, −1 + y, z
[Figure 4]
Figure 4
Packing of mol­ecules in the title compound with the N—H⋯N and N—H⋯S hydrogen bonds, viewed along the a axis.
[Figure 5]
Figure 5
Packing of mol­ecules in the title compound, viewed along the b axis.
[Figure 6]
Figure 6
Packing of mol­ecules in the title compound, viewed along the c axis, with inter­actions depicted as in Fig. 4[link].

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces for both independent mol­ecules. The dnorm mappings for mol­ecules A and B were performed in the ranges −0.3807 to 1.3240 a.u. and −0.3811 to 1.3382 a.u., respectively. The N—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 7[link]a,b for A and Fig. 7[link]c,d for B). Although H⋯H inter­actions (57.1% for mol­ecule A and 57.3% for mol­ecule B) contribute mainly to surface contacts, fingerprint plots (Fig. 8[link]) show that C⋯H/H⋯C inter­actions (30.7% for mol­ecules A and B) are also significant (Tables 1[link] and 2[link]). Other, less notable contacts are S⋯H/H⋯S (6.2% for mol­ecule A and 6.4% for mol­ecule B), N⋯H/H⋯N (4.0% contribution for mol­ecule A and 3.8% for mol­ecule B), S⋯C/C⋯S (1.5% for mol­ecule A and 1.3% for mol­ecule B) and C⋯C (0.4% for mol­ecules A and B). The comparison of the supplied data shows that mol­ecules A and B have extremely comparable environments.

[Figure 7]
Figure 7
(a) Front and (b) back views for mol­ecule A, and (c) front and (d) back views for mol­ecule B, of the three-dimensional Hirshfeld surface for the title compound.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots for the mol­ecules A and B of the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N, (f) S⋯C/C⋯S and (g) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Three related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. 2-amino-N-(2-meth­oxy­phen­yl)-4,5-di­methyl­thio­phene-3-carboxamide (CSD refcode KODXEH; Chandra Kumar et al., 2008[Chandra Kumar, K., Kokila, M. K., Puttaraja, , Saravanan, J. & Kulkarni, M. V. (2008). Acta Cryst. E64, o1311.]), (2E)-1-(2,5-dimethyl-3-thien­yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one (SUZQUA; Asiri et al., 2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2358.]) and (E)-1-(2,5-dimethyl-3-thien­yl)-3-(2-hy­droxy­phen­yl)prop-2-en-1-one (SUYYUH; Asiri et al., 2010b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2259-o2260.]). The crystal structure of KODXEH is consolidated by both inter- and intra­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds. In the crystal of SUZQUA, mol­ecules are linked by weak C—H⋯π and aromatic ππ stacking inter­actions [phenyl ring centroid–centroid separation = 3.6418 (11) Å; thio­phene– thio­phene ring separation = 3.8727 (9) Å]. In the crystal of SUYYUH, the mol­ecules are linked into polymeric chains extending along the b-axis direction by inter­molecular O—H⋯O hydrogen bonding. An S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) is formed due to a short intra­molecular C—H⋯O contact. C—H⋯π inter­actions involving a methyl group of the 2,5-di­methyl­thienyl group and the benzene ring are present and ππ inter­actions between the centroids of the benzene and heterocyclic rings [3.7691 (9) Å] also occur.

5. Synthesis and crystallization

The starting 3-benzyl-2-thio­phencarboxaldehyde (0.38 g, 1.88 mmol) and pyrrole (3.15 g, 47 mmol) were placed into a two-neck flask. The reaction mixture was purged with argon for 10 min. Tri­fluoro­acetic acid (TFA, 21.4 mg, 0.19 mmol) was added dropwise to the reaction under stirring at r.t. After that, the reaction mixture was stirred for an hour under argon. Then Et3N (50 µL) was added to pH ∼7. The reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (3 × 10 mL). The target product was purified by column chromatography (eluent: hepta­ne/ethyl acetate 10:1, TLC: hepta­ne/ethyl acetate 4:1). The title compound was obtained as a yellowish powder, which quickly darkened in air, yield 70%, 0.416 g (0.132 mmol); m.p. 390 K (with decomp.). A single crystal of the title compound was grown from a mixture of heptane and ethyl acetate (∼10:1). IR (KBr), ν (cm−1): br. 3413 (NH). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.80 (br.s, 2H, NH), 7.27 (t, J = 7.6, 2H, H Ph), 7.20 (t, J = 7.6, 1H, H Ph), 7.13 (d, J = 5.0, 1H, H Thien), 7.08 (d, J = 7.6, 2H, H Ph), 6.82 (d, J = 5.0, 1H, H Thien), 6.69–6.68 (m, 2H, H Pyr), 6.08 (dd, J = 5.7, J = 2.6, 2H, H Pyr), 6.02-6.01 (m, 2H, H Pyr), 5.76 (s, 1H, CH), 3.91 (s, 2H, CH2). 13C{1H} NMR (176.1 MHz, CDCl3): δ 140.5, 140.3, 137.0, 131.7, 129.8 (2C), 128.6 (2C), 128.5 (2C), 126.2, 123.3, 117.3 (2C), 108.5 (2C), 107.2 (2C), 37.1, 34.3. GCMS (EI, 70 eV) m/z (%): [M]+ 318 (100), 250 (63), 239 (33), 227 (16), 184 (11), 174 (45), 91 (12). Elemental analysis calculated (%) for C20H18N2S: C 75.44, H 5.70, N 8.80, S 10.07; found: C 75.67, H 5.41, N 9.09, S 9.81.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were included in the refinement using the riding-model approximation with C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the NH groups were found from a difference map and refined with Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula C20H18N2S
Mr 318.42
Crystal system, space group Tetragonal, P43
Temperature (K) 100
a, c (Å) 7.74413 (3), 53.4131 (3)
V3) 3203.27 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.78
Crystal size (mm) 0.18 × 0.15 × 0.12
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku, OD (2021). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25893, 5429, 5366
Rint 0.034
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.03
No. of reflections 5429
No. of parameters 428
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Absolute structure Flack x determined using 1866 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.003 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku, OD (2021). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

3-Benzyl-2-[bis(1H-pyrrol-2-yl)methyl]thiophene top
Crystal data top
C20H18N2SDx = 1.321 Mg m3
Mr = 318.42Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P43Cell parameters from 21419 reflections
a = 7.74413 (3) Åθ = 3.3–79.7°
c = 53.4131 (3) ŵ = 1.78 mm1
V = 3203.27 (3) Å3T = 100 K
Z = 8Prism, yellow
F(000) = 13440.18 × 0.15 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
5366 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.034
φ and ω scansθmax = 80.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 99
Tmin = 0.724, Tmax = 1.000k = 99
25893 measured reflectionsl = 4867
5429 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.7104P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.32 e Å3
5429 reflectionsΔρmin = 0.23 e Å3
428 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00026 (3)
Primary atom site location: difference Fourier mapAbsolute structure: Flack x determined using 1866 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18679 (6)1.05845 (6)0.55945 (2)0.01754 (12)
N10.6884 (2)0.8179 (2)0.52180 (4)0.0144 (3)
H1N0.667 (4)0.712 (4)0.5175 (6)0.017*
N20.2448 (2)0.7561 (2)0.51944 (4)0.0156 (3)
H2N0.253 (4)0.854 (4)0.5127 (6)0.019*
C10.4553 (3)0.8123 (2)0.55478 (4)0.0142 (4)
H10.51950.73430.56640.017*
C20.3604 (3)0.9414 (3)0.57107 (4)0.0145 (4)
C30.4018 (3)0.9926 (3)0.59474 (4)0.0161 (4)
C40.2925 (3)1.1294 (3)0.60345 (4)0.0191 (4)
H40.30311.18050.61950.023*
C50.1722 (3)1.1786 (3)0.58638 (5)0.0198 (4)
H50.09031.26810.58900.024*
C60.5431 (3)0.9154 (3)0.61070 (4)0.0176 (4)
H6A0.62371.00800.61590.021*
H6B0.60880.83070.60060.021*
C70.4729 (3)0.8264 (3)0.63390 (5)0.0159 (4)
C80.5202 (3)0.8793 (3)0.65777 (5)0.0194 (4)
H80.59850.97280.65970.023*
C90.4541 (3)0.7964 (3)0.67890 (5)0.0224 (5)
H90.48650.83480.69510.027*
C100.3415 (3)0.6587 (3)0.67638 (5)0.0224 (5)
H100.29760.60180.69080.027*
C110.2933 (3)0.6044 (3)0.65259 (5)0.0225 (5)
H110.21590.51010.65070.027*
C120.3579 (3)0.6878 (3)0.63148 (5)0.0204 (4)
H120.32380.65020.61530.024*
C130.5903 (2)0.9037 (2)0.53919 (4)0.0134 (4)
C140.6455 (3)1.0726 (3)0.53961 (4)0.0164 (4)
H140.60091.16230.54990.020*
C150.7816 (3)1.0884 (3)0.52183 (5)0.0173 (4)
H150.84461.19040.51800.021*
C160.8047 (3)0.9288 (3)0.51117 (4)0.0162 (4)
H160.88700.90040.49860.019*
C170.3384 (2)0.6979 (3)0.53944 (4)0.0144 (4)
C180.2996 (3)0.5255 (3)0.54269 (5)0.0180 (4)
H180.34610.45130.55520.022*
C190.1777 (3)0.4791 (3)0.52405 (5)0.0195 (5)
H190.12730.36830.52170.023*
C200.1457 (3)0.6246 (3)0.50987 (5)0.0178 (4)
H200.06920.63240.49600.021*
S20.75956 (6)1.06184 (6)0.44014 (2)0.01709 (12)
N30.5130 (2)0.5712 (2)0.47912 (4)0.0155 (3)
H3N0.406 (4)0.596 (4)0.4827 (6)0.019*
N40.4526 (2)1.0157 (2)0.47943 (4)0.0146 (3)
H4N0.563 (4)1.018 (4)0.4851 (6)0.018*
C210.5097 (2)0.7967 (2)0.44507 (4)0.0133 (4)
H210.43240.73150.43340.016*
C220.6404 (3)0.8894 (2)0.42877 (4)0.0143 (4)
C230.6913 (3)0.8456 (3)0.40510 (4)0.0155 (4)
C240.8293 (3)0.9530 (3)0.39620 (5)0.0189 (4)
H240.88010.94100.38010.023*
C250.8798 (3)1.0738 (3)0.41317 (5)0.0195 (4)
H250.97021.15450.41040.023*
C260.6123 (3)0.7043 (3)0.38929 (4)0.0176 (4)
H26A0.52720.63970.39950.021*
H26B0.70390.62260.38410.021*
C270.5235 (3)0.7752 (3)0.36613 (4)0.0167 (4)
C280.5778 (3)0.7287 (3)0.34221 (5)0.0197 (4)
H280.67170.65100.34030.024*
C290.4953 (3)0.7956 (3)0.32102 (5)0.0224 (5)
H290.53390.76350.30480.027*
C300.3575 (3)0.9084 (3)0.32360 (5)0.0221 (5)
H300.30110.95340.30920.027*
C310.3025 (3)0.9549 (3)0.34739 (5)0.0218 (5)
H310.20781.03180.34930.026*
C320.3852 (3)0.8897 (3)0.36853 (5)0.0195 (4)
H320.34720.92340.38470.023*
C330.5996 (3)0.6628 (3)0.46113 (4)0.0141 (4)
C340.7663 (3)0.6010 (3)0.46030 (5)0.0171 (4)
H340.85570.63980.44950.021*
C350.7796 (3)0.4683 (3)0.47860 (5)0.0177 (4)
H350.87980.40210.48230.021*
C360.6219 (3)0.4531 (3)0.48999 (4)0.0163 (4)
H360.59310.37500.50300.020*
C370.3946 (3)0.9145 (2)0.46007 (4)0.0140 (4)
C380.2205 (3)0.9467 (3)0.45723 (4)0.0162 (4)
H380.14610.89510.44520.019*
C390.1728 (3)1.0709 (3)0.47547 (5)0.0178 (4)
H390.06061.11740.47800.021*
C400.3186 (3)1.1115 (3)0.48886 (4)0.0167 (4)
H400.32541.19170.50230.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (2)0.0187 (2)0.0175 (3)0.00554 (16)0.00010 (19)0.00311 (19)
N10.0122 (7)0.0127 (8)0.0183 (9)0.0003 (6)0.0008 (7)0.0008 (7)
N20.0155 (8)0.0125 (8)0.0189 (9)0.0009 (6)0.0012 (7)0.0011 (7)
C10.0134 (8)0.0126 (8)0.0165 (11)0.0008 (7)0.0005 (8)0.0017 (8)
C20.0118 (8)0.0141 (9)0.0177 (10)0.0003 (7)0.0016 (8)0.0030 (8)
C30.0127 (8)0.0169 (9)0.0188 (11)0.0003 (7)0.0027 (8)0.0018 (8)
C40.0197 (9)0.0198 (10)0.0177 (11)0.0013 (8)0.0047 (8)0.0011 (8)
C50.0184 (10)0.0180 (10)0.0230 (12)0.0052 (7)0.0054 (9)0.0022 (8)
C60.0144 (9)0.0226 (10)0.0158 (10)0.0002 (7)0.0000 (8)0.0011 (8)
C70.0115 (8)0.0185 (9)0.0177 (10)0.0041 (7)0.0007 (7)0.0020 (8)
C80.0190 (10)0.0200 (10)0.0192 (11)0.0019 (8)0.0014 (8)0.0014 (8)
C90.0243 (11)0.0265 (11)0.0165 (12)0.0062 (9)0.0007 (9)0.0003 (9)
C100.0171 (10)0.0274 (11)0.0227 (12)0.0057 (8)0.0048 (9)0.0062 (9)
C110.0149 (9)0.0246 (11)0.0281 (13)0.0004 (8)0.0006 (9)0.0045 (9)
C120.0160 (9)0.0248 (10)0.0203 (11)0.0012 (8)0.0029 (8)0.0003 (9)
C130.0112 (8)0.0142 (9)0.0148 (10)0.0012 (7)0.0013 (7)0.0003 (7)
C140.0155 (9)0.0139 (9)0.0198 (11)0.0003 (7)0.0015 (8)0.0006 (8)
C150.0137 (9)0.0167 (9)0.0216 (12)0.0026 (7)0.0006 (8)0.0028 (8)
C160.0118 (9)0.0182 (9)0.0187 (11)0.0007 (7)0.0001 (8)0.0021 (8)
C170.0128 (8)0.0127 (9)0.0177 (10)0.0005 (6)0.0023 (8)0.0008 (7)
C180.0168 (9)0.0136 (9)0.0237 (12)0.0014 (7)0.0034 (8)0.0021 (8)
C190.0145 (9)0.0135 (9)0.0305 (13)0.0027 (7)0.0049 (9)0.0030 (9)
C200.0128 (9)0.0174 (9)0.0234 (12)0.0010 (7)0.0017 (8)0.0036 (8)
S20.0176 (2)0.0167 (2)0.0169 (2)0.00542 (17)0.00261 (18)0.00039 (18)
N30.0128 (8)0.0136 (8)0.0203 (10)0.0009 (6)0.0003 (7)0.0014 (7)
N40.0118 (8)0.0137 (7)0.0184 (9)0.0005 (6)0.0018 (7)0.0013 (7)
C210.0126 (8)0.0121 (8)0.0152 (10)0.0001 (7)0.0002 (7)0.0002 (7)
C220.0132 (8)0.0126 (8)0.0171 (11)0.0000 (6)0.0024 (8)0.0009 (8)
C230.0160 (9)0.0118 (8)0.0185 (11)0.0003 (7)0.0025 (8)0.0018 (8)
C240.0202 (10)0.0190 (10)0.0174 (11)0.0002 (8)0.0015 (8)0.0037 (8)
C250.0179 (9)0.0189 (10)0.0216 (11)0.0048 (7)0.0009 (8)0.0049 (8)
C260.0236 (10)0.0140 (9)0.0151 (11)0.0003 (7)0.0006 (8)0.0006 (8)
C270.0204 (9)0.0126 (9)0.0171 (11)0.0038 (7)0.0007 (8)0.0002 (8)
C280.0201 (10)0.0192 (10)0.0197 (12)0.0020 (8)0.0011 (8)0.0014 (8)
C290.0276 (11)0.0232 (11)0.0165 (11)0.0065 (9)0.0008 (9)0.0013 (9)
C300.0275 (11)0.0173 (9)0.0214 (12)0.0063 (8)0.0076 (9)0.0036 (9)
C310.0240 (11)0.0145 (9)0.0268 (13)0.0006 (8)0.0050 (9)0.0007 (8)
C320.0246 (10)0.0159 (9)0.0181 (11)0.0009 (8)0.0010 (9)0.0032 (8)
C330.0150 (9)0.0123 (8)0.0149 (10)0.0001 (7)0.0010 (8)0.0003 (7)
C340.0145 (9)0.0150 (9)0.0219 (11)0.0015 (7)0.0028 (8)0.0008 (8)
C350.0170 (9)0.0124 (9)0.0237 (12)0.0028 (7)0.0013 (9)0.0005 (8)
C360.0184 (10)0.0111 (8)0.0194 (11)0.0012 (7)0.0012 (8)0.0018 (8)
C370.0138 (9)0.0126 (8)0.0157 (10)0.0004 (7)0.0008 (7)0.0018 (7)
C380.0127 (9)0.0162 (9)0.0196 (11)0.0005 (7)0.0015 (8)0.0023 (8)
C390.0133 (9)0.0159 (9)0.0244 (12)0.0021 (7)0.0036 (8)0.0046 (8)
C400.0182 (9)0.0125 (9)0.0194 (11)0.0016 (7)0.0035 (8)0.0003 (8)
Geometric parameters (Å, º) top
S1—C51.717 (2)S2—C251.718 (2)
S1—C21.736 (2)S2—C221.733 (2)
N1—C161.368 (3)N3—C331.370 (3)
N1—C131.371 (3)N3—C361.373 (3)
N1—H1N0.87 (3)N3—H3N0.87 (3)
N2—C171.367 (3)N4—C401.372 (3)
N2—C201.374 (3)N4—C371.373 (3)
N2—H2N0.84 (3)N4—H4N0.91 (3)
C1—C171.508 (3)C21—C371.506 (3)
C1—C131.513 (3)C21—C331.515 (3)
C1—C21.516 (3)C21—C221.516 (3)
C1—H11.0000C21—H211.0000
C2—C31.363 (3)C22—C231.367 (3)
C3—C41.433 (3)C23—C241.435 (3)
C3—C61.510 (3)C23—C261.511 (3)
C4—C51.358 (3)C24—C251.360 (3)
C4—H40.9500C24—H240.9500
C5—H50.9500C25—H250.9500
C6—C71.519 (3)C26—C271.518 (3)
C6—H6A0.9900C26—H26A0.9900
C6—H6B0.9900C26—H26B0.9900
C7—C81.388 (3)C27—C281.392 (3)
C7—C121.401 (3)C27—C321.397 (3)
C8—C91.395 (4)C28—C291.399 (3)
C8—H80.9500C28—H280.9500
C9—C101.384 (4)C29—C301.386 (3)
C9—H90.9500C29—H290.9500
C10—C111.389 (4)C30—C311.388 (4)
C10—H100.9500C30—H300.9500
C11—C121.392 (4)C31—C321.393 (3)
C11—H110.9500C31—H310.9500
C12—H120.9500C32—H320.9500
C13—C141.376 (3)C33—C341.377 (3)
C14—C151.424 (3)C34—C351.422 (3)
C14—H140.9500C34—H340.9500
C15—C161.372 (3)C35—C361.370 (3)
C15—H150.9500C35—H350.9500
C16—H160.9500C36—H360.9500
C17—C181.380 (3)C37—C381.380 (3)
C18—C191.419 (3)C38—C391.418 (3)
C18—H180.9500C38—H380.9500
C19—C201.380 (3)C39—C401.373 (3)
C19—H190.9500C39—H390.9500
C20—H200.9500C40—H400.9500
C5—S1—C291.97 (11)C25—S2—C2292.07 (11)
C16—N1—C13109.97 (17)C33—N3—C36109.93 (18)
C16—N1—H1N128 (2)C33—N3—H3N120 (2)
C13—N1—H1N122 (2)C36—N3—H3N130 (2)
C17—N2—C20110.05 (18)C40—N4—C37109.73 (18)
C17—N2—H2N126 (2)C40—N4—H4N125.4 (19)
C20—N2—H2N124 (2)C37—N4—H4N124.8 (19)
C17—C1—C13113.00 (18)C37—C21—C33112.67 (18)
C17—C1—C2114.11 (16)C37—C21—C22114.41 (16)
C13—C1—C2110.00 (16)C33—C21—C22110.03 (16)
C17—C1—H1106.4C37—C21—H21106.4
C13—C1—H1106.4C33—C21—H21106.4
C2—C1—H1106.4C22—C21—H21106.4
C3—C2—C1127.62 (18)C23—C22—C21127.31 (18)
C3—C2—S1111.20 (16)C23—C22—S2111.21 (15)
C1—C2—S1120.97 (17)C21—C22—S2121.28 (16)
C2—C3—C4112.14 (19)C22—C23—C24112.16 (19)
C2—C3—C6125.35 (19)C22—C23—C26125.44 (19)
C4—C3—C6122.5 (2)C24—C23—C26122.4 (2)
C5—C4—C3113.3 (2)C25—C24—C23113.1 (2)
C5—C4—H4123.4C25—C24—H24123.5
C3—C4—H4123.4C23—C24—H24123.5
C4—C5—S1111.42 (17)C24—C25—S2111.47 (16)
C4—C5—H5124.3C24—C25—H25124.3
S1—C5—H5124.3S2—C25—H25124.3
C3—C6—C7112.39 (17)C23—C26—C27112.14 (17)
C3—C6—H6A109.1C23—C26—H26A109.2
C7—C6—H6A109.1C27—C26—H26A109.2
C3—C6—H6B109.1C23—C26—H26B109.2
C7—C6—H6B109.1C27—C26—H26B109.2
H6A—C6—H6B107.9H26A—C26—H26B107.9
C8—C7—C12118.6 (2)C28—C27—C32118.7 (2)
C8—C7—C6121.4 (2)C28—C27—C26121.2 (2)
C12—C7—C6120.0 (2)C32—C27—C26120.1 (2)
C7—C8—C9120.7 (2)C27—C28—C29120.6 (2)
C7—C8—H8119.7C27—C28—H28119.7
C9—C8—H8119.7C29—C28—H28119.7
C10—C9—C8120.5 (2)C30—C29—C28120.3 (2)
C10—C9—H9119.8C30—C29—H29119.9
C8—C9—H9119.8C28—C29—H29119.9
C9—C10—C11119.4 (2)C29—C30—C31119.4 (2)
C9—C10—H10120.3C29—C30—H30120.3
C11—C10—H10120.3C31—C30—H30120.3
C10—C11—C12120.3 (2)C30—C31—C32120.5 (2)
C10—C11—H11119.9C30—C31—H31119.8
C12—C11—H11119.9C32—C31—H31119.8
C11—C12—C7120.6 (2)C31—C32—C27120.6 (2)
C11—C12—H12119.7C31—C32—H32119.7
C7—C12—H12119.7C27—C32—H32119.7
N1—C13—C14107.44 (18)N3—C33—C34107.54 (18)
N1—C13—C1121.91 (17)N3—C33—C21121.77 (18)
C14—C13—C1130.59 (19)C34—C33—C21130.56 (19)
C13—C14—C15107.50 (19)C33—C34—C35107.30 (19)
C13—C14—H14126.3C33—C34—H34126.3
C15—C14—H14126.3C35—C34—H34126.3
C16—C15—C14107.19 (19)C36—C35—C34107.60 (19)
C16—C15—H15126.4C36—C35—H35126.2
C14—C15—H15126.4C34—C35—H35126.2
N1—C16—C15107.90 (19)C35—C36—N3107.62 (19)
N1—C16—H16126.0C35—C36—H36126.2
C15—C16—H16126.0N3—C36—H36126.2
N2—C17—C18107.57 (19)N4—C37—C38107.43 (19)
N2—C17—C1123.30 (17)N4—C37—C21123.56 (18)
C18—C17—C1129.1 (2)C38—C37—C21129.0 (2)
C17—C18—C19107.6 (2)C37—C38—C39107.6 (2)
C17—C18—H18126.2C37—C38—H38126.2
C19—C18—H18126.2C39—C38—H38126.2
C20—C19—C18107.31 (19)C40—C39—C38107.39 (19)
C20—C19—H19126.3C40—C39—H39126.3
C18—C19—H19126.3C38—C39—H39126.3
N2—C20—C19107.5 (2)N4—C40—C39107.89 (19)
N2—C20—H20126.2N4—C40—H40126.1
C19—C20—H20126.2C39—C40—H40126.1
C17—C1—C2—C3141.6 (2)C37—C21—C22—C23140.9 (2)
C13—C1—C2—C390.2 (3)C33—C21—C22—C2391.1 (2)
C17—C1—C2—S144.1 (2)C37—C21—C22—S244.7 (2)
C13—C1—C2—S184.15 (19)C33—C21—C22—S283.3 (2)
C5—S1—C2—C30.81 (17)C25—S2—C22—C230.63 (17)
C5—S1—C2—C1174.41 (17)C25—S2—C22—C21174.56 (17)
C1—C2—C3—C4174.28 (19)C21—C22—C23—C24174.53 (19)
S1—C2—C3—C40.5 (2)S2—C22—C23—C240.3 (2)
C1—C2—C3—C66.8 (3)C21—C22—C23—C266.8 (3)
S1—C2—C3—C6178.40 (16)S2—C22—C23—C26178.37 (16)
C2—C3—C4—C50.1 (3)C22—C23—C24—C250.3 (3)
C6—C3—C4—C5179.1 (2)C26—C23—C24—C25179.0 (2)
C3—C4—C5—S10.7 (2)C23—C24—C25—S20.8 (2)
C2—S1—C5—C40.88 (18)C22—S2—C25—C240.80 (18)
C2—C3—C6—C7115.1 (2)C22—C23—C26—C27114.7 (2)
C4—C3—C6—C763.7 (3)C24—C23—C26—C2763.9 (3)
C3—C6—C7—C8120.0 (2)C23—C26—C27—C28118.9 (2)
C3—C6—C7—C1260.1 (3)C23—C26—C27—C3260.9 (3)
C12—C7—C8—C90.3 (3)C32—C27—C28—C290.0 (3)
C6—C7—C8—C9179.8 (2)C26—C27—C28—C29179.7 (2)
C7—C8—C9—C100.7 (3)C27—C28—C29—C300.4 (3)
C8—C9—C10—C110.6 (3)C28—C29—C30—C310.3 (3)
C9—C10—C11—C120.1 (3)C29—C30—C31—C320.3 (3)
C10—C11—C12—C70.3 (3)C30—C31—C32—C270.6 (3)
C8—C7—C12—C110.3 (3)C28—C27—C32—C310.5 (3)
C6—C7—C12—C11179.67 (19)C26—C27—C32—C31179.75 (19)
C16—N1—C13—C140.0 (2)C36—N3—C33—C340.6 (2)
C16—N1—C13—C1177.46 (19)C36—N3—C33—C21176.96 (18)
C17—C1—C13—N147.6 (2)C37—C21—C33—N345.3 (3)
C2—C1—C13—N1176.43 (19)C22—C21—C33—N3174.30 (19)
C17—C1—C13—C14135.5 (2)C37—C21—C33—C34139.3 (2)
C2—C1—C13—C146.7 (3)C22—C21—C33—C3410.3 (3)
N1—C13—C14—C150.0 (2)N3—C33—C34—C350.4 (3)
C1—C13—C14—C15177.2 (2)C21—C33—C34—C35176.2 (2)
C13—C14—C15—C160.0 (3)C33—C34—C35—C360.0 (3)
C13—N1—C16—C150.0 (2)C34—C35—C36—N30.4 (2)
C14—C15—C16—N10.0 (3)C33—N3—C36—C350.7 (2)
C20—N2—C17—C180.4 (2)C40—N4—C37—C380.1 (2)
C20—N2—C17—C1177.61 (18)C40—N4—C37—C21178.37 (19)
C13—C1—C17—N255.8 (2)C33—C21—C37—N458.7 (3)
C2—C1—C17—N270.8 (3)C22—C21—C37—N468.0 (3)
C13—C1—C17—C18126.7 (2)C33—C21—C37—C38123.2 (2)
C2—C1—C17—C18106.7 (2)C22—C21—C37—C38110.2 (2)
N2—C17—C18—C190.3 (2)N4—C37—C38—C390.1 (2)
C1—C17—C18—C19177.5 (2)C21—C37—C38—C39178.4 (2)
C17—C18—C19—C200.2 (2)C37—C38—C39—C400.2 (2)
C17—N2—C20—C190.3 (2)C37—N4—C40—C390.2 (2)
C18—C19—C20—N20.1 (2)C38—C39—C40—N40.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1–8 are the centroids of the S1/C2–C5, N1/C13–C16, N2/C17–C20, C7–C12, S2/C22–C25, N3/C33–C36, N4/C37–C40 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.87 (3)2.61 (3)3.270 (3)134 (3)
N4—H4N···S20.91 (3)2.86 (3)3.191 (2)103 (2)
N1—-H1N···Cg60.87 (3)2.65 (3)3.300 (2)133 (3)
N2—-H2N···Cg70.84 (3)2.53 (3)3.249 (2)145 (3)
N3—-H3N···Cg30.87 (3)2.70 (3)3.335 (2)131 (3)
N4—-H4N···Cg20.91 (3)2.51 (3)3.207 (2)134 (3)
C5—-H5···Cg8i0.952.983.931 (3)177
C6—-H6B···Cg8ii0.992.793.697 (3)153
C10—-H10···Cg7iii0.952.863.544 (3)130
C11—-H11···Cg5iii0.952.983.874 (3)157
C25—-H25···Cg4iv0.952.983.924 (3)176
C26—-H26A···Cg4v0.992.773.684 (3)153
C30—-H30···Cg3vi0.952.883.585 (3)132
C31—-H31···Cg1vi0.952.973.863 (3)156
Symmetry codes: (i) y1, x+2, z+1/4; (ii) y, x+1, z+1/4; (iii) y1, x+1, z+1/4; (iv) y+2, x+1, z1/4; (v) y+1, x, z1/4; (vi) y+1, x+1, z1/4.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
C5···H183.01x, 1 + y, z
H10···C403.01-1 + y, 1 - x, 1/4 + z
H2N···C402.42x, y, z
H4···C252.97-1 + y, 2 - x, 1/4 + z
H1···C292.79y, 1 - x, 1/4 + z
H15···H352.53x, 1 + y, z
H16···H202.511 + x, y, z
H16···H392.421 + x, y, z
H19···H402.301 x, -1 + y, z
H6A···H26B2.43y, 2 - x, 1/4 + z
H15···H192.591 + x, 1 + y, z
C25···H383.021 + x, y, z
H35···H202.421 + x, y, z
H36···H402.51x, -1 + y, z
 

Acknowledgements

NDS and NAG thank Baku State University and Azerbaijan State Oil and Industry University, respectively, for financial support. ERS and DKP thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems" RUDN. The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, ERS, NAG and DKP; X-ray analysis, NDS, VNK, and ZA; writing (review and editing of the manuscript) MA and AB; funding acquisition, NDS, NAG, ERS and DKP; supervision, MA and AB.

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2259–o2260.  CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChandra Kumar, K., Kokila, M. K., Puttaraja, , Saravanan, J. & Kulkarni, M. V. (2008). Acta Cryst. E64, o1311.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGale, P. A., Anzenbacher, P. & Sessler, J. S. (2001). Coord. Chem. Rev. 222, 57–102.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationLindsey, J. S. (2010). Acc. Chem. Res. 43, 300–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.  Web of Science CSD CrossRef CAS Google Scholar
First citationNascimento, B. F. O., Lopes, S. M. M., Pineiro, M. & Pinho e Melo, T. M. V. D. (2019). Molecules, 24, 4348–4374.  CrossRef CAS PubMed Google Scholar
First citationOrłowski, R., Gryko, D. & Gryko, D. T. (2017). Chem. Rev. 117, 3102–3137.  PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku, OD (2021). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst Struct. 234, 1183–1185.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, T. E. & Thompson, A. (2007). Chem. Rev. 107, 1831–1861.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYedukondalu, M. & Ravikanth, M. (2011). Coord. Chem. Rev. 255, 547–573.  CrossRef CAS Google Scholar
First citationZaytsev, V. P., Surina, N. S., Pokazeev, K. M., Shelukho, E. R., Yakovleva, E. D., Nadirova, M. A., Novikov, R. A., Khrustalev, V. N. & Zubkov, F. I. (2023). Tetrahedron Lett. 120, 154434–154438.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds