research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

New copper carboxyl­ate pyrene dimers: synthesis, crystal structure, Hirshfeld surface analysis and electrochemical characterization

crossmark logo

aDepartment of Natural Sciences, University of Puerto Rico, Carolina Campus, Carolina, 00984-4800, Puerto Rico, bDepartment of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, 00927, Puerto Rico, and cUniversity of Puerto Rico's Molecular Sciences Research Center, San Juan, 00926, Puerto Rico
*Correspondence e-mail: karilys.gonzalez@upr.edu, dalice.pinero@upr.edu

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 21 September 2023; accepted 29 November 2023; online 1 January 2024)

Two new copper dimers, namely, bis­(dimethyl sulfoxide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(CuCu), [Cu2(C17H9O2)4(C2H6OS)2] or [Cu2(pyr-COO)4(DMSO)2] (1), and bis­(di­methyl­formamide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(CuCu), [Cu2(C17H9O2)4(C3H7NO)2] or [Cu2(pyr-COO)4(DMF)2] (2) (pyr = pyrene), were synthesized from the reaction of pyrene-1-carb­oxy­lic acid, copper(II) nitrate and tri­ethyl­amine from solvents DMSO and DMF, respectively. While 1 crystallized in the space group P[\overline{1}], the crystal structure of 2 is in space group P21/n. The Cu atoms have octa­hedral geometries, with four oxygen atoms from carboxyl­ate pyrene ligands occupying the equatorial positions, a solvent mol­ecule coordinating at one of the axial positions, and a Cu⋯Cu contact in the opposite position. The packing in the crystal structures exhibits ππ stacking inter­actions and short contacts through the solvent mol­ecules. The Hirshfeld surfaces and two-dimensional fingerprint plots were generated for both compounds to better understand the inter­molecular inter­actions and the contribution of heteroatoms from the solvent ligands to the crystal packing. In addition, a Cu2+/Cu1+ quasi-reversible redox process was identified for compound 2 using cyclic voltammetry that accounts for a diffusion-controlled electron-donation process to the Cu dimer.

1. Chemical context

Copper(II) carboxyl­ate complexes with paddle-like structure have been proposed in solar energy conversion and storage, redox mediators, magnetism, dyes and in catalysis, among other applications (Benesperi et al. 2020[Benesperi, I., Singh, R. & Marina, F. (2020). Energies, 13, 2198.]; Kozlevčar et al., 2004[Kozlevčar, B., Leban, I., Petrič, M., Petriček, S., Roubeau, O., Reedijk, J. & Šegedin, P. (2004). Inorg. Chim. Acta, 357, 4220-4230.]; Rajakannu et al., 2019[Rajakannu, P., Kaleeswaran, D., Banerjee, S., Butcher, R. J. & Murugavel, R. (2019). Inorg. Chim. Acta, 486, 283-293.]; Murugavel et al., 2000[Murugavel, R., Karambelkar, V. V., Anantharaman, G. & Walawalkar, M. G. (2000). Inorg. Chem. 39, 1381-1390.]; Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]; Boulsourani et al., 2017[Boulsourani, Z., Katsamakas, S., Geromichalos, G. D., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Yiannaki, E. & Dendrinou-Samara, C. (2017). Mater. Sci. Eng. C, 76, 1026-1040.]; Baldomá et al., 2006[Baldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144-8155.]; Seo et al., 2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982-986.]). The unique characteristics of copper(II) carboxyl­ate complexes of general formula [Cu2(RCOO)4(L)2] are based on their easy synthesis, the relative abundance of the starting materials, their stability, and their low toxicity, which enables a vast number of research directions to be performed from such materials. The structural features of these compounds are related to the coordinating aspect of the ligands: the two possible coordination sites through the carboxyl­ate oxygen atoms result in various modes of coordination, such as monodentate, bidentate and bridging, offering a variability of polynuclear metal complexes (Rajakannu et al., 2019[Rajakannu, P., Kaleeswaran, D., Banerjee, S., Butcher, R. J. & Murugavel, R. (2019). Inorg. Chim. Acta, 486, 283-293.]; Murugavel et al., 2000[Murugavel, R., Karambelkar, V. V., Anantharaman, G. & Walawalkar, M. G. (2000). Inorg. Chem. 39, 1381-1390.]; Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]), and a degree of stability for dinuclear and trinuclear complexes. Additionally, the carboxyl­ate group could participate in hydrogen bonds, leading to a supra­molecular network (Aakeröy et al., 2006[Aakeröy, C. A., Schultheiss, N. & Desper, J. (2006). Dalton Trans. pp. 1627-1635.]). Moreover, dinuclear copper(II) carboxyl­ate complexes may have switchable electronic properties such as inter­metal magnetic exchange and electron transfer (Vishnoi et al., 2017[Vishnoi, P., Kaleeswaran, D. & Murugavel, R. (2017). Chemistry Select, 2, 12014-12018.]). The electrochemical properties of copper(II) carboxyl­ate complexes are reported to be highly influenced by the redox-active nature of copper(II/I) and subjected to potential changes due to the presence of substituents in the carboxyl­ate ligands (Wang et al., 2013[Wang, X., Zhao, W., Zhang, J. & Lu, Q. (2013). J. Solid State Chem. 198, 162-168.]), thereby influencing the stability of its oxidation state (Modec et al., 2020[Modec, B., Podjed, N. & Lah, N. (2020). Molecules, 25, 1573-1597.]).

[Scheme 1]

In this work we report the structure of two new copper(II) carboxyl­ate complexes from pyrene-1-carb­oxy­lic acid. The structure of pyrene is based on four fused benzene rings, thus it belongs to the group of polycyclic aromatic hydro­carbons (PAH) that have been well studied since their remarkable fluorescence and phospho­rescence properties were noted (Haldar et al., 2020[Haldar, R., Heinke, L. & Wöll, C. (2020). Adv. Mater. 32, 1905227-1905257.]). Carb­oxy­lic acid from 1-pyrene has been proposed in supercapacitor devices by functionalization of graphene and it is also used to design and synthesize lumin­escent metal–organic complexes for sensing applications.

In addition, pyrene ligands have been used as an organic linker or as building blocks for the design of new classes of metal–organic frameworks (MOFs). The functionalization of pyrene with phospho­nates, sulfonates, and carboxyl­ates allows metal coordination to yield MOF structures exhibiting new photophysical and photochemical properties. MOF structures with pyrene ligands result in promising optical properties such as luminescence sensing, photocatalysis, electrochemistry, adsorption and separation applications, and biomedical applications (Kinik et al., 2021[Kinik, F. P., Ortega-Guerrero, A., Ongari, D., Ireland, C. P. & Smit, B. (2021). Chem. Soc. Rev. 50, 3143-3177.]). Derivatives of carboxyl­ate pyrene ligands have been studied because of their extraordinary photophysical properties, chemical stability, ππ stacking inter­actions, and high-charge-delocalized systems (Guan et al., 2019[Guan, Q. L., Xing, Y. H., Liu, J., Han, C., Hou, C. Y. & Bai, F. Y. (2019). J. Phys. Chem. C, 123, 23287-23296.]). The planar π-conjugated surface of pyrene and its mol­ecular rearrangement is favorable for the detection of guest mol­ecules in mol­ecular tweezer hosts, for example with platinum, ruthenium, and copper complexes. Another application of pyrene can be found in the functionalization of carbon nanotubes (CNTs) as a result of its ππ inter­actions with polycyclic aromatic mol­ecules (Zhao & Stoddart, 2009[Zhao, Y. L. & Stoddart, J. F. (2009). Acc. Chem. Res. 42, 1161-1171.]).

Here, we report the novel synthesis, characterization, and crystal structure of two copper dimers with tetra­carboxyl­ate pyrene and two solvent mol­ecules in axial positions, [Cu2(pyr-COO)4(DMSO)2] (1) and [Cu2(pyr-COO)4(DMF)2] (2). Structural characterization from single-crystal X-ray diffraction experiments show crystallization under two crystal systems, which translates into different extended contacts, such as ππ stacking inter­actions, among others. In terms of the chemistry of these copper structures, they are very promising because the axial positions can be substituted by bridging ligands, which can form coordination polymers such as the 1D, 2D, and 3D polymeric architectures that have been proposed in mol­ecular sensing, gas storage, and separation (Karmakar et al., 2021[Karmakar, A., Paul, A., Sabatini, E. P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Molecules, 26, 1101.]). Hirshfeld surface analysis was undertaken to show the contributions from inter­molecular inter­actions in the crystal-packing array. The pyrene rings participate in ππ inter­actions, yet some rings have weaker inter­actions based on their position in the crystal structure. DMSO (1) and DMF (2) axial ligands, play a crucial role in the crystal packing by participating in inter­actions with the rest of the mol­ecule. In addition, Hirshfeld surface analysis showed that compound 2 has shorter distances for most inter­actions. Electrochemical characterization of compound 2 was performed by cyclic voltammetry at varying scan rates (50–2000 mV s−1), revealing a diffusion-controlled Cu2+/Cu1+ quasi-reversible process that may involve an electron reduction at an E1/2 potential around −0.52 V vs Fc/Fc+ (Iqbal et al., 2013[Iqbal, M., Ahmad, I., Ali, S., Muhammad, N., Ahmed, S. & Sohail, M. (2013). Polyhedron, 50, 524-531.]; Bonomo et al., 2000[Bonomo, R. P., Imperllizzeri, G., Pappalardo, G., Rizzarelli, E. & Tabbì, G. (2000). Chemistry, 6, 4195-4202.]).

2. Structural commentary

The crystal structures of complexes [Cu2(pyr-COO)4(DMSO)2] (1), space group P[\overline{1}], and [Cu2(pyr-COO)4(DMF)2], space group P21/n (2), are presented in Fig. 1[link]. The copper atoms have octa­hedral geometries with four oxygen atoms from the pyrene-1-carboxyl­ate ligand at equatorial positions, one axial ligand from the solvent mol­ecule and the remaining axial coordination occupied by a metal–metal copper contact. The asymmetric unit contains half the mol­ecule in both structures. The Cu⋯Cu contact distance in 1 is 2.5934 (3) Å in comparison with the structure of 2 for which it is 2.6295 (5) Å. Likewise, the Cu—O5 bond distance in the axial position is shorter in 1 than in 2, with values of 2.1441 (12) and 2.1769 (13) Å, respectively. The difference in the elongation of these bond distances could be the result of the influence of the axial ligand (DMSO vs DMF) with stronger π-back-bonding character, thus better binding (Deacon & Phillips, 1980[Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.]). The Cu—O bonds in equatorial positions are shorter than those in axial positions in both structures, with distances ranging from 1.9530 (13) to 1.9593 (13) Å, which may be indicative of Jahn–Teller effects on CuII centers. All the other structural features in the two Cu dimers do not change significantly. Structural disorder of four carbon atoms from the pyrene (C29–C32—C33—C34) unit is observed in complex 2 as well as in one of the carbon atoms from the DMF mol­ecule, precisely on C37, for which atoms had to be modeled in two parts.

[Figure 1]
Figure 1
Asymmetric units of Cu complexes 1 (a) and 2 (b) with labels for non-C/H atoms and ellipsoids at the 50% probability level. (c) and (d) views of the complete mol­ecules from the b axis.

3. Supra­molecular features

Long-range inter­actions for 1 and 2 are different in terms of their ππ stacking, as well as the axial hydrogen inter­actions with π rings. In the case of complex 1, the most important ππ inter­actions is observed for C22⋯C16 at 3.393 (3) Å. C—H to π-ring inter­actions are observed between C28⋯H15 and C27⋯H15 at 2.87 and 2.90 Å, respectively, and the solvent oxygen inter­action π-ring end hydrogen is observed through O5⋯H4 at a distance of 2.56 Å. In complex 2 however, ππ inter­actions are present from C4⋯C4 of neighboring rings with a distance 3.178 (4) Å; other inter­actions are attributed to C—H end to π-ring for C16⋯H37B, C19⋯H16, and C24⋯H16 with distances of 2.87, 2.85, and 2.70 Å, respectively. The packing for 1 and 2 is shown in shown in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing of Cu complexes 1 and 2 along the a axis with ellipsoids at the 50% probability level.

4. Electrochemical measurements

Electrochemical properties were measured in DMF for complex 2; complex 1 was not soluble therein, and thus was not characterized electrochemically. The cyclic voltammograms (CV) of compound 2 at multiple scan rates are shown in Fig. 3[link]. The main feature presented by compound 2 exhibits a redox couple at ca −0.5 V vs Fc/Fc+ associated with the Cu2+/Cu1+ couple (Iqbal et al., 2013[Iqbal, M., Ahmad, I., Ali, S., Muhammad, N., Ahmed, S. & Sohail, M. (2013). Polyhedron, 50, 524-531.]; Bonomo et al., 2000[Bonomo, R. P., Imperllizzeri, G., Pappalardo, G., Rizzarelli, E. & Tabbì, G. (2000). Chemistry, 6, 4195-4202.]). This redox process was found to be quasi-reversible because as the scan rate increased, the peak-to-peak separation increased, indicating that this process is not reversible. Another indication of the quasi-reversible nature of compound 2 is that the ratio between the cathodic and anodic peak current is less than 1. According to the Randles–Sevcik equation, the observed linear relationship between the square root of the scan rate and the peak current confirms that the quasi-revers­ible process is diffusion-controlled (Fig. 4[link]) (Elgrishi et al., 2018[Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T. & Dempsey, J. L. (2018). J. Chem. Educ. 95, 197-206.]). It was observed that on increasing the scan rates to 750 mV s−1, two irreversible oxidation processes appeared at 0.05 and 0.50 V vs Fc/Fc+. In summary, complex 2 possesses a quasi-reversible diffusion-controlled redox process corres­ponding to the Cu2+/Cu1+ couple.

[Figure 3]
Figure 3
Cyclic voltammograms of 1 mM of compound 2 at 50–2000 mV s−1. Cyclic voltammograms were obtained in a 0.1 M TBAPF6 in DMF with a glassy carbon working electrode, a graphite rod counter-electrode, and 0.01 M AgNO3 silver wire as the pseudo-reference electrode corrected with ferrocene.
[Figure 4]
Figure 4
Square root of scan rate versus peak current plot (a) anodic peak and (b) cathodic peak of compound 2.

5. Hirshfeld surface analysis

The Hirshfeld surfaces were generated using CrystalExplorer17.5 software and evaluated over dnorm, shape-index, and curvedness. Fingerprint plot analysis was also carried out for 1 and 2 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The Hirshfeld surface of 1 evaluated over dnorm shows multiple bright- and light-red spots (Figs. 5[link] and 6[link]), revealing that many inter­actions take place and that the crystal packing is a compact one (i.e., short distances). The red spots on the surface, including the innermost region near the oxygen atoms (e.g., O1⋯H34 at 2.53 Å), equatorial pyrene moieties (core and edges, e.g., C28⋯H15 at 2.87 Å, H32⋯H9 at 2.38 Å), and axial ligand positions (e.g., O5⋯H4 at 2.56 Å, H36B⋯C11 at 2.77 Å), are mostly C⋯C, H⋯H, H⋯O/O⋯H, and C⋯H/H⋯C inter­actions (Fig. 5[link]). The red spots on the surface region of axial ligands indicate that inter­actions with DMSO are a crucial component for the crystal packing.

[Figure 5]
Figure 5
Hirshfeld surface evaluated over dnorm for title compound 1 with adjacent mol­ecules showing short contacts (a) C⋯H/H⋯C (purple) and H⋯H (green), (b) H⋯O/O⋯H (blue) and C⋯C (orange).
[Figure 6]
Figure 6
Hirshfeld surface evaluated over dnorm for title compound 1.

Short inter­actions are better perceived in Fig. 6[link], both on the pyrene moiety (core and edges) and ligand positions. The role of pyrene rings in the crystal packing is evident, as well as for solvent mol­ecules, even though their contributions are different (Fig. 7[link]). Important ππ inter­actions are observed in the shape-index surface, represented by characteristic adjacent red–yellow and blue–green triangles (and back-to-back diamonds) on pyrene rings (Fig. 7[link]a) and in the axial ligand region (Fig. 7[link]c). Inter­estingly, not all pyrene cores have the same degree of inter­actions within the crystal packing. The pyrene rings are either engaged in strong ππ inter­actions or in other inter­actions, predominantly of C⋯H/H⋯C(core) and H⋯H(edges) type. The inter­centroid distance for rings that exhibit strong ππ inter­actions is 3.75 Å and these rings greatly overlap. Fig. 7[link]b defines hollows toward the center of the mol­ecule and bumps on the pyrene edges, confirming that inter­molecular inter­actions allow mol­ecules to inter­lock for the crystal packing,

[Figure 7]
Figure 7
Hirshfeld surface evaluated over shape-index for title compound 1, viewed from the side (a), (b) and top (c).

Evaluation of the curvedness reflects the planarity of the pyrene rings, specifically for those exhibiting strong ππ inter­actions (Fig. 8[link]a), while the other rings and solvent ligands have both flat and positive curvatures. Hence, compound 1 has diverse inter­actions that give way to the resulting array. Fig. 8[link]a portrays a superposition of where the pyrene ring is located below the generated surface; only a green color (i.e., flatness) is observed in this region. Going from Fig. 8[link]b to Fig. 8[link]c, the red boxes are localized to fit together inter­locking pyrene moieties towards the innermost region of the mol­ecule, highlighting complementarity in the crystal-packing array.

[Figure 8]
Figure 8
Hirshfeld surface evaluated over curvedness for title compound 1, viewed from the side (a) and top (b), (c).

The fingerprint plot for compound 1 is symmetric, and contacts occur over a long range of distances (i.e., de and di scale) for C⋯H/H⋯C (39.8%), H⋯H (44.2%), and H⋯O/O⋯H (7.4%) type primarily. H⋯H contacts make up almost half the total inter­actions (44.2%). A large concentration of points is centered around 1.6–2.0 Å, linked to ππ stacking; contacts of C⋯C (7.3%) type comprise DMSO–pyrene and pyrene–pyrene. Furthermore, characteristic traits are distinguished: both peaks and wings are demarcated in the C⋯H/H⋯C, H⋯H, and H⋯O/O⋯H plots, so different contacts are present; they all incorporate the pyrene moieties and solvent ligands. Upon further analysis, it was found that DMSO participates in each type of contact in Fig. 9[link], either from the sulfur, oxygen, or methyl groups. Contacts of the C⋯O/O⋯C (0.1%), C⋯S/S⋯C (1.0%), and H⋯S/S⋯H (0.3%) types are not made out from short-contact inter­action analysis because their distances are very long. Contacts of the C⋯O/O⋯C type arise from carboxyl­ate and DMSO oxygen atoms to pyrene ring carbons, the C⋯S/S⋯C type go from the DMSO sulfur atom to pyrene ring carbons, and H⋯S/S⋯H from the DMSO sulfur atom to pyrene ring hydrogens.

[Figure 9]
Figure 9
Fingerprint plot analysis for title compound 1.

The Hirshfeld surface generated for title compound 2 evaluated over dnorm shows the significance of the axial ligands as well as the pyrene moieties, like in compound 1. As seen in Fig. 10[link], adjacent mol­ecules surrounding the generated surface deliver multiple inter­actions, which are distributed from the innermost region near the oxygen atoms (e.g., O2⋯H34A at 2.79 Å, O2⋯H34B at 2.61 Å), equatorial pyrene moieties (core and edges) (e.g., C4⋯C4 at 3.18 Å, C24⋯H16 at 2.70 Å), to the axial ligands (e.g., H37B⋯C16 at 2.87 Å).

[Figure 10]
Figure 10
Hirshfeld surface evaluated over dnorm for title compound 2 with adjacent mol­ecules showing short contacts (a) C⋯H/H⋯C (purple) and H⋯H (green), (b) H⋯O/O⋯H (blue) and C⋯C (orange).

Most of the red spots are intense (i.e., short distance), mainly C⋯C, H⋯H, H⋯O/O⋯H, and C⋯H/H⋯C type inter­actions. However, just a few light-red spots (i.e., longer distance) color are recognized as additional contacts, primarily C⋯H/H⋯C type. In Fig. 11[link], a few red spots are present on the pyrene aromatic core and most are located near the edges. In contrast, the DMF region has strong red spots. When comparing Fig. 6[link] and Fig. 11[link], the latter surface contains a qualitatively greater amount of blue regions; however, the red spots are more intense, implying compound 1 has strong inter­actions distributed over more parts of the surface but compound 2 has shorter distances in most of its inter­actions.

[Figure 11]
Figure 11
Hirshfeld surface evaluated over dnorm for title compound 2.

Pyrene ring surfaces with red–yellow and blue–green adjacent triangles, as displayed in Fig. 12[link]a, are characteristic of ππ inter­actions, which are expected due to the nature of the PAHs. Similar to compound 1, not all rings show this degree of inter­action because of the position of each pyrene ring with respect to other moieties in the crystal-packing array and corresponding inter­actions. Different from Fig. 7[link]a, Fig. 12[link]a has a less uniform pattern of ππ inter­actions than for title compound 1, as a result of the less overlapping pyrene rings. Rings with weak ππ inter­actions have more C⋯H/H⋯C(core) and H⋯H(edges) contacts, analogous to compound 1.

[Figure 12]
Figure 12
Hirshfeld surface evaluated over shape-index for title compound 2, viewed from the side (a), (b) and top (c).

The planarity of the pyrene moieties is depicted by the curvedness (Fig. 13[link]a) where most of the surface is flat. However, even pyrene rings that exhibit strong ππ inter­actions do not possess a completely flat surface region (unlike in compound 1), and the other rings have alternating regions of flatness. The inter­centroid distance for rings that exhibit strong ππ inter­actions is 5.83 Å, farther apart than for compound 1. In addition, the red box in Fig. 13[link]b can be translated into the one in Fig. 13[link]c; thus, complementarity is observed within the generated surface, coming from inter­molecular inter­actions that follow the screw axes and glide planes present in title compound 2 (P21/n). Both compounds achieve complementarity in their crystal packing, but each arises from different inter­molecular inter­actions.

[Figure 13]
Figure 13
Hirshfeld surface evaluated over curvedness for title compound 2, viewed from the side (a) and top (b), (c).

The 2D fingerprint plot for compound 2 (Fig. 14[link]) has the following features: it is quasi-symmetric, C⋯H/H⋯C inter­actions account for almost half of the contacts (44.9%) followed by H⋯H (40.5%), with fewer contributions from H⋯O/O⋯H (10.7%) and C⋯C (3.4%) inter­actions. C⋯H/H⋯C contacts have broad peaks spread out over most of the plot, H⋯H contacts also cover a broad range of distances and several types of inter­actions, and H⋯O/O⋯H contacts have wide peaks and fewer weak contacts. In the same way as for compound 1, all contacts in Fig. 14[link] include atoms from the solvent, DMF in the case of compound 2. Likewise, contacts of the C⋯O/O⋯C (0.1%), C⋯N/N⋯C (0.4%), and H⋯N/N⋯H (0.1%) types are not identified from short-contact inter­action analysis because the distances are long. Contacts of the C⋯O/O⋯C type arise from carboxyl­ate and DMF oxygen atoms to pyrene ring carbons (as in compound 1), the C⋯N/N⋯C type go from the DMF nitro­gen atom to pyrene ring carbons, and H⋯N/N⋯H from the DMF nitro­gen atom to pyrene ring hydrogens.

[Figure 14]
Figure 14
Fingerprint plot analysis for title compound 2.

6. Database survey

A search of the Cambridge Structural Database (CSD Version 5.44, June 2023 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the two reported compounds revealed a total of five hits containing polycyclic aromatic copper dimers. None of the these was an exact match to the pyrene moieties of the title compounds. Four of them included naphthalene moieties and the remaining structure contained phenanthrene. The four structures that contained naphthalene groups are catena-[tetra­kis­(μ4-naphthalene-2,6-di­carboxyl­ato)bis­(μ2-4,4′-bi­pyridine)­tet­ra­copper(II) bis­(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-4,4′-bi­pyridine)­dicopper(II)] (BUSQOW; Kanoo et al., 2009[Kanoo, P., Matsuda, M., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860-5866.]), tetra­kis­(μ-naphthalene-2-carboxyl­ato)bis­(aceto­nitrile)­dicop­per aceto­nitrile solvate (CUJFAR; Liu et al., 2020[Liu, K.-G., Yao, Z.-X., Li, J.-Z. & Yan, X.-W. (2020). Inorg. Chim. Acta, 508, 119608.]), tetra­kis­(μ-2-naphtho­ato)bis­(aceto­nitrile)­dicopper aceto­nitrile solvate (WUNRII; Goldberg et al., 2015[Goldberg, A. E., Kiskin, M. A., Nikolaevskii, S. A., Zorina-Tikhonova, E. N., Aleksandrov, G. G., Sidorov, A. A. & Eremenko, I. L. (2015). Russ. J. Coord. Chem. 41, 163.]), and tetra­kis­(μ-2-naphtho­ato)bis­(2,3-di­methyl­pyridine)­dicopper (WUNROO; Goldberg et al., 2015[Goldberg, A. E., Kiskin, M. A., Nikolaevskii, S. A., Zorina-Tikhonova, E. N., Aleksandrov, G. G., Sidorov, A. A. & Eremenko, I. L. (2015). Russ. J. Coord. Chem. 41, 163.]). The axial ligands present in CUJFAR, WUNRII, and WUNROO are involved in inter­molecular inter­actions with adjacent mol­ecules that contribute to the crystal-packing array. The naphthalene ligands in the above-mentioned structures participate in ππ inter­actions. Moreover, the nature of the axial ligands determines the contribution of π inter­actions to the crystal packing. For example, in WUNROO, the properties and position of the 2,3-lutidine (aromatic heterocycle mol­ecule) allowed for enhanced π inter­actions. In contrast, CUJFAR and WUNRII contain aceto­nitrile (non-aromatic linear mol­ecule) as their axial ligand and present mainly C⋯C and C⋯H inter­actions. Finally, the last hit, corresponding to tetra­kis­(μ2-phenanthrene-9-carboxyl­ato)bis­(N,N-di­methyl­formamide)­dicopper(II) (WUZCEA; Wang et al., 2010[Wang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377-1385.]) resembles title compound 2 in having a phenanthrene instead of a pyrene equatorial ligand, resulting in a change of the space-group setting from P21/c (WUZCEA) to P21/n (2). In terms of the packing structure, WUZCEA exhibits fewer short contacts, C⋯C and O⋯H type inter­actions than compound 2, which presents C⋯C, H⋯H, C⋯H, and O⋯H type inter­actions. Nonetheless, WUZCEA exhibits more ππ inter­actions than compound 2. Similarly to the other compounds reported in this survey, in WUZCEA the axial ligands play an important role in the crystal packing of the mol­ecules.

7. Synthesis and crystallization

All the chemicals were purchased from Sigma-Aldrich. The chemicals and solvents were used as supplied without further purification. IR spectra were recorded on a FT–IR Frontier Perkin Elmer spectrophotometer with ATR modality in the region 4000–600 cm−1. UV–vis spectra were recorded on a UV-1900 spectrophotometer in the range 200–1000 nm using a 1 cm path-length cell for solution in DMSO or DMF. The CVs were recorded in a BioLogic potentiostat using a solution of 0.1 M TBAPF6 with a glassy carbon working electrode, a graphite rod counter-electrode, and a 0.01 M AgNO3 silver wire pseudo-reference electrode corrected with ferrocene.

Synthesis of [Cu2(pyr-COO)4(DMSO)2] (1):

1-Pyrene carb­oxy­lic acid (0.084 g, 0.3 mmol) was dissolved in 18 mL of methanol and deprotonated with tri­ethyl­amine (0.034 g, 0.23 mmol). The pyrene-1-carboxyl­ate solution was added slowly to a methano­lic solution of Cu(NO3)2·H2O (0.0819 g, 0.033 mmol) at room temperature, which afforded a green solid. The mixture was stirred for 24 h and was then filtered out. The solid was dissolved in DMSO for crystallization. Single crystals were obtained by vapor diffusion of methanol into dimethyl sulfoxide after one week. Yield: (85.6 mg, 68%). IR (ATR); ν (cm−1) : 3041 (w), 1920 (w), 1672 (w), 1589 (s), 1506 (m), 1392 (s), 1359 (s), 1312 (m), 1165 (m), 838 (s), 710 (s), 619 (m). UV–vis; λmax (DMSO, nm) 280 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), 335 (pyr–COO, ππ* transition) (Haldar et al., 2016[Haldar, R., Prasad, K., Samanta, P. K., Pati, S. & Maji, T. K. (2016). Cryst. Growth Des. 16, 82-91.]), 352 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), 379 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), and 739 (Cu, dd and MLCT transitions) (Wang et al., 2021[Wang, H. H., Li, J. Z., Nie, J., Yao, Z. X., Li, H. J., Liu, K. G. & Yan, X. W. (2021). Inorg. Chim Acta, 514, 120018.]).

Synthesis of [Cu2(pyr-COO)4(DMF)2] (2):

A similar synthetic procedure as for 1 was used. However, the crystallization process was different. The resulting solid was dissolved in DMF for crystallization. Single crystals were obtained by vapor diffusion of methanol into dimethyl formamide after one week. Yield: (87.1 mg, 69%). IR (ATR); ν (cm−1): 1655 (m), 1607(s), 1591 (s), 1385 (s), 1359 (s), 1314 (m), 1165 (m), 853 (s), 820 (s), 760 (s), 671 (m). UV–vis; λmax (DMF, nm) 283 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), 337 (pyr–COO, π-π-* transitions) (Haldar et al., 2016[Haldar, R., Prasad, K., Samanta, P. K., Pati, S. & Maji, T. K. (2016). Cryst. Growth Des. 16, 82-91.]), 352 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), 382 (pyr–COO) (Niko et al., 2012[Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177-6185.]; Johnpeter & Therrien, 2013[Johnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437-443.]), and 701 (Cu, dd and MLCT transitions) (Wang et al., 2021[Wang, H. H., Li, J. Z., Nie, J., Yao, Z. X., Li, H. J., Liu, K. G. & Yan, X. W. (2021). Inorg. Chim Acta, 514, 120018.]).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were included in geometrically calculated positions and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Cu2(C17H9O2)4(C2H6OS)2] [Cu2(C17H9O2)4(C3H7NO)2]
Mr 1264.30 1254.24
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 300
a, b, c (Å) 10.5283 (1), 11.8583 (2), 11.9401 (1) 10.54266 (13), 21.8888 (2), 12.66517 (15)
α, β, γ (°) 101.044 (1), 98.136 (1), 104.142 (1) 90, 100.1160 (11), 90
V3) 1390.69 (3) 2877.25 (6)
Z 1 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.19 1.46
Crystal size (mm) 0.12 × 0.11 × 0.09 0.12 × 0.08 × 0.04
 
Data collection
Diffractometer Rigaku SuperNova Hypix6000 Rigaku SuperNova Hypix6000
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.778, 0.818 0.844, 0.944
No. of measured, independent and observed [I > 2σ(I)] reflections 78157, 5097, 4827 15433, 5246, 4485
Rint 0.048 0.023
(sin θ/λ)max−1) 0.604 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.05 0.031, 0.091, 1.07
No. of reflections 5142 5246
No. of parameters 391 447
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.47 0.20, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis(dimethyl sulfoxide)tetrakis(µ-pyrene-1-carboxylato)dicopper(CuCu) (1) top
Crystal data top
[Cu2(C17H9O2)4(C2H6OS)2]Z = 1
Mr = 1264.30F(000) = 650
Triclinic, P1Dx = 1.510 Mg m3
a = 10.5283 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.8583 (2) ÅCell parameters from 5097 reflections
c = 11.9401 (1) Åθ = 0.8–0.8°
α = 101.044 (1)°µ = 2.19 mm1
β = 98.136 (1)°T = 100 K
γ = 104.142 (1)°Block, green
V = 1390.69 (3) Å30.12 × 0.11 × 0.09 mm
Data collection top
Rigaku SuperNova Hypix6000
diffractometer
5097 independent reflections
Radiation source: microsource4827 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.048
ω scansθmax = 68.6°, θmin = 3.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.778, Tmax = 0.818k = 1114
78157 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0369P)2 + 1.3914P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.45 e Å3
5142 reflectionsΔρmin = 0.46 e Å3
391 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00045 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.91294 (2)0.49438 (2)0.40919 (2)0.01418 (9)
S30.79851 (5)0.59369 (4)0.19711 (4)0.02605 (13)
O10.82175 (13)0.56000 (12)0.52641 (11)0.0228 (3)
O20.96841 (13)0.56908 (13)0.68455 (11)0.0257 (3)
O30.82877 (13)0.33234 (11)0.42304 (11)0.0229 (3)
O40.97457 (13)0.34410 (12)0.58282 (12)0.0236 (3)
O50.76843 (12)0.49904 (12)0.26558 (11)0.0223 (3)
C10.86206 (17)0.58347 (16)0.63416 (16)0.0172 (4)
C20.77238 (18)0.63064 (16)0.70712 (16)0.0179 (4)
C30.63637 (18)0.59548 (17)0.65730 (16)0.0199 (4)
H30.6068490.5452890.5809980.024*
C40.54310 (18)0.63170 (16)0.71598 (17)0.0199 (4)
H40.4507940.6030950.6812180.024*
C50.58426 (19)0.70972 (17)0.82549 (16)0.0207 (4)
C60.72345 (19)0.74971 (17)0.87799 (16)0.0193 (4)
C70.81763 (18)0.70674 (17)0.81909 (15)0.0186 (4)
C80.95692 (19)0.74954 (19)0.87781 (17)0.0256 (4)
H81.0221960.7233540.8407270.031*
C90.9957 (2)0.8256 (2)0.98378 (17)0.0294 (5)
H91.0875490.8504671.0199740.035*
C100.9021 (2)0.8703 (2)1.04378 (17)0.0281 (4)
C110.76560 (19)0.83241 (18)0.98852 (16)0.0222 (4)
C120.6704 (2)0.87714 (18)1.04386 (17)0.0237 (4)
C130.5324 (2)0.83475 (19)0.98846 (18)0.0276 (4)
H130.4686330.8639311.0252410.033*
C140.4911 (2)0.75446 (18)0.88537 (18)0.0260 (4)
H140.3984780.7268020.8515160.031*
C150.7158 (2)0.9604 (2)1.15152 (18)0.0302 (5)
H150.6539210.9930681.1879690.036*
C160.8488 (2)0.9958 (2)1.20560 (18)0.0360 (5)
H160.8771141.0510761.2793300.043*
C170.9414 (2)0.9512 (2)1.15288 (18)0.0357 (5)
H171.0325000.9757611.1912110.043*
C180.87448 (16)0.28873 (16)0.50314 (15)0.0154 (4)
C190.81254 (17)0.15973 (16)0.50049 (15)0.0153 (3)
C200.89333 (18)0.10243 (17)0.55814 (15)0.0186 (4)
H200.9767430.1487470.6061310.022*
C210.85498 (18)0.01959 (17)0.54708 (16)0.0194 (4)
H210.9118280.0556850.5879960.023*
C220.73365 (18)0.09086 (16)0.47652 (15)0.0180 (4)
C230.64539 (17)0.03391 (16)0.42348 (15)0.0154 (4)
C240.68319 (17)0.09253 (16)0.43646 (14)0.0147 (3)
C250.58634 (17)0.14480 (16)0.38548 (15)0.0169 (4)
H250.6079860.2291550.3952510.020*
C260.46483 (17)0.07596 (17)0.32380 (15)0.0180 (4)
H260.4022570.1136350.2935370.022*
C270.42811 (17)0.05156 (17)0.30298 (15)0.0183 (4)
C280.51893 (17)0.10641 (16)0.35411 (15)0.0170 (4)
C290.48514 (19)0.23307 (17)0.33528 (16)0.0215 (4)
C300.3614 (2)0.30173 (18)0.26544 (18)0.0278 (4)
H300.3379250.3864750.2521350.033*
C310.2734 (2)0.24735 (19)0.21585 (18)0.0289 (5)
H310.1900480.2950550.1686670.035*
C320.30546 (19)0.12393 (18)0.23425 (17)0.0239 (4)
H320.2436180.0878730.1998990.029*
C330.5800 (2)0.28605 (17)0.38834 (18)0.0258 (4)
H330.5592000.3706790.3753410.031*
C340.6964 (2)0.21894 (17)0.45530 (17)0.0236 (4)
H340.7561880.2568210.4897810.028*
C350.8858 (3)0.5371 (3)0.0929 (2)0.0514 (7)
H35A0.9708620.5309510.1329170.077*
H35B0.9029530.5912720.0408100.077*
H35C0.8316610.4576930.0473040.077*
C360.6437 (2)0.5714 (2)0.10162 (19)0.0337 (5)
H36A0.6056480.4860010.0648830.051*
H36B0.6587190.6161490.0414240.051*
H36C0.5815360.5998210.1460350.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01343 (14)0.01139 (15)0.01692 (14)0.00270 (10)0.00178 (10)0.00332 (10)
S30.0222 (2)0.0246 (3)0.0284 (3)0.00069 (19)0.00273 (18)0.0127 (2)
O10.0253 (7)0.0281 (8)0.0213 (7)0.0164 (6)0.0077 (5)0.0066 (6)
O20.0232 (7)0.0341 (8)0.0196 (6)0.0117 (6)0.0046 (5)0.0008 (6)
O30.0241 (7)0.0138 (7)0.0260 (7)0.0003 (5)0.0032 (5)0.0067 (5)
O40.0217 (6)0.0179 (7)0.0260 (7)0.0020 (5)0.0037 (5)0.0087 (5)
O50.0172 (6)0.0246 (7)0.0240 (7)0.0019 (5)0.0011 (5)0.0117 (6)
C10.0183 (9)0.0105 (8)0.0233 (9)0.0034 (7)0.0065 (7)0.0043 (7)
C20.0205 (9)0.0149 (9)0.0216 (9)0.0071 (7)0.0065 (7)0.0077 (7)
C30.0200 (9)0.0160 (9)0.0247 (9)0.0043 (7)0.0050 (7)0.0076 (8)
C40.0161 (8)0.0166 (9)0.0286 (10)0.0045 (7)0.0046 (7)0.0093 (8)
C50.0230 (9)0.0170 (9)0.0261 (9)0.0065 (8)0.0085 (7)0.0105 (8)
C60.0246 (9)0.0177 (9)0.0207 (9)0.0088 (8)0.0093 (7)0.0095 (7)
C70.0230 (9)0.0174 (9)0.0194 (9)0.0085 (7)0.0075 (7)0.0079 (7)
C80.0227 (10)0.0317 (11)0.0230 (9)0.0110 (8)0.0051 (8)0.0031 (8)
C90.0214 (9)0.0411 (13)0.0223 (10)0.0119 (9)0.0006 (8)0.0010 (9)
C100.0281 (10)0.0356 (12)0.0237 (10)0.0144 (9)0.0051 (8)0.0070 (9)
C110.0269 (10)0.0230 (10)0.0212 (9)0.0104 (8)0.0089 (8)0.0082 (8)
C120.0307 (10)0.0239 (10)0.0226 (9)0.0119 (8)0.0120 (8)0.0096 (8)
C130.0272 (10)0.0292 (11)0.0344 (11)0.0127 (9)0.0158 (9)0.0130 (9)
C140.0228 (9)0.0246 (11)0.0347 (11)0.0073 (8)0.0104 (8)0.0126 (9)
C150.0354 (11)0.0349 (12)0.0251 (10)0.0148 (10)0.0135 (9)0.0065 (9)
C160.0412 (12)0.0446 (14)0.0207 (10)0.0166 (11)0.0057 (9)0.0016 (9)
C170.0319 (11)0.0498 (15)0.0235 (10)0.0167 (10)0.0020 (9)0.0007 (10)
C180.0149 (8)0.0150 (9)0.0174 (8)0.0058 (7)0.0062 (7)0.0022 (7)
C190.0171 (8)0.0128 (9)0.0160 (8)0.0044 (7)0.0052 (7)0.0019 (7)
C200.0168 (8)0.0188 (9)0.0199 (9)0.0053 (7)0.0027 (7)0.0035 (7)
C210.0199 (9)0.0199 (10)0.0225 (9)0.0099 (7)0.0051 (7)0.0080 (8)
C220.0219 (9)0.0158 (9)0.0199 (9)0.0079 (7)0.0086 (7)0.0061 (7)
C230.0173 (8)0.0143 (9)0.0157 (8)0.0049 (7)0.0066 (7)0.0033 (7)
C240.0167 (8)0.0136 (9)0.0150 (8)0.0050 (7)0.0065 (6)0.0028 (7)
C250.0192 (8)0.0133 (9)0.0201 (9)0.0058 (7)0.0063 (7)0.0052 (7)
C260.0175 (8)0.0201 (10)0.0206 (9)0.0087 (7)0.0061 (7)0.0082 (7)
C270.0172 (8)0.0198 (10)0.0176 (8)0.0036 (7)0.0055 (7)0.0041 (7)
C280.0184 (8)0.0151 (9)0.0179 (8)0.0039 (7)0.0071 (7)0.0036 (7)
C290.0239 (9)0.0166 (10)0.0232 (9)0.0032 (8)0.0071 (7)0.0038 (8)
C300.0294 (10)0.0152 (10)0.0331 (11)0.0008 (8)0.0053 (8)0.0016 (8)
C310.0210 (9)0.0255 (11)0.0314 (11)0.0020 (8)0.0000 (8)0.0005 (9)
C320.0202 (9)0.0255 (11)0.0239 (9)0.0048 (8)0.0021 (7)0.0045 (8)
C330.0350 (11)0.0126 (9)0.0333 (11)0.0083 (8)0.0128 (9)0.0074 (8)
C340.0310 (10)0.0167 (10)0.0295 (10)0.0126 (8)0.0105 (8)0.0098 (8)
C350.0459 (14)0.077 (2)0.0506 (15)0.0258 (14)0.0248 (12)0.0384 (15)
C360.0270 (11)0.0388 (13)0.0342 (11)0.0053 (9)0.0054 (9)0.0195 (10)
Geometric parameters (Å, º) top
Cu1—Cu1i2.5934 (5)C16—H160.9500
Cu1—O11.9530 (13)C16—C171.387 (3)
Cu1—O2i1.9779 (13)C17—H170.9500
Cu1—O31.9586 (13)C18—C191.502 (2)
Cu1—O4i1.9672 (13)C19—C201.398 (3)
Cu1—O52.1441 (12)C19—C241.420 (2)
S3—O51.5098 (13)C20—H200.9500
S3—C351.774 (3)C20—C211.379 (3)
S3—C361.782 (2)C21—H210.9500
O1—C11.250 (2)C21—C221.397 (3)
O2—C11.260 (2)C22—C231.423 (2)
O3—C181.263 (2)C22—C341.435 (3)
O4—C181.259 (2)C23—C241.426 (3)
C1—C21.506 (2)C23—C281.433 (2)
C2—C31.397 (3)C24—C251.439 (2)
C2—C71.406 (3)C25—H250.9500
C3—H30.9500C25—C261.356 (3)
C3—C41.388 (3)C26—H260.9500
C4—H40.9500C26—C271.429 (3)
C4—C51.391 (3)C27—C281.414 (3)
C5—C61.432 (3)C27—C321.402 (3)
C5—C141.436 (3)C28—C291.421 (3)
C6—C71.430 (3)C29—C301.403 (3)
C6—C111.423 (3)C29—C331.440 (3)
C7—C81.452 (3)C30—H300.9500
C8—H80.9500C30—C311.381 (3)
C8—C91.348 (3)C31—H310.9500
C9—H90.9500C31—C321.385 (3)
C9—C101.440 (3)C32—H320.9500
C10—C111.416 (3)C33—H330.9500
C10—C171.401 (3)C33—C341.333 (3)
C11—C121.427 (3)C34—H340.9500
C12—C131.429 (3)C35—H35A0.9800
C12—C151.402 (3)C35—H35B0.9800
C13—H130.9500C35—H35C0.9800
C13—C141.345 (3)C36—H36A0.9800
C14—H140.9500C36—H36B0.9800
C15—H150.9500C36—H36C0.9800
C15—C161.381 (3)
O1—Cu1—Cu1i82.80 (4)C15—C16—C17120.4 (2)
O1—Cu1—O2i169.36 (5)C17—C16—H16119.8
O1—Cu1—O390.10 (6)C10—C17—H17119.6
O1—Cu1—O4i90.57 (6)C16—C17—C10120.8 (2)
O1—Cu1—O593.90 (5)C16—C17—H17119.6
O2i—Cu1—Cu1i86.57 (4)O3—C18—C19118.75 (15)
O2i—Cu1—O596.67 (5)O4—C18—O3124.48 (16)
O3—Cu1—Cu1i85.59 (4)O4—C18—C19116.65 (15)
O3—Cu1—O2i89.71 (6)C20—C19—C18116.52 (15)
O3—Cu1—O4i169.21 (5)C20—C19—C24119.37 (16)
O3—Cu1—O597.61 (5)C24—C19—C18123.93 (16)
O4i—Cu1—Cu1i83.81 (4)C19—C20—H20119.2
O4i—Cu1—O2i87.65 (6)C21—C20—C19121.65 (17)
O4i—Cu1—O593.09 (5)C21—C20—H20119.2
O5—Cu1—Cu1i175.43 (4)C20—C21—H21119.6
O5—S3—C35104.69 (11)C20—C21—C22120.87 (17)
O5—S3—C36104.05 (9)C22—C21—H21119.6
C35—S3—C3698.32 (12)C21—C22—C23118.55 (17)
C1—O1—Cu1125.53 (12)C21—C22—C34122.07 (17)
C1—O2—Cu1i119.65 (12)C23—C22—C34119.38 (17)
C18—O3—Cu1122.16 (11)C22—C23—C24120.75 (16)
C18—O4—Cu1i123.81 (12)C22—C23—C28118.73 (16)
S3—O5—Cu1121.12 (7)C24—C23—C28120.49 (16)
O1—C1—O2125.44 (16)C19—C24—C23118.40 (16)
O1—C1—C2115.73 (15)C19—C24—C25123.84 (16)
O2—C1—C2118.82 (16)C23—C24—C25117.75 (16)
C3—C2—C1116.26 (16)C24—C25—H25119.4
C3—C2—C7119.57 (17)C26—C25—C24121.27 (17)
C7—C2—C1124.17 (16)C26—C25—H25119.4
C2—C3—H3119.0C25—C26—H26119.0
C4—C3—C2121.93 (18)C25—C26—C27121.94 (17)
C4—C3—H3119.0C27—C26—H26119.0
C3—C4—H4119.9C28—C27—C26118.59 (16)
C3—C4—C5120.23 (17)C32—C27—C26122.41 (17)
C5—C4—H4119.9C32—C27—C28119.00 (18)
C4—C5—C6119.22 (17)C27—C28—C23119.75 (17)
C4—C5—C14121.52 (17)C27—C28—C29119.92 (17)
C6—C5—C14119.22 (18)C29—C28—C23120.33 (17)
C7—C6—C5119.90 (17)C28—C29—C33118.50 (17)
C11—C6—C5119.03 (17)C30—C29—C28118.98 (18)
C11—C6—C7121.07 (17)C30—C29—C33122.51 (18)
C2—C7—C6119.02 (17)C29—C30—H30119.7
C2—C7—C8123.80 (17)C31—C30—C29120.68 (19)
C6—C7—C8117.12 (17)C31—C30—H30119.7
C7—C8—H8119.3C30—C31—H31119.7
C9—C8—C7121.48 (18)C30—C31—C32120.63 (18)
C9—C8—H8119.3C32—C31—H31119.7
C8—C9—H9119.0C27—C32—H32119.6
C8—C9—C10122.02 (19)C31—C32—C27120.79 (19)
C10—C9—H9119.0C31—C32—H32119.6
C11—C10—C9118.25 (18)C29—C33—H33119.3
C17—C10—C9122.62 (19)C34—C33—C29121.45 (18)
C17—C10—C11119.11 (19)C34—C33—H33119.3
C6—C11—C12120.06 (18)C22—C34—H34119.2
C10—C11—C6120.03 (17)C33—C34—C22121.56 (18)
C10—C11—C12119.91 (18)C33—C34—H34119.2
C11—C12—C13119.04 (18)S3—C35—H35A109.5
C15—C12—C11118.54 (19)S3—C35—H35B109.5
C15—C12—C13122.42 (18)S3—C35—H35C109.5
C12—C13—H13119.3H35A—C35—H35B109.5
C14—C13—C12121.39 (18)H35A—C35—H35C109.5
C14—C13—H13119.3H35B—C35—H35C109.5
C5—C14—H14119.4S3—C36—H36A109.5
C13—C14—C5121.22 (19)S3—C36—H36B109.5
C13—C14—H14119.4S3—C36—H36C109.5
C12—C15—H15119.4H36A—C36—H36B109.5
C16—C15—C12121.21 (19)H36A—C36—H36C109.5
C16—C15—H15119.4H36B—C36—H36C109.5
C15—C16—H16119.8
Cu1—O1—C1—O20.3 (3)C13—C12—C15—C16177.1 (2)
Cu1—O1—C1—C2178.52 (11)C14—C5—C6—C7179.52 (16)
Cu1i—O2—C1—O10.5 (3)C14—C5—C6—C110.3 (3)
Cu1i—O2—C1—C2179.35 (12)C15—C12—C13—C14179.7 (2)
Cu1—O3—C18—O41.9 (2)C15—C16—C17—C100.5 (4)
Cu1—O3—C18—C19173.80 (11)C17—C10—C11—C6179.6 (2)
Cu1i—O4—C18—O34.8 (3)C17—C10—C11—C120.3 (3)
Cu1i—O4—C18—C19171.03 (11)C18—C19—C20—C21170.08 (16)
O1—C1—C2—C327.4 (2)C18—C19—C24—C23168.60 (15)
O1—C1—C2—C7152.14 (18)C18—C19—C24—C2512.7 (3)
O2—C1—C2—C3151.58 (17)C19—C20—C21—C220.6 (3)
O2—C1—C2—C728.9 (3)C19—C24—C25—C26179.09 (16)
O3—C18—C19—C20155.26 (16)C20—C19—C24—C236.3 (2)
O3—C18—C19—C2419.7 (2)C20—C19—C24—C25172.45 (16)
O4—C18—C19—C2020.8 (2)C20—C21—C22—C234.9 (3)
O4—C18—C19—C24164.21 (16)C20—C21—C22—C34174.44 (17)
C1—C2—C3—C4179.28 (16)C21—C22—C23—C243.6 (2)
C1—C2—C7—C6177.40 (16)C21—C22—C23—C28177.99 (16)
C1—C2—C7—C80.3 (3)C21—C22—C34—C33179.60 (18)
C2—C3—C4—C53.1 (3)C22—C23—C24—C191.9 (2)
C2—C7—C8—C9177.8 (2)C22—C23—C24—C25176.86 (15)
C3—C2—C7—C62.1 (3)C22—C23—C28—C27178.38 (15)
C3—C2—C7—C8179.20 (18)C22—C23—C28—C292.4 (2)
C3—C4—C5—C61.5 (3)C23—C22—C34—C331.0 (3)
C3—C4—C5—C14176.21 (17)C23—C24—C25—C262.2 (2)
C4—C5—C6—C71.7 (3)C23—C28—C29—C30179.02 (17)
C4—C5—C6—C11178.10 (17)C23—C28—C29—C330.6 (3)
C4—C5—C14—C13176.44 (19)C24—C19—C20—C215.2 (3)
C5—C6—C7—C23.5 (3)C24—C23—C28—C273.2 (2)
C5—C6—C7—C8179.18 (17)C24—C23—C28—C29175.97 (16)
C5—C6—C11—C10178.02 (18)C24—C25—C26—C272.0 (3)
C5—C6—C11—C121.9 (3)C25—C26—C27—C283.7 (3)
C6—C5—C14—C131.3 (3)C25—C26—C27—C32176.59 (17)
C6—C7—C8—C90.6 (3)C26—C27—C28—C231.0 (2)
C6—C11—C12—C132.0 (3)C26—C27—C28—C29179.83 (16)
C6—C11—C12—C15178.66 (18)C26—C27—C32—C31179.91 (18)
C7—C2—C3—C41.2 (3)C27—C28—C29—C300.2 (3)
C7—C6—C11—C102.2 (3)C27—C28—C29—C33179.83 (16)
C7—C6—C11—C12177.90 (17)C28—C23—C24—C19176.43 (15)
C7—C8—C9—C101.1 (3)C28—C23—C24—C254.8 (2)
C8—C9—C10—C110.0 (3)C28—C27—C32—C310.3 (3)
C8—C9—C10—C17178.7 (2)C28—C29—C30—C310.2 (3)
C9—C10—C11—C61.7 (3)C28—C29—C33—C341.0 (3)
C9—C10—C11—C12178.40 (19)C29—C30—C31—C320.1 (3)
C9—C10—C17—C16177.4 (2)C29—C33—C34—C220.8 (3)
C10—C11—C12—C13177.94 (19)C30—C29—C33—C34179.34 (19)
C10—C11—C12—C151.4 (3)C30—C31—C32—C270.4 (3)
C11—C6—C7—C2176.30 (17)C32—C27—C28—C23179.27 (16)
C11—C6—C7—C81.0 (3)C32—C27—C28—C290.1 (3)
C11—C10—C17—C161.3 (4)C33—C29—C30—C31179.79 (19)
C11—C12—C13—C140.4 (3)C34—C22—C23—C24175.77 (16)
C11—C12—C15—C162.3 (3)C34—C22—C23—C282.6 (2)
C12—C13—C14—C51.3 (3)C35—S3—O5—Cu184.29 (13)
C12—C15—C16—C171.3 (4)C36—S3—O5—Cu1173.01 (10)
Symmetry code: (i) x+2, y+1, z+1.
Bis(dimethylformamide)tetrakis(µ-pyrene-1-carboxylato)dicopper(CuCu) (2) top
Crystal data top
[Cu2(C17H9O2)4(C3H7NO)2]F(000) = 1292
Mr = 1254.24Dx = 1.448 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.54266 (13) ÅCell parameters from 4485 reflections
b = 21.8888 (2) Åθ = 0.9–0.9°
c = 12.66517 (15) ŵ = 1.46 mm1
β = 100.1160 (11)°T = 300 K
V = 2877.25 (6) Å3Block, green
Z = 20.12 × 0.08 × 0.04 mm
Data collection top
Rigaku SuperNova Hypix6000
diffractometer
5246 independent reflections
Radiation source: microsource4485 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.023
ω scansθmax = 68.4°, θmin = 4.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1210
Tmin = 0.844, Tmax = 0.944k = 2626
15433 measured reflectionsl = 1315
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4863P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5246 reflectionsΔρmax = 0.20 e Å3
447 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.10029 (2)0.46339 (2)0.01883 (2)0.03473 (9)
O10.04514 (13)0.55286 (6)0.15584 (11)0.0493 (3)
O20.12690 (14)0.49169 (7)0.12241 (11)0.0535 (4)
O30.03477 (13)0.59478 (6)0.04766 (13)0.0547 (4)
O40.20382 (12)0.53317 (6)0.08069 (12)0.0503 (3)
O50.24588 (12)0.39180 (6)0.04172 (11)0.0495 (3)
N10.2843 (2)0.29133 (9)0.0207 (2)0.0861 (7)
C10.05677 (18)0.53058 (8)0.17817 (15)0.0413 (4)
C20.09464 (19)0.55034 (9)0.28124 (15)0.0434 (4)
C30.0038 (2)0.55820 (11)0.36868 (17)0.0550 (5)
H30.0890160.5553640.3588960.066*
C40.0220 (2)0.57005 (12)0.46922 (17)0.0609 (6)
H40.0458140.5758500.5261100.073*
C50.1484 (2)0.57351 (10)0.48705 (16)0.0516 (5)
C60.25011 (19)0.56952 (8)0.39786 (15)0.0425 (4)
C70.22369 (18)0.55878 (8)0.29303 (14)0.0406 (4)
C80.3304 (2)0.55944 (10)0.20505 (16)0.0492 (5)
H80.3146920.5544630.1355570.059*
C90.4526 (2)0.56709 (10)0.22076 (18)0.0559 (5)
H90.5190350.5677190.1617630.067*
C100.4827 (2)0.57427 (10)0.32593 (18)0.0541 (5)
C110.3803 (2)0.57542 (9)0.41406 (16)0.0477 (5)
C120.4058 (2)0.58161 (11)0.51984 (18)0.0590 (6)
C130.5344 (3)0.58709 (14)0.5332 (2)0.0805 (8)
H130.5531110.5910800.6019750.097*
C140.6329 (3)0.58669 (16)0.4474 (3)0.0885 (9)
H140.7172680.5908930.4586140.106*
C150.6092 (2)0.58014 (13)0.3441 (2)0.0735 (7)
H150.6774860.5796440.2865620.088*
C160.3008 (3)0.58189 (13)0.60718 (19)0.0714 (7)
H160.3177310.5839650.6767220.086*
C170.1801 (3)0.57930 (12)0.59274 (17)0.0649 (6)
H170.1140730.5812500.6519320.078*
C180.15237 (17)0.58494 (8)0.07943 (14)0.0390 (4)
C190.23279 (18)0.63965 (8)0.11993 (14)0.0409 (4)
C200.1663 (2)0.69272 (10)0.1372 (2)0.0586 (5)
H200.0770200.6931140.1181510.070*
C210.2276 (2)0.74439 (10)0.1813 (2)0.0676 (6)
H210.1797760.7792360.1895800.081*
C220.3608 (2)0.74503 (10)0.21386 (19)0.0568 (5)
C230.43190 (18)0.69221 (8)0.19576 (16)0.0446 (4)
C240.36931 (17)0.63922 (8)0.14546 (14)0.0386 (4)
C250.44932 (18)0.58915 (9)0.12436 (16)0.0463 (4)
H250.4110760.5549350.0885470.056*
C260.5787 (2)0.59043 (10)0.15518 (18)0.0529 (5)
H260.6272950.5575350.1383650.064*
C270.6423 (2)0.64062 (10)0.2125 (2)0.0576 (5)
C280.5683 (2)0.69203 (9)0.23145 (19)0.0545 (5)
C300.5536 (3)0.79524 (12)0.3041 (3)0.0912 (10)
H300.5927410.8282100.3432600.109*0.65 (3)
H30A0.5939110.8294600.3383550.109*0.35 (3)
C310.4277 (3)0.79689 (11)0.2668 (3)0.0789 (8)
H310.3819050.8323600.2750010.095*
C350.2118 (2)0.34049 (11)0.0132 (2)0.0745 (7)
H350.1254850.3354920.0170350.089*
C360.4184 (3)0.29451 (15)0.0634 (3)0.0917 (9)
H36A0.4332050.2809560.1366520.138*
H36B0.4475140.3359280.0602750.138*
H36C0.4650310.2688010.0221430.138*
C29A0.6250 (15)0.7471 (9)0.2866 (17)0.081 (4)0.65 (3)
C32A0.7569 (13)0.7376 (6)0.3409 (17)0.094 (4)0.65 (3)
H32A0.7955170.7670200.3889070.112*0.65 (3)
C33A0.8273 (12)0.6859 (6)0.3235 (18)0.107 (4)0.65 (3)
H33A0.9140600.6831920.3540530.128*0.65 (3)
C34A0.7689 (13)0.6389 (5)0.2613 (15)0.077 (4)0.65 (3)
H34A0.8174160.6045090.2519300.092*0.65 (3)
C37A0.225 (3)0.2297 (6)0.014 (3)0.119 (6)0.45 (5)
H37A0.1335420.2332930.0051270.179*0.45 (5)
H37B0.2464980.2099580.0829870.179*0.45 (5)
H37C0.2580810.2059000.0385340.179*0.45 (5)
C29B0.636 (3)0.7361 (17)0.292 (3)0.072 (5)0.35 (3)
C32B0.771 (2)0.7459 (12)0.294 (2)0.083 (5)0.35 (3)
H32B0.8086130.7843460.3068800.099*0.35 (3)
C33B0.8402 (19)0.6974 (11)0.278 (2)0.083 (5)0.35 (3)
H33B0.9292800.6993070.2981590.099*0.35 (3)
C34B0.786 (2)0.6436 (12)0.233 (2)0.071 (5)0.35 (3)
H34B0.8358390.6113190.2155150.085*0.35 (3)
C37B0.2384 (17)0.2354 (9)0.043 (3)0.138 (7)0.55 (5)
H37D0.2081090.2059370.0031760.208*0.55 (5)
H37E0.3082330.2181620.0724210.208*0.55 (5)
H37F0.1694840.2461630.0998670.208*0.55 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03029 (14)0.02935 (14)0.04509 (16)0.00122 (10)0.00818 (10)0.00401 (10)
O10.0472 (8)0.0509 (8)0.0537 (8)0.0076 (6)0.0190 (6)0.0130 (6)
O20.0561 (8)0.0551 (8)0.0540 (8)0.0164 (7)0.0231 (7)0.0145 (7)
O30.0357 (7)0.0412 (7)0.0818 (10)0.0001 (6)0.0042 (7)0.0097 (7)
O40.0357 (7)0.0342 (7)0.0776 (9)0.0038 (5)0.0003 (6)0.0007 (6)
O50.0388 (7)0.0394 (7)0.0692 (9)0.0071 (6)0.0068 (6)0.0055 (6)
N10.0663 (14)0.0417 (11)0.146 (2)0.0161 (10)0.0074 (14)0.0052 (12)
C10.0434 (10)0.0361 (9)0.0454 (10)0.0060 (8)0.0105 (8)0.0010 (7)
C20.0456 (10)0.0430 (10)0.0425 (9)0.0020 (8)0.0104 (8)0.0025 (8)
C30.0405 (11)0.0712 (14)0.0531 (11)0.0039 (10)0.0073 (9)0.0057 (10)
C40.0482 (12)0.0840 (16)0.0469 (11)0.0021 (11)0.0019 (9)0.0100 (11)
C50.0543 (12)0.0574 (12)0.0426 (10)0.0041 (10)0.0072 (9)0.0073 (9)
C60.0456 (10)0.0383 (9)0.0449 (10)0.0026 (8)0.0111 (8)0.0033 (7)
C70.0428 (10)0.0369 (9)0.0423 (9)0.0026 (8)0.0084 (8)0.0023 (7)
C80.0515 (12)0.0514 (11)0.0435 (10)0.0046 (9)0.0051 (8)0.0039 (8)
C90.0468 (12)0.0589 (13)0.0579 (12)0.0059 (10)0.0023 (9)0.0066 (10)
C100.0446 (11)0.0504 (12)0.0681 (13)0.0026 (9)0.0120 (10)0.0083 (10)
C110.0500 (11)0.0398 (10)0.0562 (11)0.0004 (8)0.0173 (9)0.0073 (8)
C120.0624 (14)0.0587 (13)0.0616 (13)0.0021 (11)0.0265 (11)0.0147 (10)
C130.0717 (18)0.091 (2)0.0900 (19)0.0077 (15)0.0449 (16)0.0277 (15)
C140.0535 (15)0.108 (2)0.112 (2)0.0050 (15)0.0361 (16)0.0313 (19)
C150.0440 (12)0.0824 (18)0.0947 (19)0.0009 (12)0.0138 (12)0.0180 (14)
C160.0892 (19)0.0800 (17)0.0493 (13)0.0006 (14)0.0238 (12)0.0166 (11)
C170.0734 (16)0.0784 (16)0.0419 (11)0.0036 (13)0.0074 (10)0.0133 (10)
C180.0341 (9)0.0393 (10)0.0433 (9)0.0030 (7)0.0058 (7)0.0026 (7)
C190.0398 (10)0.0353 (9)0.0468 (9)0.0033 (8)0.0058 (7)0.0005 (7)
C200.0400 (11)0.0484 (12)0.0834 (15)0.0029 (9)0.0002 (10)0.0094 (11)
C210.0535 (13)0.0413 (11)0.1047 (18)0.0072 (10)0.0052 (12)0.0174 (12)
C220.0525 (12)0.0392 (10)0.0766 (14)0.0029 (9)0.0060 (10)0.0102 (10)
C230.0421 (10)0.0358 (9)0.0555 (11)0.0051 (8)0.0078 (8)0.0017 (8)
C240.0387 (9)0.0344 (9)0.0433 (9)0.0040 (7)0.0086 (7)0.0004 (7)
C250.0418 (10)0.0394 (10)0.0590 (11)0.0062 (8)0.0127 (9)0.0089 (8)
C260.0429 (11)0.0416 (10)0.0765 (14)0.0016 (9)0.0163 (10)0.0092 (9)
C270.0403 (11)0.0464 (11)0.0840 (15)0.0054 (9)0.0052 (10)0.0069 (11)
C280.0440 (11)0.0393 (11)0.0772 (14)0.0071 (9)0.0021 (10)0.0063 (10)
C300.0704 (18)0.0472 (14)0.146 (3)0.0085 (13)0.0075 (17)0.0371 (16)
C310.0702 (17)0.0391 (12)0.122 (2)0.0008 (11)0.0027 (15)0.0243 (13)
C350.0462 (12)0.0460 (13)0.125 (2)0.0083 (10)0.0034 (13)0.0042 (14)
C360.0719 (18)0.083 (2)0.118 (2)0.0415 (16)0.0091 (16)0.0200 (17)
C29A0.048 (5)0.039 (7)0.143 (7)0.010 (6)0.018 (4)0.025 (5)
C32A0.056 (5)0.065 (4)0.146 (10)0.013 (3)0.021 (6)0.027 (6)
C33A0.044 (4)0.073 (4)0.186 (12)0.007 (3)0.026 (5)0.008 (7)
C34A0.042 (4)0.049 (3)0.139 (10)0.002 (3)0.012 (4)0.009 (4)
C37A0.137 (11)0.038 (4)0.174 (15)0.001 (5)0.006 (11)0.011 (6)
C29B0.059 (8)0.036 (10)0.118 (11)0.018 (6)0.005 (7)0.011 (6)
C32B0.050 (5)0.073 (9)0.122 (14)0.027 (5)0.007 (8)0.034 (9)
C33B0.043 (5)0.079 (11)0.124 (12)0.022 (6)0.009 (7)0.040 (9)
C34B0.025 (5)0.088 (11)0.099 (10)0.011 (5)0.013 (5)0.040 (8)
C37B0.133 (8)0.050 (5)0.239 (19)0.009 (5)0.051 (12)0.011 (10)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6295 (5)C20—H200.9300
Cu1—O1i1.9570 (13)C20—C211.372 (3)
Cu1—O21.9593 (13)C21—H210.9300
Cu1—O3i1.9841 (13)C21—C221.393 (3)
Cu1—O41.9590 (13)C22—C231.418 (3)
Cu1—O52.1769 (13)C22—C311.439 (3)
O1—C11.257 (2)C23—C241.428 (2)
O2—C11.260 (2)C23—C281.430 (3)
O3—C181.253 (2)C24—C251.436 (3)
O4—C181.255 (2)C25—H250.9300
O5—C351.215 (3)C25—C261.351 (3)
N1—C351.313 (3)C26—H260.9300
N1—C361.425 (4)C26—C271.419 (3)
N1—C37A1.481 (10)C27—C281.414 (3)
N1—C37B1.498 (11)C27—C34A1.369 (14)
C1—C21.495 (3)C27—C34B1.49 (2)
C2—C31.389 (3)C28—C29A1.466 (15)
C2—C71.407 (3)C28—C29B1.35 (3)
C3—H30.9300C30—H300.9300
C3—C41.373 (3)C30—H30A0.9300
C4—H40.9300C30—C311.329 (4)
C4—C51.392 (3)C30—C29A1.34 (2)
C5—C61.417 (3)C30—C29B1.59 (4)
C5—C171.441 (3)C31—H310.9300
C6—C71.423 (3)C35—H350.9300
C6—C111.429 (3)C36—H36A0.9600
C7—C81.438 (3)C36—H36B0.9600
C8—H80.9300C36—H36C0.9600
C8—C91.349 (3)C29A—C32A1.45 (2)
C9—H90.9300C32A—H32A0.9300
C9—C101.431 (3)C32A—C33A1.391 (18)
C10—C111.410 (3)C33A—H33A0.9300
C10—C151.398 (3)C33A—C34A1.374 (18)
C11—C121.418 (3)C34A—H34A0.9300
C12—C131.401 (3)C37A—H37A0.9600
C12—C161.421 (4)C37A—H37B0.9600
C13—H130.9300C37A—H37C0.9600
C13—C141.365 (4)C29B—C32B1.43 (4)
C14—H140.9300C32B—H32B0.9300
C14—C151.382 (4)C32B—C33B1.32 (3)
C15—H150.9300C33B—H33B0.9300
C16—H160.9300C33B—C34B1.39 (3)
C16—C171.318 (4)C34B—H34B0.9300
C17—H170.9300C37B—H37D0.9600
C18—C191.504 (2)C37B—H37E0.9600
C19—C201.394 (3)C37B—H37F0.9600
C19—C241.419 (3)
O1i—Cu1—Cu1i85.23 (4)C21—C20—H20118.7
O1i—Cu1—O2168.37 (6)C20—C21—H21119.8
O1i—Cu1—O3i87.53 (7)C20—C21—C22120.5 (2)
O1i—Cu1—O491.06 (6)C22—C21—H21119.8
O1i—Cu1—O593.64 (5)C21—C22—C23118.57 (19)
O2—Cu1—Cu1i83.18 (4)C21—C22—C31122.2 (2)
O2—Cu1—O3i91.29 (7)C23—C22—C31119.2 (2)
O2—Cu1—O597.96 (5)C22—C23—C24121.22 (18)
O3i—Cu1—Cu1i79.62 (4)C22—C23—C28118.82 (18)
O3i—Cu1—O591.79 (5)C24—C23—C28119.94 (17)
O4—Cu1—Cu1i88.35 (4)C19—C24—C23117.85 (16)
O4—Cu1—O287.68 (7)C19—C24—C25124.61 (16)
O4—Cu1—O3i167.96 (5)C23—C24—C25117.54 (17)
O4—Cu1—O5100.23 (5)C24—C25—H25119.1
O5—Cu1—Cu1i171.37 (4)C26—C25—C24121.75 (18)
C1—O1—Cu1i121.86 (12)C26—C25—H25119.1
C1—O2—Cu1124.16 (12)C25—C26—H26119.1
C18—O3—Cu1i128.45 (12)C25—C26—C27121.77 (19)
C18—O4—Cu1119.31 (12)C27—C26—H26119.1
C35—O5—Cu1117.47 (14)C26—C27—C34B119.7 (9)
C35—N1—C36120.9 (2)C28—C27—C26118.53 (19)
C35—N1—C37A120.6 (11)C28—C27—C34B120.7 (10)
C35—N1—C37B120.2 (10)C34A—C27—C26123.1 (6)
C36—N1—C37A116.3 (9)C34A—C27—C28117.9 (6)
C36—N1—C37B116.7 (8)C23—C28—C29A116.8 (8)
O1—C1—O2125.24 (17)C27—C28—C23120.21 (18)
O1—C1—C2117.02 (17)C27—C28—C29A122.9 (8)
O2—C1—C2117.69 (16)C29B—C28—C23125.5 (15)
C3—C2—C1117.09 (17)C29B—C28—C27114.1 (16)
C3—C2—C7120.03 (17)C31—C30—H30119.4
C7—C2—C1122.85 (17)C31—C30—H30A119.3
C2—C3—H3119.3C31—C30—C29A121.2 (6)
C4—C3—C2121.4 (2)C31—C30—C29B121.3 (11)
C4—C3—H3119.3C29A—C30—H30119.4
C3—C4—H4119.6C29B—C30—H30A119.3
C3—C4—C5120.8 (2)C22—C31—H31119.3
C5—C4—H4119.6C30—C31—C22121.5 (2)
C4—C5—C6118.65 (18)C30—C31—H31119.3
C4—C5—C17122.7 (2)O5—C35—N1126.8 (2)
C6—C5—C17118.6 (2)O5—C35—H35116.6
C5—C6—C7120.60 (18)N1—C35—H35116.6
C5—C6—C11119.45 (17)N1—C36—H36A109.5
C7—C6—C11119.95 (18)N1—C36—H36B109.5
C2—C7—C6118.17 (17)N1—C36—H36C109.5
C2—C7—C8123.96 (17)H36A—C36—H36B109.5
C6—C7—C8117.83 (17)H36A—C36—H36C109.5
C7—C8—H8119.2H36B—C36—H36C109.5
C9—C8—C7121.65 (19)C30—C29A—C28122.2 (11)
C9—C8—H8119.2C30—C29A—C32A123.7 (12)
C8—C9—H9119.2C32A—C29A—C28112.6 (15)
C8—C9—C10121.7 (2)C29A—C32A—H32A118.8
C10—C9—H9119.2C33A—C32A—C29A122.3 (12)
C11—C10—C9118.33 (19)C33A—C32A—H32A118.8
C15—C10—C9122.5 (2)C32A—C33A—H33A120.0
C15—C10—C11119.2 (2)C34A—C33A—C32A120.1 (10)
C10—C11—C6120.39 (18)C34A—C33A—H33A120.0
C10—C11—C12120.24 (19)C27—C34A—C33A122.8 (10)
C12—C11—C6119.4 (2)C27—C34A—H34A118.6
C11—C12—C16119.0 (2)C33A—C34A—H34A118.6
C13—C12—C11118.1 (2)N1—C37A—H37A109.5
C13—C12—C16122.9 (2)N1—C37A—H37B109.5
C12—C13—H13119.3N1—C37A—H37C109.5
C14—C13—C12121.3 (2)H37A—C37A—H37B109.5
C14—C13—H13119.3H37A—C37A—H37C109.5
C13—C14—H14119.5H37B—C37A—H37C109.5
C13—C14—C15121.1 (2)C28—C29B—C30113 (2)
C15—C14—H14119.5C28—C29B—C32B123 (3)
C10—C15—H15120.0C32B—C29B—C30116 (2)
C14—C15—C10120.1 (3)C29B—C32B—H32B121.8
C14—C15—H15120.0C33B—C32B—C29B116 (2)
C12—C16—H16119.0C33B—C32B—H32B121.8
C17—C16—C12122.1 (2)C32B—C33B—H33B118.4
C17—C16—H16119.0C32B—C33B—C34B123 (2)
C5—C17—H17119.3C34B—C33B—H33B118.4
C16—C17—C5121.3 (2)C27—C34B—H34B121.9
C16—C17—H17119.3C33B—C34B—C27116.1 (18)
O3—C18—O4124.08 (17)C33B—C34B—H34B121.9
O3—C18—C19116.05 (16)N1—C37B—H37D109.5
O4—C18—C19119.86 (16)N1—C37B—H37E109.5
C20—C19—C18116.64 (17)N1—C37B—H37F109.5
C20—C19—C24119.19 (17)H37D—C37B—H37E109.5
C24—C19—C18124.11 (16)H37D—C37B—H37F109.5
C19—C20—H20118.7H37E—C37B—H37F109.5
C21—C20—C19122.5 (2)
Cu1i—O1—C1—O27.3 (3)C19—C20—C21—C221.9 (4)
Cu1i—O1—C1—C2175.04 (12)C19—C24—C25—C26176.85 (19)
Cu1—O2—C1—O16.1 (3)C20—C19—C24—C234.7 (3)
Cu1—O2—C1—C2176.21 (13)C20—C19—C24—C25175.3 (2)
Cu1i—O3—C18—O45.2 (3)C20—C21—C22—C232.9 (4)
Cu1i—O3—C18—C19176.02 (12)C20—C21—C22—C31175.9 (3)
Cu1—O4—C18—O35.4 (3)C21—C22—C23—C240.1 (3)
Cu1—O4—C18—C19175.92 (12)C21—C22—C23—C28178.4 (2)
Cu1—O5—C35—N1179.5 (3)C21—C22—C31—C30175.1 (3)
O1—C1—C2—C338.1 (3)C22—C23—C24—C193.7 (3)
O1—C1—C2—C7144.29 (19)C22—C23—C24—C25176.31 (19)
O2—C1—C2—C3139.8 (2)C22—C23—C28—C27178.6 (2)
O2—C1—C2—C737.9 (3)C22—C23—C28—C29A1.0 (11)
O3—C18—C19—C2011.8 (3)C22—C23—C28—C29B7 (2)
O3—C18—C19—C24171.15 (17)C23—C22—C31—C303.6 (5)
O4—C18—C19—C20167.00 (19)C23—C24—C25—C263.1 (3)
O4—C18—C19—C2410.1 (3)C23—C28—C29A—C301 (2)
C1—C2—C3—C4173.2 (2)C23—C28—C29A—C32A166.7 (14)
C1—C2—C7—C6171.59 (17)C23—C28—C29B—C3010 (3)
C1—C2—C7—C810.8 (3)C23—C28—C29B—C32B157 (3)
C2—C3—C4—C51.2 (4)C24—C19—C20—C212.1 (3)
C2—C7—C8—C9179.3 (2)C24—C23—C28—C273.0 (3)
C3—C2—C7—C66.0 (3)C24—C23—C28—C29A177.4 (10)
C3—C2—C7—C8171.7 (2)C24—C23—C28—C29B171 (2)
C3—C4—C5—C65.1 (4)C24—C25—C26—C271.7 (3)
C3—C4—C5—C17173.2 (2)C25—C26—C27—C284.1 (4)
C4—C5—C6—C73.5 (3)C25—C26—C27—C34A168.0 (9)
C4—C5—C6—C11177.5 (2)C25—C26—C27—C34B172.2 (13)
C4—C5—C17—C16179.4 (3)C26—C27—C28—C231.6 (3)
C5—C6—C7—C22.0 (3)C26—C27—C28—C29A177.9 (11)
C5—C6—C7—C8175.78 (18)C26—C27—C28—C29B176.7 (18)
C5—C6—C11—C10177.22 (19)C26—C27—C34A—C33A174.9 (9)
C5—C6—C11—C123.6 (3)C26—C27—C34B—C33B172.8 (14)
C6—C5—C17—C161.1 (4)C27—C28—C29A—C30179.8 (12)
C6—C7—C8—C93.0 (3)C27—C28—C29A—C32A14 (2)
C6—C11—C12—C13179.8 (2)C27—C28—C29B—C30175.6 (15)
C6—C11—C12—C160.1 (3)C27—C28—C29B—C32B28 (4)
C7—C2—C3—C44.5 (3)C28—C23—C24—C19174.60 (18)
C7—C6—C11—C103.7 (3)C28—C23—C24—C255.3 (3)
C7—C6—C11—C12175.38 (19)C28—C27—C34A—C33A2.8 (14)
C7—C8—C9—C100.7 (3)C28—C27—C34B—C33B5 (2)
C8—C9—C10—C112.3 (3)C28—C29A—C32A—C33A12 (2)
C8—C9—C10—C15177.7 (2)C28—C29B—C32B—C33B30 (5)
C9—C10—C11—C60.0 (3)C30—C29A—C32A—C33A177.8 (14)
C9—C10—C11—C12179.1 (2)C30—C29B—C32B—C33B176.5 (19)
C9—C10—C15—C14179.7 (3)C31—C22—C23—C24178.8 (2)
C10—C11—C12—C130.6 (3)C31—C22—C23—C280.4 (3)
C10—C11—C12—C16179.3 (2)C31—C30—C29A—C284 (2)
C11—C6—C7—C2177.02 (17)C31—C30—C29A—C32A168.4 (17)
C11—C6—C7—C85.2 (3)C31—C30—C29B—C286 (3)
C11—C10—C15—C140.3 (4)C31—C30—C29B—C32B156 (2)
C11—C12—C13—C140.2 (4)C36—N1—C35—O51.6 (5)
C11—C12—C16—C173.1 (4)C29A—C30—C31—C225.4 (13)
C12—C13—C14—C150.8 (5)C29A—C32A—C33A—C34A6 (2)
C12—C16—C17—C52.6 (4)C32A—C33A—C34A—C271.2 (17)
C13—C12—C16—C17177.0 (3)C34A—C27—C28—C23170.8 (9)
C13—C14—C15—C100.5 (5)C34A—C27—C28—C29A9.7 (15)
C15—C10—C11—C6180.0 (2)C37A—N1—C35—O5161.2 (16)
C15—C10—C11—C120.9 (3)C29B—C30—C31—C220.4 (17)
C16—C12—C13—C14179.9 (3)C29B—C32B—C33B—C34B17 (3)
C17—C5—C6—C7174.9 (2)C32B—C33B—C34B—C276 (3)
C17—C5—C6—C114.2 (3)C34B—C27—C28—C23169.7 (12)
C18—C19—C20—C21175.1 (2)C34B—C27—C28—C29B15 (2)
C18—C19—C24—C23172.23 (17)C37B—N1—C35—O5163.9 (17)
C18—C19—C24—C257.7 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Author contributions: Conceptualization, DMPC and KGN; methodology, KGN, VCNG, VPMQ, PCRA and ACBJ; formal analysis, DMPC, ABS and JRR; investigation, DMPC and KGN; resources, DMPC and KGN; data curation, DMPC, ABS and JORR; writing-original draft preparation, DMPC, KGN, ABS, JORR and VCNG; writing-review and editing, DMPC and KGN; supervision, DMPC and KGN project administration, DMPC and KGN; funding acquisition, DMPC and KGN. All authors have read and agreed to published version of the manuscript. Acknowledgments: We would like to acknowledge the Department of Natural Sciences at UPR Carolina Campus (Department of Education, grant No. PO31S130068; however, these contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government) and the University of Puerto Rico's Mol­ecular Sciences Research Center for the use of the Rigaku XTLab SuperNova diffractometer (NSF CHE 1626103). Special thanks to Dr Logesh Mathivathanan for consultation on the final refinement of the structure.

Funding information

Funding for this research was provided by: National Science Foundation (award No. CHE-1626103); Puerto Rico Space Grant Consortium (award No. 80NSSC20M0053 to J.O.R.-R.).

References

First citationAakeröy, C. A., Schultheiss, N. & Desper, J. (2006). Dalton Trans. pp. 1627–1635.  Google Scholar
First citationBaldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144–8155.  Web of Science PubMed Google Scholar
First citationBenesperi, I., Singh, R. & Marina, F. (2020). Energies, 13, 2198.  Web of Science CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBonomo, R. P., Imperllizzeri, G., Pappalardo, G., Rizzarelli, E. & Tabbì, G. (2000). Chemistry, 6, 4195–4202.  CrossRef PubMed Google Scholar
First citationBoulsourani, Z., Katsamakas, S., Geromichalos, G. D., Psycharis, V., Raptopoulou, C. P., Hadjipavlou-Litina, D., Yiannaki, E. & Dendrinou-Samara, C. (2017). Mater. Sci. Eng. C, 76, 1026–1040.  Web of Science CrossRef Google Scholar
First citationDeacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T. & Dempsey, J. L. (2018). J. Chem. Educ. 95, 197–206.  Web of Science CrossRef CAS Google Scholar
First citationGoldberg, A. E., Kiskin, M. A., Nikolaevskii, S. A., Zorina-Tikhonova, E. N., Aleksandrov, G. G., Sidorov, A. A. & Eremenko, I. L. (2015). Russ. J. Coord. Chem. 41, 163.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuan, Q. L., Xing, Y. H., Liu, J., Han, C., Hou, C. Y. & Bai, F. Y. (2019). J. Phys. Chem. C, 123, 23287–23296.  Web of Science CSD CrossRef Google Scholar
First citationHaldar, R., Heinke, L. & Wöll, C. (2020). Adv. Mater. 32, 1905227–1905257.  Web of Science CrossRef Google Scholar
First citationHaldar, R., Prasad, K., Samanta, P. K., Pati, S. & Maji, T. K. (2016). Cryst. Growth Des. 16, 82–91.  Web of Science CSD CrossRef Google Scholar
First citationIqbal, M., Ahmad, I., Ali, S., Muhammad, N., Ahmed, S. & Sohail, M. (2013). Polyhedron, 50, 524-531.  Web of Science CSD CrossRef Google Scholar
First citationJohnpeter, J. P. & Therrien, B. (2013). Inorg. Chim. Acta, 405, 437–443.  Web of Science CSD CrossRef Google Scholar
First citationKanoo, P., Matsuda, M., Higuchi, M., Kitagawa, S. & Maji, T. K. (2009). Chem. Mater. 21, 5860–5866.  Web of Science CSD CrossRef Google Scholar
First citationKarmakar, A., Paul, A., Sabatini, E. P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Molecules, 26, 1101.  Web of Science CrossRef PubMed Google Scholar
First citationKinik, F. P., Ortega-Guerrero, A., Ongari, D., Ireland, C. P. & Smit, B. (2021). Chem. Soc. Rev. 50, 3143–3177.  Web of Science CrossRef PubMed Google Scholar
First citationKozlevčar, B., Leban, I., Petrič, M., Petriček, S., Roubeau, O., Reedijk, J. & Šegedin, P. (2004). Inorg. Chim. Acta, 357, 4220–4230.  Google Scholar
First citationLiu, K.-G., Yao, Z.-X., Li, J.-Z. & Yan, X.-W. (2020). Inorg. Chim. Acta, 508, 119608.  Web of Science CSD CrossRef Google Scholar
First citationModec, B., Podjed, N. & Lah, N. (2020). Molecules, 25, 1573–1597.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMurugavel, R., Karambelkar, V. V., Anantharaman, G. & Walawalkar, M. G. (2000). Inorg. Chem. 39, 1381–1390.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G. I. (2012). Tetrahedron, 68, 6177–6185.  Web of Science CrossRef Google Scholar
First citationRajakannu, P., Kaleeswaran, D., Banerjee, S., Butcher, R. J. & Murugavel, R. (2019). Inorg. Chim. Acta, 486, 283–293.  Web of Science CSD CrossRef Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982–986.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationVishnoi, P., Kaleeswaran, D. & Murugavel, R. (2017). Chemistry Select, 2, 12014–12018.  Google Scholar
First citationWang, H. H., Li, J. Z., Nie, J., Yao, Z. X., Li, H. J., Liu, K. G. & Yan, X. W. (2021). Inorg. Chim Acta, 514, 120018.  Web of Science CSD CrossRef Google Scholar
First citationWang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Zhao, W., Zhang, J. & Lu, Q. (2013). J. Solid State Chem. 198, 162–168.  Web of Science CSD CrossRef Google Scholar
First citationZhao, Y. L. & Stoddart, J. F. (2009). Acc. Chem. Res. 42, 1161–1171.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds