research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania
*Correspondence e-mail: osvynohradov@ukr.net

Edited by S. Parkin, University of Kentucky, USA (Received 11 December 2023; accepted 14 December 2023; online 1 January 2024)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.

1. Chemical context

A few decades ago, 1,2,4-triazole-containing compounds became a focal point for both organic and inorganic chemists. It turned out that 1,2,4-triazoles are substances that show promising results as anti­bacterial, anti­cancer, anti­fungal, anti-inflammatory, and anti­viral agents and have miscellaneous biological activities (Opsomer & Dehaen, 2022[Opsomer, T. & Dehaen, W. (2022). Triazoles. In Comprehensive Heterocyclic Chemistry IV, edited by D. S. Black, J. Cossy & C. V. Stevens, pp. 78-121. Oxford: Elsevier.]; Strzelecka & Świątek, 2021[Strzelecka, M. & Świątek, P. (2021). Pharmaceuticals, 14, 224.]; Karczmarzyk et al., 2020[Karczmarzyk, Z., Swatko-Ossor, M., Wysocki, W., Drozd, M., Ginalska, G., Pachuta-Stec, A. & Pitucha, M. (2020). Molecules, 25, 6033.]). The presence of three nitro­gen atoms and the possibility of being involved in metal bonding, both in their acid and deprotonated forms, resulted in the synthesis and investigation of numerous coordination compounds based on 1,2,4-triazole derivatives (Haasnoot, 2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). As a result of the presence of the N–N bridging function in the triazole ring, these ligands can form polynuclear complexes with specific magnetic properties (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Kitchen & Brooker, 2008[Kitchen, J. A. & Brooker, S. (2008). Coord. Chem. Rev. 252, 2072-2092.]; Klingele & Brooker, 2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]; Petrenko et al., 2020[Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.]; 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]). Meanwhile, 1,2,4-triazole used as linker in ligands for MOF construction, is not usually involved in the formation of coordination bonds (Du et al., 2005[Du, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. & Ribas, J. (2005). J. Mol. Struct. 737, 17-21.]). The most widely used ligands of such type are 3-(2-pyrid­yl)-1,2,4-triazole derivatives, which readily form extremely stable planar coordination compounds with platinum (Chang et al., 2006[Chang, S.-Y., Kavitha, J., Li, S.-W., Hsu, C.-S., Chi, Y., Yeh, Y.-S., Chou, P.-T., Lee, G.-H., Carty, A. J., Tao, Y.-T. & Chien, C.-H. (2006). Inorg. Chem. 45, 137-146.]; Chen et al., 2013[Chen, J.-L., Chen, X.-X., Tan, X.-Z., Wang, J.-Y., Fu, X.-F., He, L.-H., Li, Y., Zhong, G.-Q. & Wen, H.-R. (2013). Inorg. Chem. Commun. 35, 96-99.]) and palladium (Zakharchenko et al., 2017[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003-2009.]; 2019[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973-10984.]; 2021[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358-365.]), showing promising photoelectronic and catalytic properties, respectively. A carb­oxy­lic acid group connected directly to the 1,2,4-triazole ring could potentially play the same role as a 2-pyridyl moiety, forcing the formation of chelates. In addition, it should be noted that the presence of both carb­oxy­lic and 1,2,4-triazole groups as parts of one mol­ecule provides inter­esting theoret­ical insights into the structural peculiarities of these mol­ecules. This is mainly due to the possibility of 1,2,4-triazole existing in three tautomeric forms (Pagacz-Kostrzewa et al., 2019[Pagacz-Kostrzewa, M., Sałdyka, M., Bil, A., Gul, W., Wierzejewska, M., Khomenko, D. M. & Doroschuk, R. O. (2019). J. Phys. Chem. A, 123, 841-850.], 2020[Pagacz-Kostrzewa, M., Krupa, J., Gul, W. & Wierzejewska, M. (2020). J. Mol. Struct. 1209, 127938.]). Generally, compounds containing a carb­oxy­lic function are probably the most important materials for high-throughput synthesis and 1,2,4-triazoles are not an exception. Recently, as part of our efforts to prepare new synthesis building blocks, we obtained a series of carb­oxy­lic acids and their derivatives (Khomenko et al., 2022[Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116-128.]). One of those compounds was used to synthesize a copper complex.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of a neutral complex unit [Cu(HL)2(H2O)2] (Fig. 1[link]), where HL is the deprotonated 5-methyl-1H-1,2,4-triazole-3-carboxyl­ate ligand. The CuII atom occupies a special position (inversion centre), thus imposing crystallographic inversion symmetry on the complex. The central atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate L anions in the equatorial plane [Cu1—O1 = 1.9987 (12) Å, Cu1—N1 = 1.9603 (15) Å] and two water mol­ecules in the axial positions [Cu1—O1W = 2.5405 (15) Å]. It is worth noting that the structure of the title compound closely resembles those of earlier published analogous compounds with unsubstituted 1H-1,2,4-triazole-3-carboxyl­ate anions (Liu, 2007[Liu, Y.-Y. (2007). J. Coord. Chem. 60, 2597-2605.]; Zhu et al., 2007[Zhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the complex mol­ecules [Cu(HL)2(H2O)2] inter­act via numerous inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]). Each NH group of the carboxyl­ate ligands is involved as the donor of a proton in bifurcated hydrogen bonding towards atom N2 and the coordinated water mol­ecule of the adjacent mol­ecule, while each O1W mol­ecule acts as donor in two hydrogen bonds with two O2 atoms of the symmetry-related complexes. Thus, all the potential hydrogen bonds are completely realized in the crystal, which results in the formation of a three-dimensional supra­molecular network, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1Wi 0.86 2.06 2.822 (2) 147
N3—H3⋯N2ii 0.86 2.58 3.121 (2) 122
O1W—H1WB⋯O2iii 0.85 1.93 2.781 (2) 175
O1W—H1WA⋯O2iv 0.85 1.92 2.737 (2) 160
Symmetry codes: (i) [x, y, z+1]; (ii) [-x+1, -y+2, -z+2]; (iii) [-x+1, -y+2, -z+1]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
Partial view of the crystal packing showing the formation of the three-dimensional supra­molecular architecture.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces. There are 20 red spots on the dnorm surface (Fig. 3[link]). The dark-red spots arise as a result of short inter­atomic contacts and represent contacts shorter than the sum of van der Waals radii, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯O/O⋯H, H⋯H and H⋯N/N⋯H contacts, and the decomposed two-dimensional fingerprint plots of different types of inter­actions are given in Fig. 4[link]. All short inter­atomic contacts are in the range of 1.797–2.505 Å. The shortest contacts are OH⋯O and the longest contacts are NH⋯N. The most abundant contributions to the overall crystal packing are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%). There is a small contribution by other weak inter­molecular contacts: H⋯C/C⋯H (4.6%), O⋯N/N⋯O (4.2%), O⋯C/C⋯O (3.3%), C⋯C (2.2%), O⋯O (1.8%), N⋯C/C⋯N (1.4%) and N⋯N (0.5%). In addition, qu­anti­tative physical properties of the Hirshfeld surface for this compound were obtained, such as mol­ecular volume (303.40 Å3), surface area (289.05 Å2), globularity (0.755), as well as asphericity (0.087).

[Figure 3]
Figure 3
Two projections of the Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule and the full two-dimensional fingerprint plot for the title compound.
[Figure 4]
Figure 4
Hirshfeld surface representations with the function dnorm plotted onto the surface and the decomposed two-dimensional fingerprint plots for selected inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the moiety including a transition metal coordinated by the N and O atoms of the 1H-1,2,4-triazole-3-carboxyl­ate anion in a bidentate way revealed 22 hits. Most similar to the title compound are mononuclear complexes with two unsubstituted 1H-1,2,4-triazole-3-carboxyl­ate anions and two water mol­ecules in axial positions: MnII [GEVKAW (Yan et al., 2018[Yan, J., Lu, L., Zhu, M. & Feng, S. (2018). J. Solid State Chem. 262, 351-359.])]; ZnII [RIRVIY (Liu, 2007[Liu, Y.-Y. (2007). J. Coord. Chem. 60, 2597-2605.])]; CdII [XIRZOO (Zhu et al., 2008[Zhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. & Lin, C.-W. (2008). Acta Cryst. E64, m119.])]; CuII [YIQROG (Zhu et al., 2007[Zhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.]) and YIQROG01 (Liu, 2007[Liu, Y.-Y. (2007). J. Coord. Chem. 60, 2597-2605.])]. Other compounds with a close relation to the title complex are mononuclear complexes with 5-substituted 1H-1,2,4-triazole-3-carboxyl­ate anions. In all cases, the substituent was the NH2 group: MnII [HEDWIZ (Yang et al., 2019[Yang, K., Tan, Y.-H., Wang, B., Zhou, H.-T., Li, C., Yang, C.-S., Liu, Y., Gao, J.-X. & Tang, Y.-Z. (2019). Wuji Huaxue, 35, 703.])], MnII dihydrate [OPOMAJ (Liu et al., 2015[Liu, B., Fernandes, J., Tomé, J., Paz, F. & Cunha-Silva, L. (2015). Molecules, 20, 12341-12363.])], CdII [ISACEL (Wang et al., 2011[Wang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Krist. New Cryst. Struct. 226, 163-164.])], CoII dihydrate [ONILIJ (Li et al., 2021[Li, B., Song, H., Wu, H., Wang, J., Tian, X. & Ma, X. (2021). J. Coord. Chem. 74, 1159-1167.])], ZnII based on 5-amino-1H-1,2,4-triazole-3-carboxyl­ate anion and with only one coordinated water mol­ecule [OPOLUC (Liu et al., 2015[Liu, B., Fernandes, J., Tomé, J., Paz, F. & Cunha-Silva, L. (2015). Molecules, 20, 12341-12363.])].

6. Synthesis and crystallization

H2L: LiHL (Khomenko et al., 2022[Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116-128.]) (1.33 g, 10 mmol) was dissolved in H2O (10 ml). The obtained solution was cooled and slowly acidified with concentrated HCl (1 ml), maintaining the temperature between 273 and 278 K. The precipitation of colourless crystals occurred after addition of all the HCl. The reaction mixture was additionally stirred for 15 min at low temperature. Then, the precipitate was filtered off, washed with cold water and dried in vacuo. Yield 0.76 g (60%). 1H NMR (400 MHz, D2O): δ 2.61 (s, 3H) ppm. IR data (in KBr, cm−1): 3330, 1648, 1567, 1509, 1418, 1313, 1103, 835. Elemental analysis: analysis calculated for C4H5N3O2 (127.10): C, 37.80%; H, 3.97%; N, 33.06%. Found: C, 37.41%; H, 3.65%; N, 32.71%.

[Cu(HL)2(H2O)2]: A solution of Cu(NO3)2·6H2O (0.148 g, 0.5 mmol) in H2O (5 ml) was added to an aqueous solution of H2L (0.127 g, 13 ml, 1 mmol) to give a clear blue solution. The blue crystals obtained after 2 days were filtered off, washed with water and dried in air. Yield 0.140 g (80%). IR data (in KBr, cm−1): 3330, 1648, 1557, 1509, 1418, 1304, 1113, 835. Elemental analysis: analysis calculated for C8H12CuN6O6 (351.77): C, 27.32%; H, 3.44%; N, 23.89%. Found: C, 27.30%; H, 3.45%; N, 23.82%.

IR and 1H NMR spectra of 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid are given in the supporting information for this article.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.96 Å (RCH3), 0.86 Å (Nsp2—H), and 0.85 (OH2). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3, OH2) of the attached atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C4H4N3O2)2(H2O)2]
Mr 351.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.8465 (4), 7.1097 (7), 7.2090 (5)
α, β, γ (°) 79.267 (7), 83.193 (6), 64.076 (8)
V3) 309.80 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.81
Crystal size (mm) 0.45 × 0.1 × 0.1
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.774, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2216, 1397, 1381
Rint 0.016
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.11
No. of reflections 1397
No. of parameters 101
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.38
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Diaquabis(5-methyl-1H-1,2,4-triazole-3-carboxylato)copper(II) top
Crystal data top
[Cu(C4H4N3O2)2(H2O)2]Z = 1
Mr = 351.78F(000) = 179
Triclinic, P1Dx = 1.886 Mg m3
a = 6.8465 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.1097 (7) ÅCell parameters from 1444 reflections
c = 7.2090 (5) Åθ = 2.9–28.9°
α = 79.267 (7)°µ = 1.81 mm1
β = 83.193 (6)°T = 200 K
γ = 64.076 (8)°Prism, clear light blue
V = 309.80 (5) Å30.45 × 0.1 × 0.1 mm
Data collection top
Xcalibur, Eos
diffractometer
1397 independent reflections
Radiation source: Enhance (Mo) X-ray Source1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.1593 pixels mm-1θmax = 29.0°, θmin = 2.9°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
k = 99
Tmin = 0.774, Tmax = 1.000l = 99
2216 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.1883P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1397 reflectionsΔρmax = 0.35 e Å3
101 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000000.5000000.01665 (11)
O10.7195 (2)0.6171 (2)0.41929 (19)0.0200 (3)
O1W0.2171 (2)0.8296 (2)0.31785 (19)0.0211 (3)
H1WA0.1008330.8153390.3534340.032*
H1WB0.2084350.9294860.3721830.032*
O20.8357 (2)0.8422 (2)0.49419 (19)0.0216 (3)
N10.4392 (2)0.6629 (2)0.7081 (2)0.0148 (3)
N20.5479 (2)0.8664 (2)0.8331 (2)0.0184 (3)
N30.3859 (2)0.8329 (2)0.9412 (2)0.0187 (3)
H30.3324050.8827661.0450130.022*
C10.7246 (3)0.7403 (3)0.5225 (3)0.0161 (3)
C20.5727 (3)0.7621 (3)0.6937 (2)0.0151 (3)
C30.3199 (3)0.7127 (3)0.8661 (2)0.0160 (3)
C40.1414 (3)0.6522 (3)0.9429 (3)0.0223 (4)
H4A0.0117490.7439620.8763970.033*
H4B0.1154020.6649101.0747960.033*
H4C0.1814460.5085650.9272900.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02239 (18)0.01979 (18)0.01580 (17)0.01517 (14)0.00516 (11)0.00932 (12)
O10.0244 (7)0.0226 (7)0.0205 (7)0.0158 (6)0.0067 (5)0.0108 (5)
O1W0.0233 (7)0.0253 (7)0.0215 (7)0.0154 (6)0.0071 (5)0.0113 (6)
O20.0219 (7)0.0232 (7)0.0275 (7)0.0161 (6)0.0066 (5)0.0102 (6)
N10.0170 (7)0.0143 (7)0.0156 (7)0.0087 (6)0.0009 (5)0.0038 (6)
N20.0198 (7)0.0214 (8)0.0188 (8)0.0121 (7)0.0022 (6)0.0076 (6)
N30.0215 (8)0.0221 (8)0.0164 (8)0.0114 (7)0.0041 (6)0.0098 (6)
C10.0168 (8)0.0150 (8)0.0165 (8)0.0067 (7)0.0001 (6)0.0034 (7)
C20.0162 (8)0.0148 (8)0.0166 (8)0.0085 (7)0.0006 (6)0.0033 (7)
C30.0180 (8)0.0151 (8)0.0147 (8)0.0063 (7)0.0002 (6)0.0041 (7)
C40.0216 (9)0.0270 (10)0.0216 (9)0.0140 (8)0.0041 (7)0.0056 (8)
Geometric parameters (Å, º) top
Cu1—O11.9987 (12)N1—C21.363 (2)
Cu1—O1i1.9987 (12)N1—C31.329 (2)
Cu1—O1W2.5405 (15)N2—N31.361 (2)
Cu1—N11.9603 (15)N2—C21.310 (2)
Cu1—N1i1.9603 (15)N3—C31.340 (2)
O1—C11.264 (2)C1—C21.501 (2)
O2—C11.239 (2)C3—C41.481 (2)
O1i—Cu1—O1180.0C3—N1—C2104.36 (14)
O1—Cu1—O1W89.09 (5)C2—N2—N3101.94 (14)
O1i—Cu1—O1W90.91 (5)C3—N3—N2111.67 (15)
N1i—Cu1—O197.00 (5)O1—C1—C2113.53 (15)
N1i—Cu1—O1i83.00 (5)O2—C1—O1127.10 (17)
N1—Cu1—O1i97.00 (5)O2—C1—C2119.35 (16)
N1—Cu1—O183.00 (5)N1—C2—C1116.79 (15)
N1i—Cu1—O1W92.71 (5)N2—C2—N1114.35 (16)
N1—Cu1—O1W87.29 (5)N2—C2—C1128.86 (16)
N1i—Cu1—N1180.0N1—C3—N3107.67 (15)
C1—O1—Cu1115.49 (11)N1—C3—C4126.36 (16)
C2—N1—Cu1111.00 (11)N3—C3—C4125.95 (16)
C3—N1—Cu1144.60 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1Wii0.862.062.822 (2)147
N3—H3···N2iii0.862.583.121 (2)122
O1W—H1WB···O2iv0.851.932.781 (2)175
O1W—H1WA···O2v0.851.922.737 (2)160
C4—H4B···O1Wii0.962.593.367 (2)139
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1; (v) x1, y, z.
 

Funding information

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationChang, S.-Y., Kavitha, J., Li, S.-W., Hsu, C.-S., Chi, Y., Yeh, Y.-S., Chou, P.-T., Lee, G.-H., Carty, A. J., Tao, Y.-T. & Chien, C.-H. (2006). Inorg. Chem. 45, 137–146.  CrossRef PubMed CAS Google Scholar
First citationChen, J.-L., Chen, X.-X., Tan, X.-Z., Wang, J.-Y., Fu, X.-F., He, L.-H., Li, Y., Zhong, G.-Q. & Wen, H.-R. (2013). Inorg. Chem. Commun. 35, 96–99.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. & Ribas, J. (2005). J. Mol. Struct. 737, 17–21.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKarczmarzyk, Z., Swatko-Ossor, M., Wysocki, W., Drozd, M., Ginalska, G., Pachuta-Stec, A. & Pitucha, M. (2020). Molecules, 25, 6033.  CrossRef PubMed Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116–128.  CrossRef CAS Google Scholar
First citationKitchen, J. A. & Brooker, S. (2008). Coord. Chem. Rev. 252, 2072–2092.  Web of Science CrossRef CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationLi, B., Song, H., Wu, H., Wang, J., Tian, X. & Ma, X. (2021). J. Coord. Chem. 74, 1159–1167.  CrossRef CAS Google Scholar
First citationLiu, B., Fernandes, J., Tomé, J., Paz, F. & Cunha-Silva, L. (2015). Molecules, 20, 12341–12363.  CrossRef CAS PubMed Google Scholar
First citationLiu, Y.-Y. (2007). J. Coord. Chem. 60, 2597–2605.  CrossRef CAS Google Scholar
First citationOpsomer, T. & Dehaen, W. (2022). Triazoles. In Comprehensive Heterocyclic Chemistry IV, edited by D. S. Black, J. Cossy & C. V. Stevens, pp. 78–121. Oxford: Elsevier.  Google Scholar
First citationPagacz-Kostrzewa, M., Krupa, J., Gul, W. & Wierzejewska, M. (2020). J. Mol. Struct. 1209, 127938.  Google Scholar
First citationPagacz-Kostrzewa, M., Sałdyka, M., Bil, A., Gul, W., Wierzejewska, M., Khomenko, D. M. & Doroschuk, R. O. (2019). J. Phys. Chem. A, 123, 841–850.  CAS PubMed Google Scholar
First citationPetrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.  Web of Science CSD CrossRef Google Scholar
First citationPetrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrzelecka, M. & Świątek, P. (2021). Pharmaceuticals, 14, 224.  CrossRef PubMed Google Scholar
First citationWang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Krist. New Cryst. Struct. 226, 163–164.  CAS Google Scholar
First citationYan, J., Lu, L., Zhu, M. & Feng, S. (2018). J. Solid State Chem. 262, 351–359.  CrossRef CAS Google Scholar
First citationYang, K., Tan, Y.-H., Wang, B., Zhou, H.-T., Li, C., Yang, C.-S., Liu, Y., Gao, J.-X. & Tang, Y.-Z. (2019). Wuji Huaxue, 35, 703.  Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003–2009.  Web of Science CrossRef CAS Google Scholar
First citationZhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. & Lin, C.-W. (2008). Acta Cryst. E64, m119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. & Lin, C.-W. (2007). Acta Cryst. E63, m3167.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds