research communications
New copper carboxylate pyrene dimers: synthesis,
Hirshfeld surface analysis and electrochemical characterizationaDepartment of Natural Sciences, University of Puerto Rico, Carolina Campus, Carolina, 00984-4800, Puerto Rico, bDepartment of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, 00927, Puerto Rico, and cUniversity of Puerto Rico's Molecular Sciences Research Center, San Juan, 00926, Puerto Rico
*Correspondence e-mail: karilys.gonzalez@upr.edu, dalice.pinero@upr.edu
Two new copper dimers, namely, bis(dimethyl sulfoxide)tetrakis(μ-pyrene-1-carboxylato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C2H6OS)2] or [Cu2(pyr-COO−)4(DMSO)2] (1), and bis(dimethylformamide)tetrakis(μ-pyrene-1-carboxylato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C3H7NO)2] or [Cu2(pyr-COO−)4(DMF)2] (2) (pyr = pyrene), were synthesized from the reaction of pyrene-1-carboxylic acid, copper(II) nitrate and triethylamine from solvents DMSO and DMF, respectively. While 1 crystallized in the P, the of 2 is in P21/n. The Cu atoms have octahedral geometries, with four oxygen atoms from carboxylate pyrene ligands occupying the equatorial positions, a solvent molecule coordinating at one of the axial positions, and a Cu⋯Cu contact in the opposite position. The packing in the crystal structures exhibits π–π stacking interactions and short contacts through the solvent molecules. The Hirshfeld surfaces and two-dimensional fingerprint plots were generated for both compounds to better understand the intermolecular interactions and the contribution of heteroatoms from the solvent ligands to the crystal packing. In addition, a Cu2+/Cu1+ quasi-reversible redox process was identified for compound 2 using cyclic voltammetry that accounts for a diffusion-controlled electron-donation process to the Cu dimer.
Keywords: dicopper; carboxylate; pyrene; π–π stacking; crystal structure.
1. Chemical context
Copper(II) carboxylate complexes with paddle-like structure have been proposed in solar energy conversion and storage, redox mediators, magnetism, dyes and in catalysis, among other applications (Benesperi et al. 2020; Kozlevčar et al., 2004; Rajakannu et al., 2019; Murugavel et al., 2000; Rao et al., 2004; Boulsourani et al., 2017; Baldomá et al., 2006; Seo et al., 2000). The unique characteristics of copper(II) carboxylate complexes of general formula [Cu2(RCOO−)4(L)2] are based on their easy synthesis, the relative abundance of the starting materials, their stability, and their low toxicity, which enables a vast number of research directions to be performed from such materials. The structural features of these compounds are related to the coordinating aspect of the ligands: the two possible coordination sites through the carboxylate oxygen atoms result in various modes of coordination, such as monodentate, bidentate and bridging, offering a variability of polynuclear metal complexes (Rajakannu et al., 2019; Murugavel et al., 2000; Rao et al., 2004), and a degree of stability for dinuclear and trinuclear complexes. Additionally, the carboxylate group could participate in hydrogen bonds, leading to a supramolecular network (Aakeröy et al., 2006). Moreover, dinuclear copper(II) carboxylate complexes may have switchable electronic properties such as intermetal magnetic exchange and (Vishnoi et al., 2017). The electrochemical properties of copper(II) carboxylate complexes are reported to be highly influenced by the redox-active nature of copper(II/I) and subjected to potential changes due to the presence of substituents in the carboxylate ligands (Wang et al., 2013), thereby influencing the stability of its (Modec et al., 2020).
In this work we report the structure of two new copper(II) carboxylate complexes from pyrene-1-carboxylic acid. The structure of pyrene is based on four fused benzene rings, thus it belongs to the group of polycyclic aromatic hydrocarbons (PAH) that have been well studied since their remarkable fluorescence and phosphorescence properties were noted (Haldar et al., 2020). Carboxylic acid from 1-pyrene has been proposed in supercapacitor devices by functionalization of graphene and it is also used to design and synthesize luminescent metal–organic complexes for sensing applications.
In addition, pyrene ligands have been used as an organic linker or as building blocks for the design of new classes of metal–organic frameworks (MOFs). The functionalization of pyrene with phosphonates, sulfonates, and carboxylates allows metal coordination to yield MOF structures exhibiting new photophysical and photochemical properties. MOF structures with pyrene ligands result in promising optical properties such as luminescence sensing, et al., 2021). Derivatives of carboxylate pyrene ligands have been studied because of their extraordinary photophysical properties, chemical stability, π–π stacking interactions, and high-charge-delocalized systems (Guan et al., 2019). The planar π-conjugated surface of pyrene and its molecular rearrangement is favorable for the detection of guest molecules in molecular tweezer hosts, for example with platinum, ruthenium, and copper complexes. Another application of pyrene can be found in the functionalization of carbon nanotubes (CNTs) as a result of its π–π interactions with polycyclic aromatic molecules (Zhao & Stoddart, 2009).
electrochemistry, adsorption and separation applications, and biomedical applications (KinikHere, we report the novel synthesis, characterization, and 2(pyr-COO−)4(DMSO)2] (1) and [Cu2(pyr-COO−)4(DMF)2] (2). Structural characterization from single-crystal X-ray diffraction experiments show crystallization under two crystal systems, which translates into different extended contacts, such as π–π stacking interactions, among others. In terms of the chemistry of these copper structures, they are very promising because the axial positions can be substituted by bridging ligands, which can form coordination polymers such as the 1D, 2D, and 3D polymeric architectures that have been proposed in molecular sensing, gas storage, and separation (Karmakar et al., 2021). Hirshfeld surface analysis was undertaken to show the contributions from intermolecular interactions in the crystal-packing array. The pyrene rings participate in π–π interactions, yet some rings have weaker interactions based on their position in the DMSO (1) and DMF (2) axial ligands, play a crucial role in the crystal packing by participating in interactions with the rest of the molecule. In addition, Hirshfeld surface analysis showed that compound 2 has shorter distances for most interactions. Electrochemical characterization of compound 2 was performed by cyclic voltammetry at varying scan rates (50–2000 mV s−1), revealing a diffusion-controlled Cu2+/Cu1+ quasi-reversible process that may involve an electron reduction at an E1/2 potential around −0.52 V vs Fc/Fc+ (Iqbal et al., 2013; Bonomo et al., 2000).
of two copper dimers with tetracarboxylate pyrene and two solvent molecules in axial positions, [Cu2. Structural commentary
The crystal structures of complexes [Cu2(pyr-COO−)4(DMSO)2] (1), P, and [Cu2(pyr-COO−)4(DMF)2], P21/n (2), are presented in Fig. 1. The copper atoms have octahedral geometries with four oxygen atoms from the pyrene-1-carboxylate ligand at equatorial positions, one axial ligand from the solvent molecule and the remaining axial coordination occupied by a metal–metal copper contact. The contains half the molecule in both structures. The Cu⋯Cu contact distance in 1 is 2.5934 (3) Å in comparison with the structure of 2 for which it is 2.6295 (5) Å. Likewise, the Cu—O5 bond distance in the axial position is shorter in 1 than in 2, with values of 2.1441 (12) and 2.1769 (13) Å, respectively. The difference in the elongation of these bond distances could be the result of the influence of the axial ligand (DMSO vs DMF) with stronger π-back-bonding character, thus better binding (Deacon & Phillips, 1980). The Cu—O bonds in equatorial positions are shorter than those in axial positions in both structures, with distances ranging from 1.9530 (13) to 1.9593 (13) Å, which may be indicative of Jahn–Teller effects on CuII centers. All the other structural features in the two Cu dimers do not change significantly. Structural disorder of four carbon atoms from the pyrene (C29–C32—C33—C34) unit is observed in complex 2 as well as in one of the carbon atoms from the DMF molecule, precisely on C37, for which atoms had to be modeled in two parts.
3. Supramolecular features
Long-range interactions for 1 and 2 are different in terms of their π–π stacking, as well as the axial hydrogen interactions with π rings. In the case of complex 1, the most important π–π interactions is observed for C22⋯C16 at 3.393 (3) Å. C—H to π-ring interactions are observed between C28⋯H15 and C27⋯H15 at 2.87 and 2.90 Å, respectively, and the solvent oxygen interaction π-ring end hydrogen is observed through O5⋯H4 at a distance of 2.56 Å. In complex 2 however, π–π interactions are present from C4⋯C4 of neighboring rings with a distance 3.178 (4) Å; other interactions are attributed to C—H end to π-ring for C16⋯H37B, C19⋯H16, and C24⋯H16 with distances of 2.87, 2.85, and 2.70 Å, respectively. The packing for 1 and 2 is shown in shown in Fig. 2.
4. Electrochemical measurements
Electrochemical properties were measured in DMF for complex 2; complex 1 was not soluble therein, and thus was not characterized electrochemically. The cyclic voltammograms (CV) of compound 2 at multiple scan rates are shown in Fig. 3. The main feature presented by compound 2 exhibits a redox couple at ca −0.5 V vs Fc/Fc+ associated with the Cu2+/Cu1+ couple (Iqbal et al., 2013; Bonomo et al., 2000). This redox process was found to be quasi-reversible because as the scan rate increased, the peak-to-peak separation increased, indicating that this process is not reversible. Another indication of the quasi-reversible nature of compound 2 is that the ratio between the cathodic and anodic is less than 1. According to the Randles–Sevcik equation, the observed linear relationship between the square root of the scan rate and the confirms that the quasi-reversible process is diffusion-controlled (Fig. 4) (Elgrishi et al., 2018). It was observed that on increasing the scan rates to 750 mV s−1, two irreversible oxidation processes appeared at 0.05 and 0.50 V vs Fc/Fc+. In summary, complex 2 possesses a quasi-reversible diffusion-controlled redox process corresponding to the Cu2+/Cu1+ couple.
5. Hirshfeld surface analysis
The Hirshfeld surfaces were generated using CrystalExplorer17.5 software and evaluated over dnorm, shape-index, and curvedness. Fingerprint plot analysis was also carried out for 1 and 2 (Spackman et al., 2021; Turner et al., 2017; Spackman & Jayatilaka, 2009; Spackman & McKinnon, 2002). The Hirshfeld surface of 1 evaluated over dnorm shows multiple bright- and light-red spots (Figs. 5 and 6), revealing that many interactions take place and that the crystal packing is a compact one (i.e., short distances). The red spots on the surface, including the innermost region near the oxygen atoms (e.g., O1⋯H34 at 2.53 Å), equatorial pyrene moieties (core and edges, e.g., C28⋯H15 at 2.87 Å, H32⋯H9 at 2.38 Å), and axial ligand positions (e.g., O5⋯H4 at 2.56 Å, H36B⋯C11 at 2.77 Å), are mostly C⋯C, H⋯H, H⋯O/O⋯H, and C⋯H/H⋯C interactions (Fig. 5). The red spots on the surface region of axial ligands indicate that interactions with DMSO are a crucial component for the crystal packing.
Short interactions are better perceived in Fig. 6, both on the pyrene moiety (core and edges) and ligand positions. The role of pyrene rings in the crystal packing is evident, as well as for solvent molecules, even though their contributions are different (Fig. 7). Important π–π interactions are observed in the shape-index surface, represented by characteristic adjacent red–yellow and blue–green triangles (and back-to-back diamonds) on pyrene rings (Fig. 7a) and in the axial ligand region (Fig. 7c). Interestingly, not all pyrene cores have the same degree of interactions within the crystal packing. The pyrene rings are either engaged in strong π–π interactions or in other interactions, predominantly of C⋯H/H⋯C(core) and H⋯H(edges) type. The intercentroid distance for rings that exhibit strong π–π interactions is 3.75 Å and these rings greatly overlap. Fig. 7b defines hollows toward the center of the molecule and bumps on the pyrene edges, confirming that intermolecular interactions allow molecules to interlock for the crystal packing,
Evaluation of the curvedness reflects the planarity of the pyrene rings, specifically for those exhibiting strong π–π interactions (Fig. 8a), while the other rings and solvent ligands have both flat and positive curvatures. Hence, compound 1 has diverse interactions that give way to the resulting array. Fig. 8a portrays a superposition of where the pyrene ring is located below the generated surface; only a green color (i.e., flatness) is observed in this region. Going from Fig. 8b to Fig. 8c, the red boxes are localized to fit together interlocking pyrene moieties towards the innermost region of the molecule, highlighting complementarity in the crystal-packing array.
The fingerprint plot for compound 1 is symmetric, and contacts occur over a long range of distances (i.e., de and di scale) for C⋯H/H⋯C (39.8%), H⋯H (44.2%), and H⋯O/O⋯H (7.4%) type primarily. H⋯H contacts make up almost half the total interactions (44.2%). A large concentration of points is centered around 1.6–2.0 Å, linked to π–π stacking; contacts of C⋯C (7.3%) type comprise DMSO–pyrene and pyrene–pyrene. Furthermore, characteristic traits are distinguished: both peaks and wings are demarcated in the C⋯H/H⋯C, H⋯H, and H⋯O/O⋯H plots, so different contacts are present; they all incorporate the pyrene moieties and solvent ligands. Upon further analysis, it was found that DMSO participates in each type of contact in Fig. 9, either from the sulfur, oxygen, or methyl groups. Contacts of the C⋯O/O⋯C (0.1%), C⋯S/S⋯C (1.0%), and H⋯S/S⋯H (0.3%) types are not made out from short-contact interaction analysis because their distances are very long. Contacts of the C⋯O/O⋯C type arise from carboxylate and DMSO oxygen atoms to pyrene ring carbons, the C⋯S/S⋯C type go from the DMSO sulfur atom to pyrene ring carbons, and H⋯S/S⋯H from the DMSO sulfur atom to pyrene ring hydrogens.
The Hirshfeld surface generated for title compound 2 evaluated over dnorm shows the significance of the axial ligands as well as the pyrene moieties, like in compound 1. As seen in Fig. 10, adjacent molecules surrounding the generated surface deliver multiple interactions, which are distributed from the innermost region near the oxygen atoms (e.g., O2⋯H34A at 2.79 Å, O2⋯H34B at 2.61 Å), equatorial pyrene moieties (core and edges) (e.g., C4⋯C4 at 3.18 Å, C24⋯H16 at 2.70 Å), to the axial ligands (e.g., H37B⋯C16 at 2.87 Å).
Most of the red spots are intense (i.e., short distance), mainly C⋯C, H⋯H, H⋯O/O⋯H, and C⋯H/H⋯C type interactions. However, just a few light-red spots (i.e., longer distance) color are recognized as additional contacts, primarily C⋯H/H⋯C type. In Fig. 11, a few red spots are present on the pyrene aromatic core and most are located near the edges. In contrast, the DMF region has strong red spots. When comparing Fig. 6 and Fig. 11, the latter surface contains a qualitatively greater amount of blue regions; however, the red spots are more intense, implying compound 1 has strong interactions distributed over more parts of the surface but compound 2 has shorter distances in most of its interactions.
Pyrene ring surfaces with red–yellow and blue–green adjacent triangles, as displayed in Fig. 12a, are characteristic of π–π interactions, which are expected due to the nature of the PAHs. Similar to compound 1, not all rings show this degree of interaction because of the position of each pyrene ring with respect to other moieties in the crystal-packing array and corresponding interactions. Different from Fig. 7a, Fig. 12a has a less uniform pattern of π–π interactions than for title compound 1, as a result of the less overlapping pyrene rings. Rings with weak π–π interactions have more C⋯H/H⋯C(core) and H⋯H(edges) contacts, analogous to compound 1.
The planarity of the pyrene moieties is depicted by the curvedness (Fig. 13a) where most of the surface is flat. However, even pyrene rings that exhibit strong π–π interactions do not possess a completely flat surface region (unlike in compound 1), and the other rings have alternating regions of flatness. The intercentroid distance for rings that exhibit strong π–π interactions is 5.83 Å, farther apart than for compound 1. In addition, the red box in Fig. 13b can be translated into the one in Fig. 13c; thus, complementarity is observed within the generated surface, coming from intermolecular interactions that follow the screw axes and glide planes present in title compound 2 (P21/n). Both compounds achieve complementarity in their crystal packing, but each arises from different intermolecular interactions.
The 2D fingerprint plot for compound 2 (Fig. 14) has the following features: it is quasi-symmetric, C⋯H/H⋯C interactions account for almost half of the contacts (44.9%) followed by H⋯H (40.5%), with fewer contributions from H⋯O/O⋯H (10.7%) and C⋯C (3.4%) interactions. C⋯H/H⋯C contacts have broad peaks spread out over most of the plot, H⋯H contacts also cover a broad range of distances and several types of interactions, and H⋯O/O⋯H contacts have wide peaks and fewer weak contacts. In the same way as for compound 1, all contacts in Fig. 14 include atoms from the solvent, DMF in the case of compound 2. Likewise, contacts of the C⋯O/O⋯C (0.1%), C⋯N/N⋯C (0.4%), and H⋯N/N⋯H (0.1%) types are not identified from short-contact interaction analysis because the distances are long. Contacts of the C⋯O/O⋯C type arise from carboxylate and DMF oxygen atoms to pyrene ring carbons (as in compound 1), the C⋯N/N⋯C type go from the DMF nitrogen atom to pyrene ring carbons, and H⋯N/N⋯H from the DMF nitrogen atom to pyrene ring hydrogens.
6. Database survey
A search of the Cambridge Structural Database (CSD Version 5.44, June 2023 update; Groom et al., 2016) for the two reported compounds revealed a total of five hits containing polycyclic aromatic copper dimers. None of the these was an exact match to the pyrene moieties of the title compounds. Four of them included naphthalene moieties and the remaining structure contained phenanthrene. The four structures that contained naphthalene groups are catena-[tetrakis(μ4-naphthalene-2,6-dicarboxylato)bis(μ2-4,4′-bipyridine)tetracopper(II) bis(μ4-naphthalene-2,6-dicarboxylato)(μ2-4,4′-bipyridine)dicopper(II)] (BUSQOW; Kanoo et al., 2009), tetrakis(μ-naphthalene-2-carboxylato)bis(acetonitrile)dicopper acetonitrile solvate (CUJFAR; Liu et al., 2020), tetrakis(μ-2-naphthoato)bis(acetonitrile)dicopper acetonitrile solvate (WUNRII; Goldberg et al., 2015), and tetrakis(μ-2-naphthoato)bis(2,3-dimethylpyridine)dicopper (WUNROO; Goldberg et al., 2015). The axial ligands present in CUJFAR, WUNRII, and WUNROO are involved in intermolecular interactions with adjacent molecules that contribute to the crystal-packing array. The naphthalene ligands in the above-mentioned structures participate in π–π interactions. Moreover, the nature of the axial ligands determines the contribution of π interactions to the crystal packing. For example, in WUNROO, the properties and position of the 2,3-lutidine (aromatic heterocycle molecule) allowed for enhanced π interactions. In contrast, CUJFAR and WUNRII contain acetonitrile (non-aromatic linear molecule) as their axial ligand and present mainly C⋯C and C⋯H interactions. Finally, the last hit, corresponding to tetrakis(μ2-phenanthrene-9-carboxylato)bis(N,N-dimethylformamide)dicopper(II) (WUZCEA; Wang et al., 2010) resembles title compound 2 in having a phenanthrene instead of a pyrene equatorial ligand, resulting in a change of the space-group setting from P21/c (WUZCEA) to P21/n (2). In terms of the packing structure, WUZCEA exhibits fewer short contacts, C⋯C and O⋯H type interactions than compound 2, which presents C⋯C, H⋯H, C⋯H, and O⋯H type interactions. Nonetheless, WUZCEA exhibits more π–π interactions than compound 2. Similarly to the other compounds reported in this survey, in WUZCEA the axial ligands play an important role in the crystal packing of the molecules.
7. Synthesis and crystallization
All the chemicals were purchased from Sigma-Aldrich. The chemicals and solvents were used as supplied without further purification. IR spectra were recorded on a FT–IR Frontier Perkin Elmer spectrophotometer with ATR modality in the region 4000–600 cm−1. UV–vis spectra were recorded on a UV-1900 spectrophotometer in the range 200–1000 nm using a 1 cm path-length cell for solution in DMSO or DMF. The CVs were recorded in a BioLogic potentiostat using a solution of 0.1 M TBAPF6 with a glassy carbon a graphite rod counter-electrode, and a 0.01 M AgNO3 silver wire pseudo-reference electrode corrected with ferrocene.
Synthesis of [Cu2(pyr-COO−)4(DMSO)2] (1):
1-Pyrene carboxylic acid (0.084 g, 0.3 mmol) was dissolved in 18 mL of methanol and deprotonated with triethylamine (0.034 g, 0.23 mmol). The pyrene-1-carboxylate solution was added slowly to a methanolic solution of Cu(NO3)2·H2O (0.0819 g, 0.033 mmol) at room temperature, which afforded a green solid. The mixture was stirred for 24 h and was then filtered out. The solid was dissolved in DMSO for crystallization. Single crystals were obtained by vapor diffusion of methanol into dimethyl sulfoxide after one week. Yield: (85.6 mg, 68%). IR (ATR); ν (cm−1) : 3041 (w), 1920 (w), 1672 (w), 1589 (s), 1506 (m), 1392 (s), 1359 (s), 1312 (m), 1165 (m), 838 (s), 710 (s), 619 (m). UV–vis; λmax (DMSO, nm) 280 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), 335 (pyr–COO, π–π* transition) (Haldar et al., 2016), 352 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), 379 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), and 739 (Cu, d–d and MLCT transitions) (Wang et al., 2021).
Synthesis of [Cu2(pyr-COO−)4(DMF)2] (2):
A similar synthetic procedure as for 1 was used. However, the crystallization process was different. The resulting solid was dissolved in DMF for crystallization. Single crystals were obtained by vapor diffusion of methanol into dimethyl formamide after one week. Yield: (87.1 mg, 69%). IR (ATR); ν (cm−1): 1655 (m), 1607(s), 1591 (s), 1385 (s), 1359 (s), 1314 (m), 1165 (m), 853 (s), 820 (s), 760 (s), 671 (m). UV–vis; λmax (DMF, nm) 283 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), 337 (pyr–COO, π-π-* transitions) (Haldar et al., 2016), 352 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), 382 (pyr–COO) (Niko et al., 2012; Johnpeter & Therrien, 2013), and 701 (Cu, d–d and MLCT transitions) (Wang et al., 2021).
8. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically calculated positions and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989023010277/ny2001sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989023010277/ny20011sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989023010277/ny20012sup3.hkl
[Cu2(C17H9O2)4(C2H6OS)2] | Z = 1 |
Mr = 1264.30 | F(000) = 650 |
Triclinic, P1 | Dx = 1.510 Mg m−3 |
a = 10.5283 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.8583 (2) Å | Cell parameters from 5097 reflections |
c = 11.9401 (1) Å | θ = 0.8–0.8° |
α = 101.044 (1)° | µ = 2.19 mm−1 |
β = 98.136 (1)° | T = 100 K |
γ = 104.142 (1)° | Block, green |
V = 1390.69 (3) Å3 | 0.12 × 0.11 × 0.09 mm |
Rigaku SuperNova Hypix6000 diffractometer | 5097 independent reflections |
Radiation source: microsource | 4827 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.048 |
ω scans | θmax = 68.6°, θmin = 3.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −12→12 |
Tmin = 0.778, Tmax = 0.818 | k = −11→14 |
78157 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0369P)2 + 1.3914P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.45 e Å−3 |
5142 reflections | Δρmin = −0.46 e Å−3 |
391 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00045 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.91294 (2) | 0.49438 (2) | 0.40919 (2) | 0.01418 (9) | |
S3 | 0.79851 (5) | 0.59369 (4) | 0.19711 (4) | 0.02605 (13) | |
O1 | 0.82175 (13) | 0.56000 (12) | 0.52641 (11) | 0.0228 (3) | |
O2 | 0.96841 (13) | 0.56908 (13) | 0.68455 (11) | 0.0257 (3) | |
O3 | 0.82877 (13) | 0.33234 (11) | 0.42304 (11) | 0.0229 (3) | |
O4 | 0.97457 (13) | 0.34410 (12) | 0.58282 (12) | 0.0236 (3) | |
O5 | 0.76843 (12) | 0.49904 (12) | 0.26558 (11) | 0.0223 (3) | |
C1 | 0.86206 (17) | 0.58347 (16) | 0.63416 (16) | 0.0172 (4) | |
C2 | 0.77238 (18) | 0.63064 (16) | 0.70712 (16) | 0.0179 (4) | |
C3 | 0.63637 (18) | 0.59548 (17) | 0.65730 (16) | 0.0199 (4) | |
H3 | 0.606849 | 0.545289 | 0.580998 | 0.024* | |
C4 | 0.54310 (18) | 0.63170 (16) | 0.71598 (17) | 0.0199 (4) | |
H4 | 0.450794 | 0.603095 | 0.681218 | 0.024* | |
C5 | 0.58426 (19) | 0.70972 (17) | 0.82549 (16) | 0.0207 (4) | |
C6 | 0.72345 (19) | 0.74971 (17) | 0.87799 (16) | 0.0193 (4) | |
C7 | 0.81763 (18) | 0.70674 (17) | 0.81909 (15) | 0.0186 (4) | |
C8 | 0.95692 (19) | 0.74954 (19) | 0.87781 (17) | 0.0256 (4) | |
H8 | 1.022196 | 0.723354 | 0.840727 | 0.031* | |
C9 | 0.9957 (2) | 0.8256 (2) | 0.98378 (17) | 0.0294 (5) | |
H9 | 1.087549 | 0.850467 | 1.019974 | 0.035* | |
C10 | 0.9021 (2) | 0.8703 (2) | 1.04378 (17) | 0.0281 (4) | |
C11 | 0.76560 (19) | 0.83241 (18) | 0.98852 (16) | 0.0222 (4) | |
C12 | 0.6704 (2) | 0.87714 (18) | 1.04386 (17) | 0.0237 (4) | |
C13 | 0.5324 (2) | 0.83475 (19) | 0.98846 (18) | 0.0276 (4) | |
H13 | 0.468633 | 0.863931 | 1.025241 | 0.033* | |
C14 | 0.4911 (2) | 0.75446 (18) | 0.88537 (18) | 0.0260 (4) | |
H14 | 0.398478 | 0.726802 | 0.851516 | 0.031* | |
C15 | 0.7158 (2) | 0.9604 (2) | 1.15152 (18) | 0.0302 (5) | |
H15 | 0.653921 | 0.993068 | 1.187969 | 0.036* | |
C16 | 0.8488 (2) | 0.9958 (2) | 1.20560 (18) | 0.0360 (5) | |
H16 | 0.877114 | 1.051076 | 1.279330 | 0.043* | |
C17 | 0.9414 (2) | 0.9512 (2) | 1.15288 (18) | 0.0357 (5) | |
H17 | 1.032500 | 0.975761 | 1.191211 | 0.043* | |
C18 | 0.87448 (16) | 0.28873 (16) | 0.50314 (15) | 0.0154 (4) | |
C19 | 0.81254 (17) | 0.15973 (16) | 0.50049 (15) | 0.0153 (3) | |
C20 | 0.89333 (18) | 0.10243 (17) | 0.55814 (15) | 0.0186 (4) | |
H20 | 0.976743 | 0.148747 | 0.606131 | 0.022* | |
C21 | 0.85498 (18) | −0.01959 (17) | 0.54708 (16) | 0.0194 (4) | |
H21 | 0.911828 | −0.055685 | 0.587996 | 0.023* | |
C22 | 0.73365 (18) | −0.09086 (16) | 0.47652 (15) | 0.0180 (4) | |
C23 | 0.64539 (17) | −0.03391 (16) | 0.42348 (15) | 0.0154 (4) | |
C24 | 0.68319 (17) | 0.09253 (16) | 0.43646 (14) | 0.0147 (3) | |
C25 | 0.58634 (17) | 0.14480 (16) | 0.38548 (15) | 0.0169 (4) | |
H25 | 0.607986 | 0.229155 | 0.395251 | 0.020* | |
C26 | 0.46483 (17) | 0.07596 (17) | 0.32380 (15) | 0.0180 (4) | |
H26 | 0.402257 | 0.113635 | 0.293537 | 0.022* | |
C27 | 0.42811 (17) | −0.05156 (17) | 0.30298 (15) | 0.0183 (4) | |
C28 | 0.51893 (17) | −0.10641 (16) | 0.35411 (15) | 0.0170 (4) | |
C29 | 0.48514 (19) | −0.23307 (17) | 0.33528 (16) | 0.0215 (4) | |
C30 | 0.3614 (2) | −0.30173 (18) | 0.26544 (18) | 0.0278 (4) | |
H30 | 0.337925 | −0.386475 | 0.252135 | 0.033* | |
C31 | 0.2734 (2) | −0.24735 (19) | 0.21585 (18) | 0.0289 (5) | |
H31 | 0.190048 | −0.295055 | 0.168667 | 0.035* | |
C32 | 0.30546 (19) | −0.12393 (18) | 0.23425 (17) | 0.0239 (4) | |
H32 | 0.243618 | −0.087873 | 0.199899 | 0.029* | |
C33 | 0.5800 (2) | −0.28605 (17) | 0.38834 (18) | 0.0258 (4) | |
H33 | 0.559200 | −0.370679 | 0.375341 | 0.031* | |
C34 | 0.6964 (2) | −0.21894 (17) | 0.45530 (17) | 0.0236 (4) | |
H34 | 0.756188 | −0.256821 | 0.489781 | 0.028* | |
C35 | 0.8858 (3) | 0.5371 (3) | 0.0929 (2) | 0.0514 (7) | |
H35A | 0.970862 | 0.530951 | 0.132917 | 0.077* | |
H35B | 0.902953 | 0.591272 | 0.040810 | 0.077* | |
H35C | 0.831661 | 0.457693 | 0.047304 | 0.077* | |
C36 | 0.6437 (2) | 0.5714 (2) | 0.10162 (19) | 0.0337 (5) | |
H36A | 0.605648 | 0.486001 | 0.064883 | 0.051* | |
H36B | 0.658719 | 0.616149 | 0.041424 | 0.051* | |
H36C | 0.581536 | 0.599821 | 0.146035 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01343 (14) | 0.01139 (15) | 0.01692 (14) | 0.00270 (10) | 0.00178 (10) | 0.00332 (10) |
S3 | 0.0222 (2) | 0.0246 (3) | 0.0284 (3) | 0.00069 (19) | −0.00273 (18) | 0.0127 (2) |
O1 | 0.0253 (7) | 0.0281 (8) | 0.0213 (7) | 0.0164 (6) | 0.0077 (5) | 0.0066 (6) |
O2 | 0.0232 (7) | 0.0341 (8) | 0.0196 (6) | 0.0117 (6) | 0.0046 (5) | 0.0008 (6) |
O3 | 0.0241 (7) | 0.0138 (7) | 0.0260 (7) | −0.0003 (5) | −0.0032 (5) | 0.0067 (5) |
O4 | 0.0217 (6) | 0.0179 (7) | 0.0260 (7) | −0.0020 (5) | −0.0037 (5) | 0.0087 (5) |
O5 | 0.0172 (6) | 0.0246 (7) | 0.0240 (7) | 0.0019 (5) | −0.0011 (5) | 0.0117 (6) |
C1 | 0.0183 (9) | 0.0105 (8) | 0.0233 (9) | 0.0034 (7) | 0.0065 (7) | 0.0043 (7) |
C2 | 0.0205 (9) | 0.0149 (9) | 0.0216 (9) | 0.0071 (7) | 0.0065 (7) | 0.0077 (7) |
C3 | 0.0200 (9) | 0.0160 (9) | 0.0247 (9) | 0.0043 (7) | 0.0050 (7) | 0.0076 (8) |
C4 | 0.0161 (8) | 0.0166 (9) | 0.0286 (10) | 0.0045 (7) | 0.0046 (7) | 0.0093 (8) |
C5 | 0.0230 (9) | 0.0170 (9) | 0.0261 (9) | 0.0065 (8) | 0.0085 (7) | 0.0105 (8) |
C6 | 0.0246 (9) | 0.0177 (9) | 0.0207 (9) | 0.0088 (8) | 0.0093 (7) | 0.0095 (7) |
C7 | 0.0230 (9) | 0.0174 (9) | 0.0194 (9) | 0.0085 (7) | 0.0075 (7) | 0.0079 (7) |
C8 | 0.0227 (10) | 0.0317 (11) | 0.0230 (9) | 0.0110 (8) | 0.0051 (8) | 0.0031 (8) |
C9 | 0.0214 (9) | 0.0411 (13) | 0.0223 (10) | 0.0119 (9) | −0.0006 (8) | −0.0010 (9) |
C10 | 0.0281 (10) | 0.0356 (12) | 0.0237 (10) | 0.0144 (9) | 0.0051 (8) | 0.0070 (9) |
C11 | 0.0269 (10) | 0.0230 (10) | 0.0212 (9) | 0.0104 (8) | 0.0089 (8) | 0.0082 (8) |
C12 | 0.0307 (10) | 0.0239 (10) | 0.0226 (9) | 0.0119 (8) | 0.0120 (8) | 0.0096 (8) |
C13 | 0.0272 (10) | 0.0292 (11) | 0.0344 (11) | 0.0127 (9) | 0.0158 (9) | 0.0130 (9) |
C14 | 0.0228 (9) | 0.0246 (11) | 0.0347 (11) | 0.0073 (8) | 0.0104 (8) | 0.0126 (9) |
C15 | 0.0354 (11) | 0.0349 (12) | 0.0251 (10) | 0.0148 (10) | 0.0135 (9) | 0.0065 (9) |
C16 | 0.0412 (12) | 0.0446 (14) | 0.0207 (10) | 0.0166 (11) | 0.0057 (9) | −0.0016 (9) |
C17 | 0.0319 (11) | 0.0498 (15) | 0.0235 (10) | 0.0167 (10) | 0.0020 (9) | −0.0007 (10) |
C18 | 0.0149 (8) | 0.0150 (9) | 0.0174 (8) | 0.0058 (7) | 0.0062 (7) | 0.0022 (7) |
C19 | 0.0171 (8) | 0.0128 (9) | 0.0160 (8) | 0.0044 (7) | 0.0052 (7) | 0.0019 (7) |
C20 | 0.0168 (8) | 0.0188 (9) | 0.0199 (9) | 0.0053 (7) | 0.0027 (7) | 0.0035 (7) |
C21 | 0.0199 (9) | 0.0199 (10) | 0.0225 (9) | 0.0099 (7) | 0.0051 (7) | 0.0080 (8) |
C22 | 0.0219 (9) | 0.0158 (9) | 0.0199 (9) | 0.0079 (7) | 0.0086 (7) | 0.0061 (7) |
C23 | 0.0173 (8) | 0.0143 (9) | 0.0157 (8) | 0.0049 (7) | 0.0066 (7) | 0.0033 (7) |
C24 | 0.0167 (8) | 0.0136 (9) | 0.0150 (8) | 0.0050 (7) | 0.0065 (6) | 0.0028 (7) |
C25 | 0.0192 (8) | 0.0133 (9) | 0.0201 (9) | 0.0058 (7) | 0.0063 (7) | 0.0052 (7) |
C26 | 0.0175 (8) | 0.0201 (10) | 0.0206 (9) | 0.0087 (7) | 0.0061 (7) | 0.0082 (7) |
C27 | 0.0172 (8) | 0.0198 (10) | 0.0176 (8) | 0.0036 (7) | 0.0055 (7) | 0.0041 (7) |
C28 | 0.0184 (8) | 0.0151 (9) | 0.0179 (8) | 0.0039 (7) | 0.0071 (7) | 0.0036 (7) |
C29 | 0.0239 (9) | 0.0166 (10) | 0.0232 (9) | 0.0032 (8) | 0.0071 (7) | 0.0038 (8) |
C30 | 0.0294 (10) | 0.0152 (10) | 0.0331 (11) | −0.0008 (8) | 0.0053 (8) | 0.0016 (8) |
C31 | 0.0210 (9) | 0.0255 (11) | 0.0314 (11) | −0.0020 (8) | 0.0000 (8) | 0.0005 (9) |
C32 | 0.0202 (9) | 0.0255 (11) | 0.0239 (9) | 0.0048 (8) | 0.0021 (7) | 0.0045 (8) |
C33 | 0.0350 (11) | 0.0126 (9) | 0.0333 (11) | 0.0083 (8) | 0.0128 (9) | 0.0074 (8) |
C34 | 0.0310 (10) | 0.0167 (10) | 0.0295 (10) | 0.0126 (8) | 0.0105 (8) | 0.0098 (8) |
C35 | 0.0459 (14) | 0.077 (2) | 0.0506 (15) | 0.0258 (14) | 0.0248 (12) | 0.0384 (15) |
C36 | 0.0270 (11) | 0.0388 (13) | 0.0342 (11) | 0.0053 (9) | −0.0054 (9) | 0.0195 (10) |
Cu1—Cu1i | 2.5934 (5) | C16—H16 | 0.9500 |
Cu1—O1 | 1.9530 (13) | C16—C17 | 1.387 (3) |
Cu1—O2i | 1.9779 (13) | C17—H17 | 0.9500 |
Cu1—O3 | 1.9586 (13) | C18—C19 | 1.502 (2) |
Cu1—O4i | 1.9672 (13) | C19—C20 | 1.398 (3) |
Cu1—O5 | 2.1441 (12) | C19—C24 | 1.420 (2) |
S3—O5 | 1.5098 (13) | C20—H20 | 0.9500 |
S3—C35 | 1.774 (3) | C20—C21 | 1.379 (3) |
S3—C36 | 1.782 (2) | C21—H21 | 0.9500 |
O1—C1 | 1.250 (2) | C21—C22 | 1.397 (3) |
O2—C1 | 1.260 (2) | C22—C23 | 1.423 (2) |
O3—C18 | 1.263 (2) | C22—C34 | 1.435 (3) |
O4—C18 | 1.259 (2) | C23—C24 | 1.426 (3) |
C1—C2 | 1.506 (2) | C23—C28 | 1.433 (2) |
C2—C3 | 1.397 (3) | C24—C25 | 1.439 (2) |
C2—C7 | 1.406 (3) | C25—H25 | 0.9500 |
C3—H3 | 0.9500 | C25—C26 | 1.356 (3) |
C3—C4 | 1.388 (3) | C26—H26 | 0.9500 |
C4—H4 | 0.9500 | C26—C27 | 1.429 (3) |
C4—C5 | 1.391 (3) | C27—C28 | 1.414 (3) |
C5—C6 | 1.432 (3) | C27—C32 | 1.402 (3) |
C5—C14 | 1.436 (3) | C28—C29 | 1.421 (3) |
C6—C7 | 1.430 (3) | C29—C30 | 1.403 (3) |
C6—C11 | 1.423 (3) | C29—C33 | 1.440 (3) |
C7—C8 | 1.452 (3) | C30—H30 | 0.9500 |
C8—H8 | 0.9500 | C30—C31 | 1.381 (3) |
C8—C9 | 1.348 (3) | C31—H31 | 0.9500 |
C9—H9 | 0.9500 | C31—C32 | 1.385 (3) |
C9—C10 | 1.440 (3) | C32—H32 | 0.9500 |
C10—C11 | 1.416 (3) | C33—H33 | 0.9500 |
C10—C17 | 1.401 (3) | C33—C34 | 1.333 (3) |
C11—C12 | 1.427 (3) | C34—H34 | 0.9500 |
C12—C13 | 1.429 (3) | C35—H35A | 0.9800 |
C12—C15 | 1.402 (3) | C35—H35B | 0.9800 |
C13—H13 | 0.9500 | C35—H35C | 0.9800 |
C13—C14 | 1.345 (3) | C36—H36A | 0.9800 |
C14—H14 | 0.9500 | C36—H36B | 0.9800 |
C15—H15 | 0.9500 | C36—H36C | 0.9800 |
C15—C16 | 1.381 (3) | ||
O1—Cu1—Cu1i | 82.80 (4) | C15—C16—C17 | 120.4 (2) |
O1—Cu1—O2i | 169.36 (5) | C17—C16—H16 | 119.8 |
O1—Cu1—O3 | 90.10 (6) | C10—C17—H17 | 119.6 |
O1—Cu1—O4i | 90.57 (6) | C16—C17—C10 | 120.8 (2) |
O1—Cu1—O5 | 93.90 (5) | C16—C17—H17 | 119.6 |
O2i—Cu1—Cu1i | 86.57 (4) | O3—C18—C19 | 118.75 (15) |
O2i—Cu1—O5 | 96.67 (5) | O4—C18—O3 | 124.48 (16) |
O3—Cu1—Cu1i | 85.59 (4) | O4—C18—C19 | 116.65 (15) |
O3—Cu1—O2i | 89.71 (6) | C20—C19—C18 | 116.52 (15) |
O3—Cu1—O4i | 169.21 (5) | C20—C19—C24 | 119.37 (16) |
O3—Cu1—O5 | 97.61 (5) | C24—C19—C18 | 123.93 (16) |
O4i—Cu1—Cu1i | 83.81 (4) | C19—C20—H20 | 119.2 |
O4i—Cu1—O2i | 87.65 (6) | C21—C20—C19 | 121.65 (17) |
O4i—Cu1—O5 | 93.09 (5) | C21—C20—H20 | 119.2 |
O5—Cu1—Cu1i | 175.43 (4) | C20—C21—H21 | 119.6 |
O5—S3—C35 | 104.69 (11) | C20—C21—C22 | 120.87 (17) |
O5—S3—C36 | 104.05 (9) | C22—C21—H21 | 119.6 |
C35—S3—C36 | 98.32 (12) | C21—C22—C23 | 118.55 (17) |
C1—O1—Cu1 | 125.53 (12) | C21—C22—C34 | 122.07 (17) |
C1—O2—Cu1i | 119.65 (12) | C23—C22—C34 | 119.38 (17) |
C18—O3—Cu1 | 122.16 (11) | C22—C23—C24 | 120.75 (16) |
C18—O4—Cu1i | 123.81 (12) | C22—C23—C28 | 118.73 (16) |
S3—O5—Cu1 | 121.12 (7) | C24—C23—C28 | 120.49 (16) |
O1—C1—O2 | 125.44 (16) | C19—C24—C23 | 118.40 (16) |
O1—C1—C2 | 115.73 (15) | C19—C24—C25 | 123.84 (16) |
O2—C1—C2 | 118.82 (16) | C23—C24—C25 | 117.75 (16) |
C3—C2—C1 | 116.26 (16) | C24—C25—H25 | 119.4 |
C3—C2—C7 | 119.57 (17) | C26—C25—C24 | 121.27 (17) |
C7—C2—C1 | 124.17 (16) | C26—C25—H25 | 119.4 |
C2—C3—H3 | 119.0 | C25—C26—H26 | 119.0 |
C4—C3—C2 | 121.93 (18) | C25—C26—C27 | 121.94 (17) |
C4—C3—H3 | 119.0 | C27—C26—H26 | 119.0 |
C3—C4—H4 | 119.9 | C28—C27—C26 | 118.59 (16) |
C3—C4—C5 | 120.23 (17) | C32—C27—C26 | 122.41 (17) |
C5—C4—H4 | 119.9 | C32—C27—C28 | 119.00 (18) |
C4—C5—C6 | 119.22 (17) | C27—C28—C23 | 119.75 (17) |
C4—C5—C14 | 121.52 (17) | C27—C28—C29 | 119.92 (17) |
C6—C5—C14 | 119.22 (18) | C29—C28—C23 | 120.33 (17) |
C7—C6—C5 | 119.90 (17) | C28—C29—C33 | 118.50 (17) |
C11—C6—C5 | 119.03 (17) | C30—C29—C28 | 118.98 (18) |
C11—C6—C7 | 121.07 (17) | C30—C29—C33 | 122.51 (18) |
C2—C7—C6 | 119.02 (17) | C29—C30—H30 | 119.7 |
C2—C7—C8 | 123.80 (17) | C31—C30—C29 | 120.68 (19) |
C6—C7—C8 | 117.12 (17) | C31—C30—H30 | 119.7 |
C7—C8—H8 | 119.3 | C30—C31—H31 | 119.7 |
C9—C8—C7 | 121.48 (18) | C30—C31—C32 | 120.63 (18) |
C9—C8—H8 | 119.3 | C32—C31—H31 | 119.7 |
C8—C9—H9 | 119.0 | C27—C32—H32 | 119.6 |
C8—C9—C10 | 122.02 (19) | C31—C32—C27 | 120.79 (19) |
C10—C9—H9 | 119.0 | C31—C32—H32 | 119.6 |
C11—C10—C9 | 118.25 (18) | C29—C33—H33 | 119.3 |
C17—C10—C9 | 122.62 (19) | C34—C33—C29 | 121.45 (18) |
C17—C10—C11 | 119.11 (19) | C34—C33—H33 | 119.3 |
C6—C11—C12 | 120.06 (18) | C22—C34—H34 | 119.2 |
C10—C11—C6 | 120.03 (17) | C33—C34—C22 | 121.56 (18) |
C10—C11—C12 | 119.91 (18) | C33—C34—H34 | 119.2 |
C11—C12—C13 | 119.04 (18) | S3—C35—H35A | 109.5 |
C15—C12—C11 | 118.54 (19) | S3—C35—H35B | 109.5 |
C15—C12—C13 | 122.42 (18) | S3—C35—H35C | 109.5 |
C12—C13—H13 | 119.3 | H35A—C35—H35B | 109.5 |
C14—C13—C12 | 121.39 (18) | H35A—C35—H35C | 109.5 |
C14—C13—H13 | 119.3 | H35B—C35—H35C | 109.5 |
C5—C14—H14 | 119.4 | S3—C36—H36A | 109.5 |
C13—C14—C5 | 121.22 (19) | S3—C36—H36B | 109.5 |
C13—C14—H14 | 119.4 | S3—C36—H36C | 109.5 |
C12—C15—H15 | 119.4 | H36A—C36—H36B | 109.5 |
C16—C15—C12 | 121.21 (19) | H36A—C36—H36C | 109.5 |
C16—C15—H15 | 119.4 | H36B—C36—H36C | 109.5 |
C15—C16—H16 | 119.8 | ||
Cu1—O1—C1—O2 | 0.3 (3) | C13—C12—C15—C16 | 177.1 (2) |
Cu1—O1—C1—C2 | −178.52 (11) | C14—C5—C6—C7 | −179.52 (16) |
Cu1i—O2—C1—O1 | 0.5 (3) | C14—C5—C6—C11 | 0.3 (3) |
Cu1i—O2—C1—C2 | 179.35 (12) | C15—C12—C13—C14 | −179.7 (2) |
Cu1—O3—C18—O4 | 1.9 (2) | C15—C16—C17—C10 | 0.5 (4) |
Cu1—O3—C18—C19 | −173.80 (11) | C17—C10—C11—C6 | −179.6 (2) |
Cu1i—O4—C18—O3 | −4.8 (3) | C17—C10—C11—C12 | 0.3 (3) |
Cu1i—O4—C18—C19 | 171.03 (11) | C18—C19—C20—C21 | −170.08 (16) |
O1—C1—C2—C3 | 27.4 (2) | C18—C19—C24—C23 | 168.60 (15) |
O1—C1—C2—C7 | −152.14 (18) | C18—C19—C24—C25 | −12.7 (3) |
O2—C1—C2—C3 | −151.58 (17) | C19—C20—C21—C22 | 0.6 (3) |
O2—C1—C2—C7 | 28.9 (3) | C19—C24—C25—C26 | 179.09 (16) |
O3—C18—C19—C20 | 155.26 (16) | C20—C19—C24—C23 | −6.3 (2) |
O3—C18—C19—C24 | −19.7 (2) | C20—C19—C24—C25 | 172.45 (16) |
O4—C18—C19—C20 | −20.8 (2) | C20—C21—C22—C23 | −4.9 (3) |
O4—C18—C19—C24 | 164.21 (16) | C20—C21—C22—C34 | 174.44 (17) |
C1—C2—C3—C4 | 179.28 (16) | C21—C22—C23—C24 | 3.6 (2) |
C1—C2—C7—C6 | 177.40 (16) | C21—C22—C23—C28 | −177.99 (16) |
C1—C2—C7—C8 | 0.3 (3) | C21—C22—C34—C33 | 179.60 (18) |
C2—C3—C4—C5 | 3.1 (3) | C22—C23—C24—C19 | 1.9 (2) |
C2—C7—C8—C9 | 177.8 (2) | C22—C23—C24—C25 | −176.86 (15) |
C3—C2—C7—C6 | −2.1 (3) | C22—C23—C28—C27 | 178.38 (15) |
C3—C2—C7—C8 | −179.20 (18) | C22—C23—C28—C29 | −2.4 (2) |
C3—C4—C5—C6 | −1.5 (3) | C23—C22—C34—C33 | −1.0 (3) |
C3—C4—C5—C14 | 176.21 (17) | C23—C24—C25—C26 | −2.2 (2) |
C4—C5—C6—C7 | −1.7 (3) | C23—C28—C29—C30 | −179.02 (17) |
C4—C5—C6—C11 | 178.10 (17) | C23—C28—C29—C33 | 0.6 (3) |
C4—C5—C14—C13 | −176.44 (19) | C24—C19—C20—C21 | 5.2 (3) |
C5—C6—C7—C2 | 3.5 (3) | C24—C23—C28—C27 | −3.2 (2) |
C5—C6—C7—C8 | −179.18 (17) | C24—C23—C28—C29 | 175.97 (16) |
C5—C6—C11—C10 | 178.02 (18) | C24—C25—C26—C27 | −2.0 (3) |
C5—C6—C11—C12 | −1.9 (3) | C25—C26—C27—C28 | 3.7 (3) |
C6—C5—C14—C13 | 1.3 (3) | C25—C26—C27—C32 | −176.59 (17) |
C6—C7—C8—C9 | 0.6 (3) | C26—C27—C28—C23 | −1.0 (2) |
C6—C11—C12—C13 | 2.0 (3) | C26—C27—C28—C29 | 179.83 (16) |
C6—C11—C12—C15 | −178.66 (18) | C26—C27—C32—C31 | 179.91 (18) |
C7—C2—C3—C4 | −1.2 (3) | C27—C28—C29—C30 | 0.2 (3) |
C7—C6—C11—C10 | −2.2 (3) | C27—C28—C29—C33 | 179.83 (16) |
C7—C6—C11—C12 | 177.90 (17) | C28—C23—C24—C19 | −176.43 (15) |
C7—C8—C9—C10 | −1.1 (3) | C28—C23—C24—C25 | 4.8 (2) |
C8—C9—C10—C11 | 0.0 (3) | C28—C27—C32—C31 | −0.3 (3) |
C8—C9—C10—C17 | −178.7 (2) | C28—C29—C30—C31 | −0.2 (3) |
C9—C10—C11—C6 | 1.7 (3) | C28—C29—C33—C34 | 1.0 (3) |
C9—C10—C11—C12 | −178.40 (19) | C29—C30—C31—C32 | −0.1 (3) |
C9—C10—C17—C16 | 177.4 (2) | C29—C33—C34—C22 | −0.8 (3) |
C10—C11—C12—C13 | −177.94 (19) | C30—C29—C33—C34 | −179.34 (19) |
C10—C11—C12—C15 | 1.4 (3) | C30—C31—C32—C27 | 0.4 (3) |
C11—C6—C7—C2 | −176.30 (17) | C32—C27—C28—C23 | 179.27 (16) |
C11—C6—C7—C8 | 1.0 (3) | C32—C27—C28—C29 | 0.1 (3) |
C11—C10—C17—C16 | −1.3 (4) | C33—C29—C30—C31 | −179.79 (19) |
C11—C12—C13—C14 | −0.4 (3) | C34—C22—C23—C24 | −175.77 (16) |
C11—C12—C15—C16 | −2.3 (3) | C34—C22—C23—C28 | 2.6 (2) |
C12—C13—C14—C5 | −1.3 (3) | C35—S3—O5—Cu1 | 84.29 (13) |
C12—C15—C16—C17 | 1.3 (4) | C36—S3—O5—Cu1 | −173.01 (10) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
[Cu2(C17H9O2)4(C3H7NO)2] | F(000) = 1292 |
Mr = 1254.24 | Dx = 1.448 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.54266 (13) Å | Cell parameters from 4485 reflections |
b = 21.8888 (2) Å | θ = 0.9–0.9° |
c = 12.66517 (15) Å | µ = 1.46 mm−1 |
β = 100.1160 (11)° | T = 300 K |
V = 2877.25 (6) Å3 | Block, green |
Z = 2 | 0.12 × 0.08 × 0.04 mm |
Rigaku SuperNova Hypix6000 diffractometer | 5246 independent reflections |
Radiation source: microsource | 4485 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.023 |
ω scans | θmax = 68.4°, θmin = 4.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −12→10 |
Tmin = 0.844, Tmax = 0.944 | k = −26→26 |
15433 measured reflections | l = −13→15 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4863P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5246 reflections | Δρmax = 0.20 e Å−3 |
447 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.10029 (2) | 0.46339 (2) | 0.01883 (2) | 0.03473 (9) | |
O1 | −0.04514 (13) | 0.55286 (6) | −0.15584 (11) | 0.0493 (3) | |
O2 | 0.12690 (14) | 0.49169 (7) | −0.12241 (11) | 0.0535 (4) | |
O3 | 0.03477 (13) | 0.59478 (6) | 0.04766 (13) | 0.0547 (4) | |
O4 | 0.20382 (12) | 0.53317 (6) | 0.08069 (12) | 0.0503 (3) | |
O5 | 0.24588 (12) | 0.39180 (6) | 0.04172 (11) | 0.0495 (3) | |
N1 | 0.2843 (2) | 0.29133 (9) | 0.0207 (2) | 0.0861 (7) | |
C1 | 0.05677 (18) | 0.53058 (8) | −0.17817 (15) | 0.0413 (4) | |
C2 | 0.09464 (19) | 0.55034 (9) | −0.28124 (15) | 0.0434 (4) | |
C3 | −0.0038 (2) | 0.55820 (11) | −0.36868 (17) | 0.0550 (5) | |
H3 | −0.089016 | 0.555364 | −0.358896 | 0.066* | |
C4 | 0.0220 (2) | 0.57005 (12) | −0.46922 (17) | 0.0609 (6) | |
H4 | −0.045814 | 0.575850 | −0.526110 | 0.073* | |
C5 | 0.1484 (2) | 0.57351 (10) | −0.48705 (16) | 0.0516 (5) | |
C6 | 0.25011 (19) | 0.56952 (8) | −0.39786 (15) | 0.0425 (4) | |
C7 | 0.22369 (18) | 0.55878 (8) | −0.29303 (14) | 0.0406 (4) | |
C8 | 0.3304 (2) | 0.55944 (10) | −0.20505 (16) | 0.0492 (5) | |
H8 | 0.314692 | 0.554463 | −0.135557 | 0.059* | |
C9 | 0.4526 (2) | 0.56709 (10) | −0.22076 (18) | 0.0559 (5) | |
H9 | 0.519035 | 0.567719 | −0.161763 | 0.067* | |
C10 | 0.4827 (2) | 0.57427 (10) | −0.32593 (18) | 0.0541 (5) | |
C11 | 0.3803 (2) | 0.57542 (9) | −0.41406 (16) | 0.0477 (5) | |
C12 | 0.4058 (2) | 0.58161 (11) | −0.51984 (18) | 0.0590 (6) | |
C13 | 0.5344 (3) | 0.58709 (14) | −0.5332 (2) | 0.0805 (8) | |
H13 | 0.553111 | 0.591080 | −0.601975 | 0.097* | |
C14 | 0.6329 (3) | 0.58669 (16) | −0.4474 (3) | 0.0885 (9) | |
H14 | 0.717268 | 0.590893 | −0.458614 | 0.106* | |
C15 | 0.6092 (2) | 0.58014 (13) | −0.3441 (2) | 0.0735 (7) | |
H15 | 0.677486 | 0.579644 | −0.286562 | 0.088* | |
C16 | 0.3008 (3) | 0.58189 (13) | −0.60718 (19) | 0.0714 (7) | |
H16 | 0.317731 | 0.583965 | −0.676722 | 0.086* | |
C17 | 0.1801 (3) | 0.57930 (12) | −0.59274 (17) | 0.0649 (6) | |
H17 | 0.114073 | 0.581250 | −0.651932 | 0.078* | |
C18 | 0.15237 (17) | 0.58494 (8) | 0.07943 (14) | 0.0390 (4) | |
C19 | 0.23279 (18) | 0.63965 (8) | 0.11993 (14) | 0.0409 (4) | |
C20 | 0.1663 (2) | 0.69272 (10) | 0.1372 (2) | 0.0586 (5) | |
H20 | 0.077020 | 0.693114 | 0.118151 | 0.070* | |
C21 | 0.2276 (2) | 0.74439 (10) | 0.1813 (2) | 0.0676 (6) | |
H21 | 0.179776 | 0.779236 | 0.189580 | 0.081* | |
C22 | 0.3608 (2) | 0.74503 (10) | 0.21386 (19) | 0.0568 (5) | |
C23 | 0.43190 (18) | 0.69221 (8) | 0.19576 (16) | 0.0446 (4) | |
C24 | 0.36931 (17) | 0.63922 (8) | 0.14546 (14) | 0.0386 (4) | |
C25 | 0.44932 (18) | 0.58915 (9) | 0.12436 (16) | 0.0463 (4) | |
H25 | 0.411076 | 0.554935 | 0.088547 | 0.056* | |
C26 | 0.5787 (2) | 0.59043 (10) | 0.15518 (18) | 0.0529 (5) | |
H26 | 0.627295 | 0.557535 | 0.138365 | 0.064* | |
C27 | 0.6423 (2) | 0.64062 (10) | 0.2125 (2) | 0.0576 (5) | |
C28 | 0.5683 (2) | 0.69203 (9) | 0.23145 (19) | 0.0545 (5) | |
C30 | 0.5536 (3) | 0.79524 (12) | 0.3041 (3) | 0.0912 (10) | |
H30 | 0.592741 | 0.828210 | 0.343260 | 0.109* | 0.65 (3) |
H30A | 0.593911 | 0.829460 | 0.338355 | 0.109* | 0.35 (3) |
C31 | 0.4277 (3) | 0.79689 (11) | 0.2668 (3) | 0.0789 (8) | |
H31 | 0.381905 | 0.832360 | 0.275001 | 0.095* | |
C35 | 0.2118 (2) | 0.34049 (11) | 0.0132 (2) | 0.0745 (7) | |
H35 | 0.125485 | 0.335492 | −0.017035 | 0.089* | |
C36 | 0.4184 (3) | 0.29451 (15) | 0.0634 (3) | 0.0917 (9) | |
H36A | 0.433205 | 0.280956 | 0.136652 | 0.138* | |
H36B | 0.447514 | 0.335928 | 0.060275 | 0.138* | |
H36C | 0.465031 | 0.268801 | 0.022143 | 0.138* | |
C29A | 0.6250 (15) | 0.7471 (9) | 0.2866 (17) | 0.081 (4) | 0.65 (3) |
C32A | 0.7569 (13) | 0.7376 (6) | 0.3409 (17) | 0.094 (4) | 0.65 (3) |
H32A | 0.795517 | 0.767020 | 0.388907 | 0.112* | 0.65 (3) |
C33A | 0.8273 (12) | 0.6859 (6) | 0.3235 (18) | 0.107 (4) | 0.65 (3) |
H33A | 0.914060 | 0.683192 | 0.354053 | 0.128* | 0.65 (3) |
C34A | 0.7689 (13) | 0.6389 (5) | 0.2613 (15) | 0.077 (4) | 0.65 (3) |
H34A | 0.817416 | 0.604509 | 0.251930 | 0.092* | 0.65 (3) |
C37A | 0.225 (3) | 0.2297 (6) | 0.014 (3) | 0.119 (6) | 0.45 (5) |
H37A | 0.133542 | 0.233293 | −0.005127 | 0.179* | 0.45 (5) |
H37B | 0.246498 | 0.209958 | 0.082987 | 0.179* | 0.45 (5) |
H37C | 0.258081 | 0.205900 | −0.038534 | 0.179* | 0.45 (5) |
C29B | 0.636 (3) | 0.7361 (17) | 0.292 (3) | 0.072 (5) | 0.35 (3) |
C32B | 0.771 (2) | 0.7459 (12) | 0.294 (2) | 0.083 (5) | 0.35 (3) |
H32B | 0.808613 | 0.784346 | 0.306880 | 0.099* | 0.35 (3) |
C33B | 0.8402 (19) | 0.6974 (11) | 0.278 (2) | 0.083 (5) | 0.35 (3) |
H33B | 0.929280 | 0.699307 | 0.298159 | 0.099* | 0.35 (3) |
C34B | 0.786 (2) | 0.6436 (12) | 0.233 (2) | 0.071 (5) | 0.35 (3) |
H34B | 0.835839 | 0.611319 | 0.215515 | 0.085* | 0.35 (3) |
C37B | 0.2384 (17) | 0.2354 (9) | −0.043 (3) | 0.138 (7) | 0.55 (5) |
H37D | 0.208109 | 0.205937 | 0.003176 | 0.208* | 0.55 (5) |
H37E | 0.308233 | 0.218162 | −0.072421 | 0.208* | 0.55 (5) |
H37F | 0.169484 | 0.246163 | −0.099867 | 0.208* | 0.55 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03029 (14) | 0.02935 (14) | 0.04509 (16) | 0.00122 (10) | 0.00818 (10) | 0.00401 (10) |
O1 | 0.0472 (8) | 0.0509 (8) | 0.0537 (8) | 0.0076 (6) | 0.0190 (6) | 0.0130 (6) |
O2 | 0.0561 (8) | 0.0551 (8) | 0.0540 (8) | 0.0164 (7) | 0.0231 (7) | 0.0145 (7) |
O3 | 0.0357 (7) | 0.0412 (7) | 0.0818 (10) | 0.0001 (6) | −0.0042 (7) | −0.0097 (7) |
O4 | 0.0357 (7) | 0.0342 (7) | 0.0776 (9) | −0.0038 (5) | 0.0003 (6) | 0.0007 (6) |
O5 | 0.0388 (7) | 0.0394 (7) | 0.0692 (9) | 0.0071 (6) | 0.0068 (6) | 0.0055 (6) |
N1 | 0.0663 (14) | 0.0417 (11) | 0.146 (2) | 0.0161 (10) | 0.0074 (14) | 0.0052 (12) |
C1 | 0.0434 (10) | 0.0361 (9) | 0.0454 (10) | −0.0060 (8) | 0.0105 (8) | −0.0010 (7) |
C2 | 0.0456 (10) | 0.0430 (10) | 0.0425 (9) | −0.0020 (8) | 0.0104 (8) | 0.0025 (8) |
C3 | 0.0405 (11) | 0.0712 (14) | 0.0531 (11) | −0.0039 (10) | 0.0073 (9) | 0.0057 (10) |
C4 | 0.0482 (12) | 0.0840 (16) | 0.0469 (11) | −0.0021 (11) | −0.0019 (9) | 0.0100 (11) |
C5 | 0.0543 (12) | 0.0574 (12) | 0.0426 (10) | −0.0041 (10) | 0.0072 (9) | 0.0073 (9) |
C6 | 0.0456 (10) | 0.0383 (9) | 0.0449 (10) | −0.0026 (8) | 0.0111 (8) | 0.0033 (7) |
C7 | 0.0428 (10) | 0.0369 (9) | 0.0423 (9) | −0.0026 (8) | 0.0084 (8) | 0.0023 (7) |
C8 | 0.0515 (12) | 0.0514 (11) | 0.0435 (10) | −0.0046 (9) | 0.0051 (8) | 0.0039 (8) |
C9 | 0.0468 (12) | 0.0589 (13) | 0.0579 (12) | −0.0059 (10) | −0.0023 (9) | 0.0066 (10) |
C10 | 0.0446 (11) | 0.0504 (12) | 0.0681 (13) | −0.0026 (9) | 0.0120 (10) | 0.0083 (10) |
C11 | 0.0500 (11) | 0.0398 (10) | 0.0562 (11) | −0.0004 (8) | 0.0173 (9) | 0.0073 (8) |
C12 | 0.0624 (14) | 0.0587 (13) | 0.0616 (13) | 0.0021 (11) | 0.0265 (11) | 0.0147 (10) |
C13 | 0.0717 (18) | 0.091 (2) | 0.0900 (19) | 0.0077 (15) | 0.0449 (16) | 0.0277 (15) |
C14 | 0.0535 (15) | 0.108 (2) | 0.112 (2) | 0.0050 (15) | 0.0361 (16) | 0.0313 (19) |
C15 | 0.0440 (12) | 0.0824 (18) | 0.0947 (19) | −0.0009 (12) | 0.0138 (12) | 0.0180 (14) |
C16 | 0.0892 (19) | 0.0800 (17) | 0.0493 (13) | −0.0006 (14) | 0.0238 (12) | 0.0166 (11) |
C17 | 0.0734 (16) | 0.0784 (16) | 0.0419 (11) | −0.0036 (13) | 0.0074 (10) | 0.0133 (10) |
C18 | 0.0341 (9) | 0.0393 (10) | 0.0433 (9) | −0.0030 (7) | 0.0058 (7) | 0.0026 (7) |
C19 | 0.0398 (10) | 0.0353 (9) | 0.0468 (9) | −0.0033 (8) | 0.0058 (7) | −0.0005 (7) |
C20 | 0.0400 (11) | 0.0484 (12) | 0.0834 (15) | 0.0029 (9) | 0.0002 (10) | −0.0094 (11) |
C21 | 0.0535 (13) | 0.0413 (11) | 0.1047 (18) | 0.0072 (10) | 0.0052 (12) | −0.0174 (12) |
C22 | 0.0525 (12) | 0.0392 (10) | 0.0766 (14) | −0.0029 (9) | 0.0060 (10) | −0.0102 (10) |
C23 | 0.0421 (10) | 0.0358 (9) | 0.0555 (11) | −0.0051 (8) | 0.0078 (8) | −0.0017 (8) |
C24 | 0.0387 (9) | 0.0344 (9) | 0.0433 (9) | −0.0040 (7) | 0.0086 (7) | −0.0004 (7) |
C25 | 0.0418 (10) | 0.0394 (10) | 0.0590 (11) | −0.0062 (8) | 0.0127 (9) | −0.0089 (8) |
C26 | 0.0429 (11) | 0.0416 (10) | 0.0765 (14) | −0.0016 (9) | 0.0163 (10) | −0.0092 (9) |
C27 | 0.0403 (11) | 0.0464 (11) | 0.0840 (15) | −0.0054 (9) | 0.0052 (10) | −0.0069 (11) |
C28 | 0.0440 (11) | 0.0393 (11) | 0.0772 (14) | −0.0071 (9) | 0.0021 (10) | −0.0063 (10) |
C30 | 0.0704 (18) | 0.0472 (14) | 0.146 (3) | −0.0085 (13) | −0.0075 (17) | −0.0371 (16) |
C31 | 0.0702 (17) | 0.0391 (12) | 0.122 (2) | −0.0008 (11) | 0.0027 (15) | −0.0243 (13) |
C35 | 0.0462 (12) | 0.0460 (13) | 0.125 (2) | 0.0083 (10) | −0.0034 (13) | 0.0042 (14) |
C36 | 0.0719 (18) | 0.083 (2) | 0.118 (2) | 0.0415 (16) | 0.0091 (16) | 0.0200 (17) |
C29A | 0.048 (5) | 0.039 (7) | 0.143 (7) | −0.010 (6) | −0.018 (4) | −0.025 (5) |
C32A | 0.056 (5) | 0.065 (4) | 0.146 (10) | −0.013 (3) | −0.021 (6) | −0.027 (6) |
C33A | 0.044 (4) | 0.073 (4) | 0.186 (12) | −0.007 (3) | −0.026 (5) | −0.008 (7) |
C34A | 0.042 (4) | 0.049 (3) | 0.139 (10) | −0.002 (3) | 0.012 (4) | −0.009 (4) |
C37A | 0.137 (11) | 0.038 (4) | 0.174 (15) | 0.001 (5) | 0.006 (11) | 0.011 (6) |
C29B | 0.059 (8) | 0.036 (10) | 0.118 (11) | 0.018 (6) | 0.005 (7) | −0.011 (6) |
C32B | 0.050 (5) | 0.073 (9) | 0.122 (14) | −0.027 (5) | 0.007 (8) | −0.034 (9) |
C33B | 0.043 (5) | 0.079 (11) | 0.124 (12) | −0.022 (6) | 0.009 (7) | −0.040 (9) |
C34B | 0.025 (5) | 0.088 (11) | 0.099 (10) | −0.011 (5) | 0.013 (5) | −0.040 (8) |
C37B | 0.133 (8) | 0.050 (5) | 0.239 (19) | 0.009 (5) | 0.051 (12) | −0.011 (10) |
Cu1—Cu1i | 2.6295 (5) | C20—H20 | 0.9300 |
Cu1—O1i | 1.9570 (13) | C20—C21 | 1.372 (3) |
Cu1—O2 | 1.9593 (13) | C21—H21 | 0.9300 |
Cu1—O3i | 1.9841 (13) | C21—C22 | 1.393 (3) |
Cu1—O4 | 1.9590 (13) | C22—C23 | 1.418 (3) |
Cu1—O5 | 2.1769 (13) | C22—C31 | 1.439 (3) |
O1—C1 | 1.257 (2) | C23—C24 | 1.428 (2) |
O2—C1 | 1.260 (2) | C23—C28 | 1.430 (3) |
O3—C18 | 1.253 (2) | C24—C25 | 1.436 (3) |
O4—C18 | 1.255 (2) | C25—H25 | 0.9300 |
O5—C35 | 1.215 (3) | C25—C26 | 1.351 (3) |
N1—C35 | 1.313 (3) | C26—H26 | 0.9300 |
N1—C36 | 1.425 (4) | C26—C27 | 1.419 (3) |
N1—C37A | 1.481 (10) | C27—C28 | 1.414 (3) |
N1—C37B | 1.498 (11) | C27—C34A | 1.369 (14) |
C1—C2 | 1.495 (3) | C27—C34B | 1.49 (2) |
C2—C3 | 1.389 (3) | C28—C29A | 1.466 (15) |
C2—C7 | 1.407 (3) | C28—C29B | 1.35 (3) |
C3—H3 | 0.9300 | C30—H30 | 0.9300 |
C3—C4 | 1.373 (3) | C30—H30A | 0.9300 |
C4—H4 | 0.9300 | C30—C31 | 1.329 (4) |
C4—C5 | 1.392 (3) | C30—C29A | 1.34 (2) |
C5—C6 | 1.417 (3) | C30—C29B | 1.59 (4) |
C5—C17 | 1.441 (3) | C31—H31 | 0.9300 |
C6—C7 | 1.423 (3) | C35—H35 | 0.9300 |
C6—C11 | 1.429 (3) | C36—H36A | 0.9600 |
C7—C8 | 1.438 (3) | C36—H36B | 0.9600 |
C8—H8 | 0.9300 | C36—H36C | 0.9600 |
C8—C9 | 1.349 (3) | C29A—C32A | 1.45 (2) |
C9—H9 | 0.9300 | C32A—H32A | 0.9300 |
C9—C10 | 1.431 (3) | C32A—C33A | 1.391 (18) |
C10—C11 | 1.410 (3) | C33A—H33A | 0.9300 |
C10—C15 | 1.398 (3) | C33A—C34A | 1.374 (18) |
C11—C12 | 1.418 (3) | C34A—H34A | 0.9300 |
C12—C13 | 1.401 (3) | C37A—H37A | 0.9600 |
C12—C16 | 1.421 (4) | C37A—H37B | 0.9600 |
C13—H13 | 0.9300 | C37A—H37C | 0.9600 |
C13—C14 | 1.365 (4) | C29B—C32B | 1.43 (4) |
C14—H14 | 0.9300 | C32B—H32B | 0.9300 |
C14—C15 | 1.382 (4) | C32B—C33B | 1.32 (3) |
C15—H15 | 0.9300 | C33B—H33B | 0.9300 |
C16—H16 | 0.9300 | C33B—C34B | 1.39 (3) |
C16—C17 | 1.318 (4) | C34B—H34B | 0.9300 |
C17—H17 | 0.9300 | C37B—H37D | 0.9600 |
C18—C19 | 1.504 (2) | C37B—H37E | 0.9600 |
C19—C20 | 1.394 (3) | C37B—H37F | 0.9600 |
C19—C24 | 1.419 (3) | ||
O1i—Cu1—Cu1i | 85.23 (4) | C21—C20—H20 | 118.7 |
O1i—Cu1—O2 | 168.37 (6) | C20—C21—H21 | 119.8 |
O1i—Cu1—O3i | 87.53 (7) | C20—C21—C22 | 120.5 (2) |
O1i—Cu1—O4 | 91.06 (6) | C22—C21—H21 | 119.8 |
O1i—Cu1—O5 | 93.64 (5) | C21—C22—C23 | 118.57 (19) |
O2—Cu1—Cu1i | 83.18 (4) | C21—C22—C31 | 122.2 (2) |
O2—Cu1—O3i | 91.29 (7) | C23—C22—C31 | 119.2 (2) |
O2—Cu1—O5 | 97.96 (5) | C22—C23—C24 | 121.22 (18) |
O3i—Cu1—Cu1i | 79.62 (4) | C22—C23—C28 | 118.82 (18) |
O3i—Cu1—O5 | 91.79 (5) | C24—C23—C28 | 119.94 (17) |
O4—Cu1—Cu1i | 88.35 (4) | C19—C24—C23 | 117.85 (16) |
O4—Cu1—O2 | 87.68 (7) | C19—C24—C25 | 124.61 (16) |
O4—Cu1—O3i | 167.96 (5) | C23—C24—C25 | 117.54 (17) |
O4—Cu1—O5 | 100.23 (5) | C24—C25—H25 | 119.1 |
O5—Cu1—Cu1i | 171.37 (4) | C26—C25—C24 | 121.75 (18) |
C1—O1—Cu1i | 121.86 (12) | C26—C25—H25 | 119.1 |
C1—O2—Cu1 | 124.16 (12) | C25—C26—H26 | 119.1 |
C18—O3—Cu1i | 128.45 (12) | C25—C26—C27 | 121.77 (19) |
C18—O4—Cu1 | 119.31 (12) | C27—C26—H26 | 119.1 |
C35—O5—Cu1 | 117.47 (14) | C26—C27—C34B | 119.7 (9) |
C35—N1—C36 | 120.9 (2) | C28—C27—C26 | 118.53 (19) |
C35—N1—C37A | 120.6 (11) | C28—C27—C34B | 120.7 (10) |
C35—N1—C37B | 120.2 (10) | C34A—C27—C26 | 123.1 (6) |
C36—N1—C37A | 116.3 (9) | C34A—C27—C28 | 117.9 (6) |
C36—N1—C37B | 116.7 (8) | C23—C28—C29A | 116.8 (8) |
O1—C1—O2 | 125.24 (17) | C27—C28—C23 | 120.21 (18) |
O1—C1—C2 | 117.02 (17) | C27—C28—C29A | 122.9 (8) |
O2—C1—C2 | 117.69 (16) | C29B—C28—C23 | 125.5 (15) |
C3—C2—C1 | 117.09 (17) | C29B—C28—C27 | 114.1 (16) |
C3—C2—C7 | 120.03 (17) | C31—C30—H30 | 119.4 |
C7—C2—C1 | 122.85 (17) | C31—C30—H30A | 119.3 |
C2—C3—H3 | 119.3 | C31—C30—C29A | 121.2 (6) |
C4—C3—C2 | 121.4 (2) | C31—C30—C29B | 121.3 (11) |
C4—C3—H3 | 119.3 | C29A—C30—H30 | 119.4 |
C3—C4—H4 | 119.6 | C29B—C30—H30A | 119.3 |
C3—C4—C5 | 120.8 (2) | C22—C31—H31 | 119.3 |
C5—C4—H4 | 119.6 | C30—C31—C22 | 121.5 (2) |
C4—C5—C6 | 118.65 (18) | C30—C31—H31 | 119.3 |
C4—C5—C17 | 122.7 (2) | O5—C35—N1 | 126.8 (2) |
C6—C5—C17 | 118.6 (2) | O5—C35—H35 | 116.6 |
C5—C6—C7 | 120.60 (18) | N1—C35—H35 | 116.6 |
C5—C6—C11 | 119.45 (17) | N1—C36—H36A | 109.5 |
C7—C6—C11 | 119.95 (18) | N1—C36—H36B | 109.5 |
C2—C7—C6 | 118.17 (17) | N1—C36—H36C | 109.5 |
C2—C7—C8 | 123.96 (17) | H36A—C36—H36B | 109.5 |
C6—C7—C8 | 117.83 (17) | H36A—C36—H36C | 109.5 |
C7—C8—H8 | 119.2 | H36B—C36—H36C | 109.5 |
C9—C8—C7 | 121.65 (19) | C30—C29A—C28 | 122.2 (11) |
C9—C8—H8 | 119.2 | C30—C29A—C32A | 123.7 (12) |
C8—C9—H9 | 119.2 | C32A—C29A—C28 | 112.6 (15) |
C8—C9—C10 | 121.7 (2) | C29A—C32A—H32A | 118.8 |
C10—C9—H9 | 119.2 | C33A—C32A—C29A | 122.3 (12) |
C11—C10—C9 | 118.33 (19) | C33A—C32A—H32A | 118.8 |
C15—C10—C9 | 122.5 (2) | C32A—C33A—H33A | 120.0 |
C15—C10—C11 | 119.2 (2) | C34A—C33A—C32A | 120.1 (10) |
C10—C11—C6 | 120.39 (18) | C34A—C33A—H33A | 120.0 |
C10—C11—C12 | 120.24 (19) | C27—C34A—C33A | 122.8 (10) |
C12—C11—C6 | 119.4 (2) | C27—C34A—H34A | 118.6 |
C11—C12—C16 | 119.0 (2) | C33A—C34A—H34A | 118.6 |
C13—C12—C11 | 118.1 (2) | N1—C37A—H37A | 109.5 |
C13—C12—C16 | 122.9 (2) | N1—C37A—H37B | 109.5 |
C12—C13—H13 | 119.3 | N1—C37A—H37C | 109.5 |
C14—C13—C12 | 121.3 (2) | H37A—C37A—H37B | 109.5 |
C14—C13—H13 | 119.3 | H37A—C37A—H37C | 109.5 |
C13—C14—H14 | 119.5 | H37B—C37A—H37C | 109.5 |
C13—C14—C15 | 121.1 (2) | C28—C29B—C30 | 113 (2) |
C15—C14—H14 | 119.5 | C28—C29B—C32B | 123 (3) |
C10—C15—H15 | 120.0 | C32B—C29B—C30 | 116 (2) |
C14—C15—C10 | 120.1 (3) | C29B—C32B—H32B | 121.8 |
C14—C15—H15 | 120.0 | C33B—C32B—C29B | 116 (2) |
C12—C16—H16 | 119.0 | C33B—C32B—H32B | 121.8 |
C17—C16—C12 | 122.1 (2) | C32B—C33B—H33B | 118.4 |
C17—C16—H16 | 119.0 | C32B—C33B—C34B | 123 (2) |
C5—C17—H17 | 119.3 | C34B—C33B—H33B | 118.4 |
C16—C17—C5 | 121.3 (2) | C27—C34B—H34B | 121.9 |
C16—C17—H17 | 119.3 | C33B—C34B—C27 | 116.1 (18) |
O3—C18—O4 | 124.08 (17) | C33B—C34B—H34B | 121.9 |
O3—C18—C19 | 116.05 (16) | N1—C37B—H37D | 109.5 |
O4—C18—C19 | 119.86 (16) | N1—C37B—H37E | 109.5 |
C20—C19—C18 | 116.64 (17) | N1—C37B—H37F | 109.5 |
C20—C19—C24 | 119.19 (17) | H37D—C37B—H37E | 109.5 |
C24—C19—C18 | 124.11 (16) | H37D—C37B—H37F | 109.5 |
C19—C20—H20 | 118.7 | H37E—C37B—H37F | 109.5 |
C21—C20—C19 | 122.5 (2) | ||
Cu1i—O1—C1—O2 | 7.3 (3) | C19—C20—C21—C22 | −1.9 (4) |
Cu1i—O1—C1—C2 | −175.04 (12) | C19—C24—C25—C26 | −176.85 (19) |
Cu1—O2—C1—O1 | −6.1 (3) | C20—C19—C24—C23 | 4.7 (3) |
Cu1—O2—C1—C2 | 176.21 (13) | C20—C19—C24—C25 | −175.3 (2) |
Cu1i—O3—C18—O4 | −5.2 (3) | C20—C21—C22—C23 | 2.9 (4) |
Cu1i—O3—C18—C19 | 176.02 (12) | C20—C21—C22—C31 | −175.9 (3) |
Cu1—O4—C18—O3 | 5.4 (3) | C21—C22—C23—C24 | −0.1 (3) |
Cu1—O4—C18—C19 | −175.92 (12) | C21—C22—C23—C28 | −178.4 (2) |
Cu1—O5—C35—N1 | −179.5 (3) | C21—C22—C31—C30 | 175.1 (3) |
O1—C1—C2—C3 | −38.1 (3) | C22—C23—C24—C19 | −3.7 (3) |
O1—C1—C2—C7 | 144.29 (19) | C22—C23—C24—C25 | 176.31 (19) |
O2—C1—C2—C3 | 139.8 (2) | C22—C23—C28—C27 | −178.6 (2) |
O2—C1—C2—C7 | −37.9 (3) | C22—C23—C28—C29A | 1.0 (11) |
O3—C18—C19—C20 | 11.8 (3) | C22—C23—C28—C29B | 7 (2) |
O3—C18—C19—C24 | −171.15 (17) | C23—C22—C31—C30 | −3.6 (5) |
O4—C18—C19—C20 | −167.00 (19) | C23—C24—C25—C26 | 3.1 (3) |
O4—C18—C19—C24 | 10.1 (3) | C23—C28—C29A—C30 | 1 (2) |
C1—C2—C3—C4 | −173.2 (2) | C23—C28—C29A—C32A | 166.7 (14) |
C1—C2—C7—C6 | 171.59 (17) | C23—C28—C29B—C30 | −10 (3) |
C1—C2—C7—C8 | −10.8 (3) | C23—C28—C29B—C32B | −157 (3) |
C2—C3—C4—C5 | 1.2 (4) | C24—C19—C20—C21 | −2.1 (3) |
C2—C7—C8—C9 | 179.3 (2) | C24—C23—C28—C27 | 3.0 (3) |
C3—C2—C7—C6 | −6.0 (3) | C24—C23—C28—C29A | −177.4 (10) |
C3—C2—C7—C8 | 171.7 (2) | C24—C23—C28—C29B | −171 (2) |
C3—C4—C5—C6 | −5.1 (4) | C24—C25—C26—C27 | 1.7 (3) |
C3—C4—C5—C17 | 173.2 (2) | C25—C26—C27—C28 | −4.1 (4) |
C4—C5—C6—C7 | 3.5 (3) | C25—C26—C27—C34A | 168.0 (9) |
C4—C5—C6—C11 | −177.5 (2) | C25—C26—C27—C34B | −172.2 (13) |
C4—C5—C17—C16 | −179.4 (3) | C26—C27—C28—C23 | 1.6 (3) |
C5—C6—C7—C2 | 2.0 (3) | C26—C27—C28—C29A | −177.9 (11) |
C5—C6—C7—C8 | −175.78 (18) | C26—C27—C28—C29B | 176.7 (18) |
C5—C6—C11—C10 | 177.22 (19) | C26—C27—C34A—C33A | −174.9 (9) |
C5—C6—C11—C12 | −3.6 (3) | C26—C27—C34B—C33B | 172.8 (14) |
C6—C5—C17—C16 | −1.1 (4) | C27—C28—C29A—C30 | −179.8 (12) |
C6—C7—C8—C9 | −3.0 (3) | C27—C28—C29A—C32A | −14 (2) |
C6—C11—C12—C13 | −179.8 (2) | C27—C28—C29B—C30 | 175.6 (15) |
C6—C11—C12—C16 | 0.1 (3) | C27—C28—C29B—C32B | 28 (4) |
C7—C2—C3—C4 | 4.5 (3) | C28—C23—C24—C19 | 174.60 (18) |
C7—C6—C11—C10 | −3.7 (3) | C28—C23—C24—C25 | −5.3 (3) |
C7—C6—C11—C12 | 175.38 (19) | C28—C27—C34A—C33A | −2.8 (14) |
C7—C8—C9—C10 | −0.7 (3) | C28—C27—C34B—C33B | 5 (2) |
C8—C9—C10—C11 | 2.3 (3) | C28—C29A—C32A—C33A | 12 (2) |
C8—C9—C10—C15 | −177.7 (2) | C28—C29B—C32B—C33B | −30 (5) |
C9—C10—C11—C6 | 0.0 (3) | C30—C29A—C32A—C33A | 177.8 (14) |
C9—C10—C11—C12 | −179.1 (2) | C30—C29B—C32B—C33B | −176.5 (19) |
C9—C10—C15—C14 | 179.7 (3) | C31—C22—C23—C24 | 178.8 (2) |
C10—C11—C12—C13 | −0.6 (3) | C31—C22—C23—C28 | 0.4 (3) |
C10—C11—C12—C16 | 179.3 (2) | C31—C30—C29A—C28 | −4 (2) |
C11—C6—C7—C2 | −177.02 (17) | C31—C30—C29A—C32A | −168.4 (17) |
C11—C6—C7—C8 | 5.2 (3) | C31—C30—C29B—C28 | 6 (3) |
C11—C10—C15—C14 | −0.3 (4) | C31—C30—C29B—C32B | 156 (2) |
C11—C12—C13—C14 | −0.2 (4) | C36—N1—C35—O5 | −1.6 (5) |
C11—C12—C16—C17 | 3.1 (4) | C29A—C30—C31—C22 | 5.4 (13) |
C12—C13—C14—C15 | 0.8 (5) | C29A—C32A—C33A—C34A | −6 (2) |
C12—C16—C17—C5 | −2.6 (4) | C32A—C33A—C34A—C27 | 1.2 (17) |
C13—C12—C16—C17 | −177.0 (3) | C34A—C27—C28—C23 | −170.8 (9) |
C13—C14—C15—C10 | −0.5 (5) | C34A—C27—C28—C29A | 9.7 (15) |
C15—C10—C11—C6 | 180.0 (2) | C37A—N1—C35—O5 | 161.2 (16) |
C15—C10—C11—C12 | 0.9 (3) | C29B—C30—C31—C22 | 0.4 (17) |
C16—C12—C13—C14 | 179.9 (3) | C29B—C32B—C33B—C34B | 17 (3) |
C17—C5—C6—C7 | −174.9 (2) | C32B—C33B—C34B—C27 | −6 (3) |
C17—C5—C6—C11 | 4.2 (3) | C34B—C27—C28—C23 | 169.7 (12) |
C18—C19—C20—C21 | 175.1 (2) | C34B—C27—C28—C29B | −15 (2) |
C18—C19—C24—C23 | −172.23 (17) | C37B—N1—C35—O5 | −163.9 (17) |
C18—C19—C24—C25 | 7.7 (3) |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
Author contributions: Conceptualization, DMPC and KGN; methodology, KGN, VCNG, VPMQ, PCRA and ACBJ; formal analysis, DMPC, ABS and JRR; investigation, DMPC and KGN; resources, DMPC and KGN; data curation, DMPC, ABS and JORR; writing-original draft preparation, DMPC, KGN, ABS, JORR and VCNG; writing-review and editing, DMPC and KGN; supervision, DMPC and KGN project administration, DMPC and KGN; funding acquisition, DMPC and KGN. All authors have read and agreed to published version of the manuscript. Acknowledgments: We would like to acknowledge the Department of Natural Sciences at UPR Carolina Campus (Department of Education, grant No. PO31S130068; however, these contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government) and the University of Puerto Rico's Molecular Sciences Research Center for the use of the Rigaku XTLab SuperNova diffractometer (NSF CHE 1626103). Special thanks to Dr Logesh Mathivathanan for consultation on the final of the structure.
Funding information
Funding for this research was provided by: National Science Foundation (award No. CHE-1626103); Puerto Rico Space Grant Consortium (award No. 80NSSC20M0053 to J.O.R.-R.).
References
Aakeröy, C. A., Schultheiss, N. & Desper, J. (2006). Dalton Trans. pp. 1627–1635. Google Scholar
Baldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144–8155. Web of Science PubMed Google Scholar
Benesperi, I., Singh, R. & Marina, F. (2020). Energies, 13, 2198. Web of Science CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bonomo, R. P., Imperllizzeri, G., Pappalardo, G., Rizzarelli, E. & Tabbì, G. (2000). Chemistry, 6, 4195–4202. CrossRef PubMed Google Scholar
Boulsourani, Z., Katsamakas, S., Geromichalos, G. D., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Yiannaki, E. & Dendrinou-Samara, C. (2017). Mater. Sci. Eng. C, 76, 1026–1040. Web of Science CrossRef Google Scholar
Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T. & Dempsey, J. L. (2018). J. Chem. Educ. 95, 197–206. Web of Science CrossRef CAS Google Scholar
Goldberg, A. E., Kiskin, M. A., Nikolaevskii, S. A., Zorina-Tikhonova, E. N., Aleksandrov, G. G., Sidorov, A. A. & Eremenko, I. L. (2015). Russ. J. Coord. Chem. 41, 163. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guan, Q. L., Xing, Y. H., Liu, J., Han, C., Hou, C. Y. & Bai, F. Y. (2019). J. Phys. Chem. C, 123, 23287–23296. Web of Science CSD CrossRef Google Scholar
Haldar, R., Heinke, L. & Wöll, C. (2020). Adv. Mater. 32, 1905227–1905257. Web of Science CrossRef Google Scholar
Haldar, R., Prasad, K., Samanta, P. K., Pati, S. & Maji, T. K. (2016). Cryst. Growth Des. 16, 82–91. Web of Science CSD CrossRef Google Scholar
Iqbal, M., Ahmad, I., Ali, S., Muhammad, N., Ahmed, S. & Sohail, M. (2013). Polyhedron, 50, 524-531. Web of Science CSD CrossRef Google Scholar
Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437–443. Web of Science CSD CrossRef Google Scholar
Kanoo, P., Matsuda, M., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860–5866. Web of Science CSD CrossRef Google Scholar
Karmakar, A., Paul, A., Sabatini, E. P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Molecules, 26, 1101. Web of Science CrossRef PubMed Google Scholar
Kinik, F. P., Ortega-Guerrero, A., Ongari, D., Ireland, C. P. & Smit, B. (2021). Chem. Soc. Rev. 50, 3143–3177. Web of Science CrossRef PubMed Google Scholar
Kozlevčar, B., Leban, I., Petrič, M., Petriček, S., Roubeau, O., Reedijk, J. & Šegedin, P. (2004). Inorg. Chim. Acta, 357, 4220–4230. Google Scholar
Liu, K.-G., Yao, Z.-X., Li, J.-Z. & Yan, X.-W. (2020). Inorg. Chim. Acta, 508, 119608. Web of Science CSD CrossRef Google Scholar
Modec, B., Podjed, N. & Lah, N. (2020). Molecules, 25, 1573–1597. Web of Science CSD CrossRef PubMed Google Scholar
Murugavel, R., Karambelkar, V. V., Anantharaman, G. & Walawalkar, M. G. (2000). Inorg. Chem. 39, 1381–1390. Web of Science CSD CrossRef PubMed CAS Google Scholar
Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177–6185. Web of Science CrossRef Google Scholar
Rajakannu, P., Kaleeswaran, D., Banerjee, S., Butcher, R. J. & Murugavel, R. (2019). Inorg. Chim. Acta, 486, 283–293. Web of Science CSD CrossRef Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982–986. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. Google Scholar
Vishnoi, P., Kaleeswaran, D. & Murugavel, R. (2017). Chemistry Select, 2, 12014–12018. Google Scholar
Wang, H. H., Li, J. Z., Nie, J., Yao, Z. X., Li, H. J., Liu, K. G. & Yan, X. W. (2021). Inorg. Chim Acta, 514, 120018. Web of Science CSD CrossRef Google Scholar
Wang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377–1385. Web of Science CSD CrossRef CAS Google Scholar
Wang, X., Zhao, W., Zhang, J. & Lu, Q. (2013). J. Solid State Chem. 198, 162–168. Web of Science CSD CrossRef Google Scholar
Zhao, Y. L. & Stoddart, J. F. (2009). Acc. Chem. Res. 42, 1161–1171. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.