research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1,3-bis­­(2,4,6-tri­methyl­phen­yl)imidazolidin-2-yl­­idene]di­chlorido­(2-{[(2-methoxyeth­yl)(meth­yl)amino]­meth­yl}benzyl­­idene)ruth­en­ium

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow 119071, Russian Federation, eOrganic Chemistry Department, Faculty of Science, RUDN University, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation, fDepartment of Synthesis of Biologically Active Compounds, Scientific Research Center, Azerbaijan Medical University, Samed Vurgun St. 167, Az 1022 Baku, Azerbaijan, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 November 2023; accepted 1 December 2023; online 1 January 2024)

The title compound, [RuCl2(C33H43N3O)], is an example of a new generation of N,N-dialkyl ruthenium catalysts with an N—Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.244, which indicates a geometry inter­mediate between square-based pyramidal and trigonal–bipyramidal. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. One of the chlorine atoms and the atoms of the 2-meth­oxy-N-methyl-N-[(2-methyl­phen­yl)meth­yl]ethane-1-amine group of the title complex display disorder over two positions in a 0.889 (2): 0.111 (2) ratio.

1. Chemical context

Over the past decades, significant progress has been made in the conceptualization of methodology of organometallic catalytic systems for olefin metathesis (for selected reviews and books on the topic, see: Grela, 2014[Grela, K. (2014). Olefin Metathesis. Wiley, ISBN 978-1-118-20794-9.]; Ogba et al., 2018[Ogba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510-4544.]; Mukherjee et al. 2018[Mukherjee, N., Planer, S. & Grela, K. (2018). Org. Chem. Front. 5, 494-516.]; Tsedalu, 2021[Tsedalu, A. A. (2021). J. Chem. 2021, e3590613.]; Copéret et al., 2021[Copéret, C., Berkson, Z. J., Chan, K. W., de Jesus Silva, J., Gordon, C. P., Pucino, M. & Zhizhko, P. A. (2021). Chem. Sci. 12, 3092-3115.]). This has made it possible to successfully overcome some of the limitations that initially prevented the integration of ruth­enium catalysts in both laboratory practice and industry. The list of such areas includes production of bioactive substances with a desired selectivity of the resulting double bond, obtaining highly functionalized organic compounds, and the synthesis of new materials including polymers (Pederson et al., 2002[Pederson, R. L., Fellows, I. M., Ung, T. A., Ishihara, H. & Hajela, S. P. (2002). Adv. Synth. Catal. 344, 728.]; Kozłowska et al., 2014[Kozłowska, A., Dranka, M., Zachara, J., Pump, E., Slugovc, C., Skowerski, K. & Grela, K. (2014). Chem. A Eur. J. 20, 14120-14125.]; Eivgi et al., 2020[Eivgi, O., Phatake, R. S., Nechmad, N. B. & Lemcoff, N. G. (2020). Acc. Chem. Res. 53, 2456-2471.]). Complexes including a six-membered chelate ruthenium ring are effective catalysts for various types of olefin metathesis reactions (Polyanskii et al., 2019a[Polyanskii, K. B., Alekseeva, K. A., Kumandin, P. A., Atioğlu, Z., Akkurt, M. & Toze, F. A. A. (2019a). Acta Cryst. E75, 342-345.],b[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019b). Beilstein J. Org. Chem. 15, 769-779.]; Kumandin et al., 2020[Kumandin, P. A., Antonova, A. S., Alekseeva, K. A., Nikitina, E. V., Novikov, R. A., Vasilyev, K. A., Sinelshchikova, A. A., Grigoriev, M. S., Polyanskii, K. B. & Zubkov, F. I. (2020). Organometallics, 39, 4599-4607.], 2023[Kumandin, P. A., Antonova, A. S., Novikov, R. A., Vasilyev, K. A., Vinokurova, M. A., Grigoriev, M. S., Novikov, A. P., Polianskaia, D. K., Polyanskii, K. B. & Zubkov, F. I. (2023). Organometallics, 42, 218-234.]; Antonova et al., 2020[Antonova, A. S., Vinokurova, M. A., Kumandin, P. A., Merkulova, N. L., Sinelshchikova, A. A., Grigoriev, M. S., Novikov, R. A., Kouznetsov, V. V., Polyanskii, K. B. & Zubkov, F. I. (2020). Molecules, 25, 5379.]; Vasilyev et al., 2023[Vasilyev, K. A., Antonova, A. S., Volchkov, N. S., Logvinenko, N. A., Nikitina, E. V., Grigoriev, M. S., Novikov, A. P., Kouznetsov, V. V., Polyanskii, K. B. & Zubkov, F. I. (2023). Molecules, 28, 1188.]). On the other hand, the catalytic activity of metal complexes is dictated by the ligands, while the coordination environment of the metal center and ligands can be decorated by attaching different non-covalent bond donor or acceptor substituents for the regulation of the structure and the reactivity of the catalysts (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2023[Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861.]). This work proposes a method for obtaining a new chelate complex from the commercially available precursors [RuCl2(1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazoline-2-yl­idene)(3-phenyl­indenylide-1-ene)(pyridine)] and styrene 2-meth­oxy-N-methyl-N-(2-vinyl­benz­yl)ethan-1-amine. By X-ray analysis, it was proved that this complex is a trans-isomer, relative to the arrangement of the two chlorides.

[Scheme 1]

2. Structural commentary

The Ru atom in the title compound is penta­coordinated to two C, one N and two Cl atoms (Fig. 1[link], Table 1[link]). The Addison parameter is used to describe the distortion of the coordination geometry and is defined as τ (difference between two largest angles / 60 for five-coordinated metal centers), allowing the distinction between trigonal–bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0) geometries (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349-1356.]). For the title complex, τ = 0.244, which is between these two geometries (Fig. 2[link]), [τ = 0.09 for minor disorder Cl2′ and the coordination geometry is closer to square pyramidal]. The dihedral angle between the planes of the tri­methyl­phenyl rings is 26.34 (10)°. The complex shows the usual trans arrangement of the two chlorides, with Ru—Cl bond lengths of 2.3515 (8) and 2.379 (7) Å, and a Cl—Ru—Cl angle of 158.02 (3)°. The bond lengths and angles about the Ru atom are in good agreement with those reported for similar compounds (see Database survey section).

Table 1
Selected geometric parameters (Å, °)

Ru1—C31′ 1.81 (3) Ru1—N2 2.271 (2)
Ru1—C31 1.833 (4) Ru1—Cl2 2.3515 (8)
Ru1—C2 2.0474 (18) Ru1—Cl1 2.3519 (5)
Ru1—N2′ 2.251 (15) Ru1—Cl2′ 2.379 (7)
       
C31′—Ru1—C2 100.5 (8) C31′—Ru1—Cl2′ 96.9 (15)
C31—Ru1—C2 97.33 (11) C2—Ru1—Cl2′ 78.3 (2)
C31′—Ru1—N2′ 92.1 (8) N2′—Ru1—Cl2′ 90.2 (6)
C2—Ru1—N2′ 163.8 (5) Cl1—Ru1—Cl2′ 158.4 (3)
C31—Ru1—N2 88.48 (11) N3—C2—Ru1 121.14 (13)
C2—Ru1—N2 172.68 (8) N1—C2—Ru1 131.33 (13)
C31—Ru1—Cl2 103.42 (13) C32—N2—Ru1 115.62 (17)
C2—Ru1—Cl2 86.77 (5) C24—N2—Ru1 108.54 (16)
N2—Ru1—Cl2 87.55 (7) C33—N2—Ru1 110.59 (15)
C31′—Ru1—Cl1 104.7 (14) C30—C31—Ru1 130.7 (2)
C31—Ru1—Cl1 98.02 (13) C24′—N2′—Ru1 105.1 (11)
C2—Ru1—Cl1 95.36 (5) C32′—N2′—Ru1 112.5 (13)
N2′—Ru1—Cl1 91.3 (6) C33′—N2′—Ru1 111.4 (12)
N2—Ru1—Cl1 88.21 (7) C30′—C31′—Ru1 130.8 (19)
Cl2—Ru1—Cl1 158.02 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of the title complex with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Only the major component of the disorder is shown for clarity.
[Figure 2]
Figure 2
A view of the coordination geometry about the Ru atom, which lies between square-based pyramidal and trigonal–bipyramidal for major disorder component Cl2.

3. Supra­molecular features

The crystal structure of the title complex includes intra- and inter­molecular C—H⋯Cl inter­actions (Tables 2[link] and 3[link]). In the ten intra­molecular C—H⋯Cl inter­actions, the H⋯Cl distances vary from 2.56 to 2.94 Å, while the C—H⋯Cl angles vary from 110 to 129°. The inter­molecular C—H⋯Cl inter­actions in the title complex are shown in Fig. 3[link]. A weak intra­molecular C—H⋯π inter­action is also observed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Cl1i 0.99 2.89 3.651 (2) 134
C5—H5B⋯Cl1i 0.99 2.83 3.622 (2) 137
C24—H24A⋯Cl2 0.99 2.56 3.257 (3) 127
C24—H24B⋯Cl2ii 0.99 2.72 3.693 (3) 167
C33—H33B⋯Cl2 0.99 2.87 3.399 (3) 114
C34—H34A⋯Cl1 0.99 2.94 3.570 (3) 123
C24′—H24D⋯Cl1 0.99 2.68 3.391 (19) 129
C32′—H32D⋯Cl2′ 0.98 2.59 3.07 (2) 110
C32′—H32F⋯Cl2′ii 0.98 2.62 3.57 (2) 164
C4—H4A⋯Cl1i 0.99 2.89 3.651 (2) 134
C5—H5B⋯Cl1i 0.99 2.83 3.622 (2) 137
C24—H24A⋯Cl2 0.99 2.56 3.257 (3) 127
C24—H24B⋯Cl2ii 0.99 2.72 3.693 (3) 167
C33—H33B⋯Cl2 0.99 2.87 3.399 (3) 114
C34—H34A⋯Cl1 0.99 2.94 3.570 (3) 123
C24′—H24D⋯Cl1 0.99 2.68 3.391 (19) 129
C32′—H32D⋯Cl2′ 0.98 2.59 3.07 (2) 110
C32′—H32F⋯Cl2′ii 0.98 2.62 3.57 (2) 164
C34′—H34CCg3 0.99 2.96 3.83 (2) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H14B⋯H4A 2.46 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
*H34D⋯*H26 2.17 [{5\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
*H29′⋯H12C 2.41 2 − x, 1 − y, −z
C9⋯H19 2.94 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
*H28⋯*H35B 2.32 [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z
*H26′⋯H23A 2.42 x, 1 + y, z
*H33⋯H22B 2.40 2 − x, 1 − y, 1 − z
[Figure 3]
Figure 3
The packing of the title complex, showing the C—H⋯Cl inter­actions along the a-axis direction as dashed lines. For clarity, only the major component of the disorder and the hydrogen atoms involved in the bonding are shown.

4. Database survey

The compounds [1,3-bis(2,4,6-tri­methyl­phen­yl)imidazolidin-2-yl­idene]-di­chloro-{2-[1-(di­methyl­amino)­eth­yl]benzyl­idene}ruthenium (CSD refcode TITTUO; Polyanskii et al., 2019a[Polyanskii, K. B., Alekseeva, K. A., Kumandin, P. A., Atioğlu, Z., Akkurt, M. & Toze, F. A. A. (2019a). Acta Cryst. E75, 342-345.]), cis-di­chlorido-(1,3-dimesitylimidazolidin-2-yl­idene)(2-formyl­benzyl­idene-C,O)ruthenium diethyl ether solvate (DULVOW; Slugovc et al., 2010[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154-m155.]) and cis-(SPY-5-34)-di­chloro­(4,5-di­hydro-1,3-dimesitylimidazol-2-yl­idene)(2-formyl­benzyl­idene-C,O)ruthenium (XACYOQ; Slugovc et al., 2004[Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622-3626.]) show similar metal-atom geometries to the title compound.

In XACYOQ, mol­ecules are linked by C—H⋯Cl, C—H⋯π and ππ-stacking inter­actions. In the crystal structures of TITTUO and DULVOW, inter­molecular ππ stacking is an important factor and these inter­actions form a framework-like structure containing channels that extend along the b and c axes, respectively (Samojłowicz et al., 2009[Samojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708-3742.]).

5. Synthesis and crystallization

In a Schlenk flask, ruthenium precursor complex [RuCl2(1,3-bis­(2,4,6-tri­methyl­phen­yl)imidazoline-2-yl­idene)(3-phenyl­indenylide-1-ene)(pyridine)] (200 mg, 0.26 mmol, 1.0 equiv.) was dissolved in dry toluene (4 mL) under an argon atmosphere. Then the styrene (0.31 mmol, 1.2 equiv.) was added in an argon stream, after that the flask was sealed with a screw cap and heated at 353 K for 1 h. The reaction mixture was placed in a freezer (253 K) for 30 min. The precipitate was filtered off and washed sequentially with hexane (3 × 5 mL) and methanol (3 × 3 mL), both cooled to 253 K, to give the title complex as a green powder after drying under vacuum for 2 h. A single crystal was obtained by slow crystallization from a hexa­ne/chloro­form mixture at 298 K.

Green powder, 104 mg, 0.41 mmol, 60%, Rf = 0.85 (Sorbfil plates for thin-layer chromatography, EtOAc: hexane, 1:2); mp: 481.1–483.5 K (dec.).

1H NMR (700.2 MHz, CDCl3, 298 K) δ 18.73 (s, 1H, CH=Ru), 7.46 (dd, J = 1.2, 7.5 Hz, 1H, H-4-C6H4), 7.10–6.96 (m, 6H, H-3-C6H4, H-5-C6H4, H-Mes), 6.57 (d, J = 6.7 Hz, 1H, H-6-C6H4), 5.36 (d, J = 8.1 Hz, 1H, CH2N-A), 4.04 (br.s, 4H, NCH2CH2N), 5.36 (br.s, 1H, CH2N-B), 3.15 (s, 1H, NCH2CH2OMe-A), 3.09 (s, 3H, NCH3), 3.01 (m, 2H, NCH2CH2O), 2.58 (s, 6H, Mes-Me), 2.41 (s, 12H, Mes-Me), 2.17 (s, 1H, NCH2CH2OMe-B), 1.80 (s, 3H, OCH3).

13C NMR (176.1 MHz, CD2Cl2, 298 K) δ 314.0, 212.6, 148.1, 139.0 (4C), 138.5, 136.7 (2C), 133.3, 130.9 (2C), 129.8 (2C), 129.6 (2C), 128.7, 128.4, 126.8, 69.5 (2C), 66.0, 60.9, 58.3, 51.7, 46.2, 21.2 (3C), 19.6 (3C).

IR νmax/cm−1 (KBr pellets): 3438, 3258, 2910, 1953, 1632, 1610, 1485, 1440, 1410, 1280, 1264, 1073, 1011, 953, 940, 850, 804, 745. HRMS (ESI-TOF): calculated for C33H43ClNORu [M - Cl]+ 634.2133; found 634.2138.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were included in the refinement using the riding-model approximation with C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The measurements of the 0 0 2, 1 0 1, 0 1 1, [\overline{1}] 0 1 and [\overline{1}] 1 2 reflections were affected by the beam stop and they were therefore excluded from the refinement. The Cl2 chlorine atom and the atoms of the 2-meth­oxy-N-methyl-N-[(2-methyl­phen­yl)meth­yl]ethane-1-amine group of the title complex are disordered over two sites with refined occupancy factors of 0.889 (2) and 0.111 (2). SADI, SIMU, SAME and EADP instructions were used to refine disordered atoms.

Table 4
Experimental details

Crystal data
Chemical formula [RuCl2(C21H26N2)(C12H17NO)]
Mr 669.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.6801 (13), 10.7078 (11), 22.035 (2)
β (°) 102.553 (4)
V3) 3150.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.40 × 0.36 × 0.24
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.679, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54060, 9279, 7087
Rint 0.049
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.02
No. of reflections 9279
No. of parameters 493
No. of restraints 460
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.58
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido(2-{[(2-methoxyethyl)(methyl)amino]methyl}benzylidene)ruthenium top
Crystal data top
[RuCl2(C21H26N2)(C12H17NO)]F(000) = 1392
Mr = 669.67Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.6801 (13) ÅCell parameters from 9880 reflections
b = 10.7078 (11) Åθ = 2.4–29.8°
c = 22.035 (2) ŵ = 0.70 mm1
β = 102.553 (4)°T = 100 K
V = 3150.6 (5) Å3Bulk, dark green
Z = 40.40 × 0.36 × 0.24 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7087 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.2°, θmin = 2.7°
Tmin = 0.679, Tmax = 0.746h = 1918
54060 measured reflectionsk = 1515
9279 independent reflectionsl = 3131
Refinement top
Refinement on F2460 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.023P)2 + 2.0327P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9279 reflectionsΔρmax = 0.43 e Å3
493 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.99437 (2)0.50148 (2)0.24032 (2)0.01454 (4)
Cl10.88778 (4)0.56961 (5)0.30419 (2)0.02505 (10)
Cl21.13328 (6)0.40424 (9)0.21357 (6)0.02561 (19)0.889 (2)
Cl2'1.1181 (6)0.3787 (9)0.2073 (5)0.02561 (19)0.111 (2)
N10.87352 (12)0.29680 (14)0.15568 (7)0.0189 (3)
N30.92109 (12)0.24251 (14)0.25209 (7)0.0195 (3)
C20.91734 (13)0.33997 (17)0.21276 (8)0.0166 (3)
C40.88154 (17)0.12448 (18)0.22184 (9)0.0287 (5)
H4A0.8265090.0912620.2398290.034*
H4B0.9348340.0606040.2255990.034*
C50.84371 (16)0.16398 (18)0.15466 (9)0.0252 (4)
H5A0.8759130.1147990.1263480.030*
H5B0.7701260.1545530.1417190.030*
C60.83979 (14)0.36710 (17)0.09962 (8)0.0194 (4)
C70.89679 (16)0.36545 (18)0.05392 (9)0.0240 (4)
C80.86167 (16)0.4348 (2)0.00026 (9)0.0279 (4)
H80.8993260.4352880.0317610.034*
C90.77363 (16)0.5029 (2)0.00927 (9)0.0273 (4)
C100.71724 (15)0.49803 (19)0.03628 (9)0.0252 (4)
H100.6555360.5420400.0297670.030*
C110.74867 (14)0.43064 (18)0.09096 (8)0.0212 (4)
C120.99271 (17)0.2928 (2)0.06261 (10)0.0341 (5)
H12A0.9774750.2036410.0564600.051*
H12B1.0324650.3063770.1047670.051*
H12C1.0308010.3208670.0322650.051*
C130.73922 (19)0.5826 (2)0.06635 (10)0.0393 (6)
H13A0.7528680.6706310.0555360.059*
H13B0.6671520.5709360.0822520.059*
H13C0.7752990.5580990.0983300.059*
C140.68862 (15)0.4321 (2)0.14068 (9)0.0269 (4)
H14A0.6273240.4808230.1262580.040*
H14B0.7284440.4700740.1785340.040*
H14C0.6709930.3463590.1496080.040*
C150.94359 (15)0.24718 (17)0.31907 (8)0.0207 (4)
C160.86644 (15)0.27982 (18)0.34872 (9)0.0236 (4)
C170.88825 (17)0.2812 (2)0.41338 (9)0.0308 (5)
H170.8377250.3062890.4343640.037*
C180.98179 (18)0.2470 (2)0.44827 (10)0.0347 (5)
C191.05376 (17)0.2080 (2)0.41729 (10)0.0332 (5)
H191.1168530.1809960.4408090.040*
C201.03692 (16)0.20690 (19)0.35252 (9)0.0265 (4)
C210.76253 (15)0.3087 (2)0.31286 (10)0.0292 (5)
H21A0.7286260.2309190.2969920.044*
H21B0.7661930.3638790.2779410.044*
H21C0.7249050.3501500.3402230.044*
C221.0032 (2)0.2503 (3)0.51858 (11)0.0548 (8)
H22A1.0331920.1708810.5351670.082*
H22B0.9405640.2635880.5323790.082*
H22C1.0497490.3187080.5337200.082*
C231.11778 (17)0.1615 (2)0.32081 (11)0.0373 (5)
H23A1.1062500.0733840.3095240.056*
H23B1.1833290.1707490.3491520.056*
H23C1.1162020.2110090.2831980.056*
N21.09671 (18)0.6647 (2)0.27615 (12)0.0244 (5)0.889 (2)
C241.14556 (18)0.7073 (2)0.22554 (12)0.0311 (6)0.889 (2)
H24A1.1807050.6355770.2115590.037*0.889 (2)
H24B1.1965070.7711950.2424780.037*0.889 (2)
C251.07400 (18)0.7610 (2)0.17056 (12)0.0290 (5)0.889 (2)
C261.1015 (2)0.8680 (2)0.14238 (14)0.0432 (7)0.889 (2)
H261.1636910.9068320.1596980.052*0.889 (2)
C271.0406 (3)0.9191 (3)0.08989 (17)0.0488 (8)0.889 (2)
H271.0612840.9919240.0714740.059*0.889 (2)
C280.9496 (3)0.8640 (3)0.06428 (15)0.0403 (8)0.889 (2)
H280.9076830.8983250.0280520.048*0.889 (2)
C290.9199 (2)0.7582 (3)0.09186 (13)0.0276 (6)0.889 (2)
H290.8573680.7206260.0739490.033*0.889 (2)
C300.9797 (4)0.7052 (3)0.14538 (14)0.0226 (6)0.889 (2)
C310.9409 (2)0.5948 (3)0.17136 (18)0.0178 (7)0.889 (2)
H310.8775110.5667810.1487490.021*0.889 (2)
C321.04729 (19)0.7748 (2)0.29788 (13)0.0299 (6)0.889 (2)
H32A1.0953730.8436830.3073090.045*0.889 (2)
H32B1.0237700.7524370.3354070.045*0.889 (2)
H32C0.9902110.8007370.2652270.045*0.889 (2)
C331.18122 (18)0.6234 (2)0.32777 (13)0.0321 (6)0.889 (2)
H33A1.2181490.6980510.3469980.039*0.889 (2)
H33B1.2281890.5718750.3100110.039*0.889 (2)
C341.1470 (2)0.5491 (3)0.37763 (13)0.0355 (6)0.889 (2)
H34A1.0863850.5872420.3875420.043*0.889 (2)
H34B1.1311070.4621510.3635920.043*0.889 (2)
O11.2275 (2)0.5512 (2)0.43055 (14)0.0521 (7)0.889 (2)
C351.2131 (3)0.4664 (4)0.47665 (16)0.0668 (11)0.889 (2)
H35A1.1471480.4803490.4860170.100*0.889 (2)
H35B1.2652160.4789920.5143980.100*0.889 (2)
H35C1.2169490.3807690.4616150.100*0.889 (2)
N2'1.1124 (14)0.6405 (16)0.2836 (8)0.027 (3)0.111 (2)
C24'1.0648 (15)0.7630 (16)0.2703 (7)0.028 (3)0.111 (2)
H24C1.1088070.8273100.2944280.034*0.111 (2)
H24D1.0009410.7631770.2844950.034*0.111 (2)
C25'1.0439 (14)0.7977 (14)0.2021 (7)0.029 (2)0.111 (2)
C26'1.0770 (16)0.9117 (16)0.1837 (8)0.037 (3)0.111 (2)
H26'1.1141950.9669220.2138160.044*0.111 (2)
C27'1.0559 (18)0.944 (2)0.1216 (9)0.039 (3)0.111 (2)
H27'1.0920081.0108710.1080940.047*0.111 (2)
C28'0.983 (2)0.883 (2)0.0789 (11)0.037 (2)0.111 (2)
H28'0.9528860.9211490.0405440.045*0.111 (2)
C29'0.9555 (19)0.762 (2)0.0934 (10)0.032 (3)0.111 (2)
H29'0.9132610.7115480.0630230.038*0.111 (2)
C30'0.992 (4)0.717 (3)0.1543 (11)0.025 (2)0.111 (2)
C31'0.958 (3)0.594 (3)0.1700 (16)0.0178 (7)0.111 (2)
H31'0.9096060.5562180.1380680.021*0.111 (2)
C32'1.2026 (13)0.6327 (17)0.2576 (10)0.034 (4)0.111 (2)
H32D1.2337560.5504960.2667940.052*0.111 (2)
H32E1.1840020.6447080.2124400.052*0.111 (2)
H32F1.2501840.6978110.2761450.052*0.111 (2)
C33'1.1427 (16)0.6235 (17)0.3521 (8)0.031 (2)0.111 (2)
H33C1.2048650.6720260.3671820.037*0.111 (2)
H33D1.0901340.6611970.3708470.037*0.111 (2)
C34'1.160 (2)0.4947 (19)0.3763 (11)0.038 (3)0.111 (2)
H34C1.0989000.4598730.3864680.046*0.111 (2)
H34D1.1813670.4399510.3452260.046*0.111 (2)
O1'1.2380 (19)0.5042 (18)0.4307 (11)0.040 (3)0.111 (2)
C35'1.253 (2)0.391 (2)0.4642 (12)0.053 (5)0.111 (2)
H35D1.3066120.4020330.5012240.080*0.111 (2)
H35E1.1908020.3680670.4768240.080*0.111 (2)
H35F1.2710990.3255970.4378490.080*0.111 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01335 (7)0.01573 (7)0.01514 (7)0.00000 (6)0.00443 (5)0.00009 (6)
Cl10.0265 (2)0.0272 (2)0.0246 (2)0.00392 (19)0.01267 (19)0.00192 (19)
Cl20.0183 (4)0.0286 (5)0.0318 (4)0.0050 (3)0.0098 (3)0.0013 (3)
Cl2'0.0183 (4)0.0286 (5)0.0318 (4)0.0050 (3)0.0098 (3)0.0013 (3)
N10.0259 (8)0.0156 (7)0.0162 (8)0.0041 (6)0.0065 (6)0.0008 (6)
N30.0259 (9)0.0166 (8)0.0167 (8)0.0034 (6)0.0062 (6)0.0022 (6)
C20.0156 (8)0.0193 (9)0.0169 (9)0.0008 (7)0.0079 (7)0.0010 (7)
C40.0408 (13)0.0188 (10)0.0259 (11)0.0061 (9)0.0057 (9)0.0018 (8)
C50.0372 (12)0.0172 (9)0.0226 (10)0.0085 (8)0.0095 (8)0.0021 (7)
C60.0280 (10)0.0170 (9)0.0136 (8)0.0043 (7)0.0051 (7)0.0011 (7)
C70.0329 (11)0.0217 (10)0.0191 (10)0.0029 (8)0.0090 (8)0.0027 (7)
C80.0375 (12)0.0303 (11)0.0186 (10)0.0058 (9)0.0119 (8)0.0010 (8)
C90.0374 (11)0.0270 (10)0.0163 (9)0.0079 (10)0.0029 (8)0.0010 (8)
C100.0283 (10)0.0266 (10)0.0182 (9)0.0010 (9)0.0004 (7)0.0007 (8)
C110.0255 (10)0.0227 (10)0.0153 (9)0.0063 (8)0.0041 (7)0.0042 (7)
C120.0410 (13)0.0385 (13)0.0289 (11)0.0087 (10)0.0206 (10)0.0043 (9)
C130.0520 (15)0.0416 (14)0.0220 (11)0.0020 (11)0.0032 (10)0.0080 (10)
C140.0245 (10)0.0374 (12)0.0193 (10)0.0006 (9)0.0062 (8)0.0014 (8)
C150.0256 (10)0.0204 (9)0.0167 (9)0.0036 (8)0.0061 (7)0.0036 (7)
C160.0258 (10)0.0249 (10)0.0212 (10)0.0053 (8)0.0078 (8)0.0037 (8)
C170.0349 (12)0.0379 (12)0.0226 (10)0.0018 (10)0.0126 (9)0.0031 (9)
C180.0419 (13)0.0426 (13)0.0198 (10)0.0013 (11)0.0070 (9)0.0036 (9)
C190.0341 (12)0.0388 (13)0.0231 (11)0.0041 (10)0.0014 (9)0.0100 (9)
C200.0302 (11)0.0259 (10)0.0238 (10)0.0020 (8)0.0070 (8)0.0064 (8)
C210.0246 (11)0.0367 (12)0.0277 (11)0.0054 (9)0.0087 (8)0.0028 (9)
C220.0585 (18)0.084 (2)0.0208 (12)0.0085 (15)0.0064 (12)0.0079 (13)
C230.0353 (13)0.0426 (13)0.0358 (13)0.0141 (11)0.0114 (10)0.0124 (10)
N20.0206 (11)0.0230 (12)0.0281 (11)0.0029 (9)0.0018 (8)0.0048 (9)
C240.0252 (12)0.0284 (12)0.0416 (14)0.0114 (10)0.0113 (10)0.0011 (10)
C250.0327 (13)0.0228 (11)0.0363 (13)0.0056 (10)0.0178 (10)0.0006 (10)
C260.0494 (16)0.0289 (13)0.0576 (18)0.0106 (12)0.0256 (14)0.0059 (12)
C270.070 (2)0.0288 (15)0.058 (2)0.0015 (15)0.0365 (18)0.0157 (14)
C280.063 (2)0.0300 (15)0.0356 (17)0.0111 (14)0.0279 (14)0.0118 (13)
C290.0398 (16)0.0235 (11)0.0250 (12)0.0070 (12)0.0191 (12)0.0043 (9)
C300.0277 (19)0.0165 (12)0.0273 (14)0.0006 (10)0.0138 (12)0.0003 (11)
C310.0166 (17)0.0179 (9)0.0202 (9)0.0001 (10)0.0066 (11)0.0014 (7)
C320.0332 (14)0.0194 (11)0.0349 (14)0.0032 (10)0.0027 (11)0.0090 (10)
C330.0214 (12)0.0338 (13)0.0362 (14)0.0044 (10)0.0046 (10)0.0061 (11)
C340.0298 (14)0.0379 (16)0.0325 (14)0.0016 (13)0.0071 (11)0.0045 (13)
O10.0465 (14)0.0516 (17)0.0440 (12)0.0089 (14)0.0216 (10)0.0068 (14)
C350.067 (2)0.069 (3)0.048 (2)0.016 (2)0.0226 (18)0.0153 (18)
N2'0.025 (4)0.027 (4)0.031 (4)0.007 (4)0.008 (4)0.006 (4)
C24'0.028 (5)0.025 (5)0.032 (5)0.009 (4)0.009 (4)0.006 (5)
C25'0.034 (4)0.021 (4)0.037 (4)0.009 (4)0.015 (4)0.005 (4)
C26'0.045 (5)0.025 (5)0.044 (5)0.008 (5)0.017 (5)0.005 (5)
C27'0.053 (5)0.026 (4)0.045 (5)0.000 (4)0.025 (5)0.009 (4)
C28'0.051 (4)0.026 (4)0.040 (4)0.003 (4)0.025 (4)0.012 (4)
C29'0.041 (5)0.025 (4)0.034 (4)0.000 (5)0.017 (5)0.000 (4)
C30'0.030 (4)0.018 (4)0.028 (4)0.002 (4)0.010 (4)0.004 (4)
C31'0.0166 (17)0.0179 (9)0.0202 (9)0.0001 (10)0.0066 (11)0.0014 (7)
C32'0.028 (7)0.020 (7)0.054 (8)0.008 (6)0.005 (7)0.002 (7)
C33'0.027 (4)0.031 (4)0.030 (4)0.010 (4)0.006 (4)0.006 (4)
C34'0.035 (5)0.037 (5)0.035 (4)0.007 (5)0.008 (4)0.001 (5)
O1'0.034 (5)0.041 (6)0.036 (5)0.008 (5)0.014 (4)0.008 (5)
C35'0.048 (10)0.053 (10)0.045 (9)0.017 (9)0.018 (8)0.023 (9)
Geometric parameters (Å, º) top
Ru1—C31'1.81 (3)N2—C331.501 (3)
Ru1—C311.833 (4)C24—C251.497 (3)
Ru1—C22.0474 (18)C24—H24A0.9900
Ru1—N2'2.251 (15)C24—H24B0.9900
Ru1—N22.271 (2)C25—C261.393 (3)
Ru1—Cl22.3515 (8)C25—C301.421 (5)
Ru1—Cl12.3519 (5)C26—C271.383 (5)
Ru1—Cl2'2.379 (7)C26—H260.9500
N1—C21.352 (2)C27—C281.382 (5)
N1—C61.434 (2)C27—H270.9500
N1—C51.478 (2)C28—C291.388 (4)
N3—C21.350 (2)C28—H280.9500
N3—C151.441 (2)C29—C301.401 (4)
N3—C41.476 (2)C29—H290.9500
C4—C51.518 (3)C30—C311.462 (3)
C4—H4A0.9900C31—H310.9500
C4—H4B0.9900C32—H32A0.9800
C5—H5A0.9900C32—H32B0.9800
C5—H5B0.9900C32—H32C0.9800
C6—C111.396 (3)C33—C341.511 (4)
C6—C71.401 (3)C33—H33A0.9900
C7—C81.400 (3)C33—H33B0.9900
C7—C121.502 (3)C34—O11.420 (3)
C8—C91.384 (3)C34—H34A0.9900
C8—H80.9500C34—H34B0.9900
C9—C101.393 (3)O1—C351.408 (4)
C9—C131.508 (3)C35—H35A0.9800
C10—C111.390 (3)C35—H35B0.9800
C10—H100.9500C35—H35C0.9800
C11—C141.505 (3)N2'—C24'1.465 (17)
C12—H12A0.9800N2'—C32'1.472 (18)
C12—H12B0.9800N2'—C33'1.486 (16)
C12—H12C0.9800C24'—C25'1.514 (15)
C13—H13A0.9800C24'—H24C0.9900
C13—H13B0.9800C24'—H24D0.9900
C13—H13C0.9800C25'—C26'1.393 (15)
C14—H14A0.9800C25'—C30'1.423 (17)
C14—H14B0.9800C26'—C27'1.380 (17)
C14—H14C0.9800C26'—H26'0.9500
C15—C201.397 (3)C27'—C28'1.379 (18)
C15—C161.401 (3)C27'—H27'0.9500
C16—C171.391 (3)C28'—C29'1.407 (17)
C16—C211.501 (3)C28'—H28'0.9500
C17—C181.391 (3)C29'—C30'1.410 (16)
C17—H170.9500C29'—H29'0.9500
C18—C191.379 (3)C30'—C31'1.465 (17)
C18—C221.513 (3)C31'—H31'0.9500
C19—C201.396 (3)C32'—H32D0.9800
C19—H190.9500C32'—H32E0.9800
C20—C231.511 (3)C32'—H32F0.9800
C21—H21A0.9800C33'—C34'1.480 (16)
C21—H21B0.9800C33'—H33C0.9900
C21—H21C0.9800C33'—H33D0.9900
C22—H22A0.9800C34'—O1'1.421 (17)
C22—H22B0.9800C34'—H34C0.9900
C22—H22C0.9800C34'—H34D0.9900
C23—H23A0.9800O1'—C35'1.407 (17)
C23—H23B0.9800C35'—H35D0.9800
C23—H23C0.9800C35'—H35E0.9800
N2—C321.489 (3)C35'—H35F0.9800
N2—C241.491 (4)
C31'—Ru1—C2100.5 (8)C24—N2—C33105.1 (2)
C31—Ru1—C297.33 (11)C32—N2—Ru1115.62 (17)
C31'—Ru1—N2'92.1 (8)C24—N2—Ru1108.54 (16)
C2—Ru1—N2'163.8 (5)C33—N2—Ru1110.59 (15)
C31—Ru1—N288.48 (11)N2—C24—C25113.7 (2)
C2—Ru1—N2172.68 (8)N2—C24—H24A108.8
C31—Ru1—Cl2103.42 (13)C25—C24—H24A108.8
C2—Ru1—Cl286.77 (5)N2—C24—H24B108.8
N2—Ru1—Cl287.55 (7)C25—C24—H24B108.8
C31'—Ru1—Cl1104.7 (14)H24A—C24—H24B107.7
C31—Ru1—Cl198.02 (13)C26—C25—C30118.8 (3)
C2—Ru1—Cl195.36 (5)C26—C25—C24119.0 (2)
N2'—Ru1—Cl191.3 (6)C30—C25—C24122.2 (2)
N2—Ru1—Cl188.21 (7)C27—C26—C25121.8 (3)
Cl2—Ru1—Cl1158.02 (3)C27—C26—H26119.1
C31'—Ru1—Cl2'96.9 (15)C25—C26—H26119.1
C2—Ru1—Cl2'78.3 (2)C28—C27—C26119.8 (3)
N2'—Ru1—Cl2'90.2 (6)C28—C27—H27120.1
Cl1—Ru1—Cl2'158.4 (3)C26—C27—H27120.1
C2—N1—C6128.05 (15)C27—C28—C29119.6 (3)
C2—N1—C5114.09 (15)C27—C28—H28120.2
C6—N1—C5117.11 (15)C29—C28—H28120.2
C2—N3—C15126.88 (16)C28—C29—C30121.8 (3)
C2—N3—C4114.39 (15)C28—C29—H29119.1
C15—N3—C4117.90 (15)C30—C29—H29119.1
N3—C2—N1106.27 (15)C29—C30—C25118.2 (3)
N3—C2—Ru1121.14 (13)C29—C30—C31117.5 (3)
N1—C2—Ru1131.33 (13)C25—C30—C31124.3 (3)
N3—C4—C5102.46 (15)C30—C31—Ru1130.7 (2)
N3—C4—H4A111.3C30—C31—H31114.7
C5—C4—H4A111.3Ru1—C31—H31114.7
N3—C4—H4B111.3N2—C32—H32A109.5
C5—C4—H4B111.3N2—C32—H32B109.5
H4A—C4—H4B109.2H32A—C32—H32B109.5
N1—C5—C4102.64 (15)N2—C32—H32C109.5
N1—C5—H5A111.2H32A—C32—H32C109.5
C4—C5—H5A111.2H32B—C32—H32C109.5
N1—C5—H5B111.2N2—C33—C34113.4 (2)
C4—C5—H5B111.2N2—C33—H33A108.9
H5A—C5—H5B109.2C34—C33—H33A108.9
C11—C6—C7121.84 (17)N2—C33—H33B108.9
C11—C6—N1118.94 (16)C34—C33—H33B108.9
C7—C6—N1119.16 (17)H33A—C33—H33B107.7
C8—C7—C6117.70 (19)O1—C34—C33106.3 (2)
C8—C7—C12120.82 (18)O1—C34—H34A110.5
C6—C7—C12121.48 (18)C33—C34—H34A110.5
C9—C8—C7121.88 (19)O1—C34—H34B110.5
C9—C8—H8119.1C33—C34—H34B110.5
C7—C8—H8119.1H34A—C34—H34B108.7
C8—C9—C10118.54 (18)C35—O1—C34112.1 (3)
C8—C9—C13121.43 (19)O1—C35—H35A109.5
C10—C9—C13120.0 (2)O1—C35—H35B109.5
C11—C10—C9121.89 (19)H35A—C35—H35B109.5
C11—C10—H10119.1O1—C35—H35C109.5
C9—C10—H10119.1H35A—C35—H35C109.5
C10—C11—C6118.04 (18)H35B—C35—H35C109.5
C10—C11—C14120.70 (18)C24'—N2'—C32'110.3 (15)
C6—C11—C14121.18 (17)C24'—N2'—C33'109.1 (15)
C7—C12—H12A109.5C32'—N2'—C33'108.5 (15)
C7—C12—H12B109.5C24'—N2'—Ru1105.1 (11)
H12A—C12—H12B109.5C32'—N2'—Ru1112.5 (13)
C7—C12—H12C109.5C33'—N2'—Ru1111.4 (12)
H12A—C12—H12C109.5N2'—C24'—C25'113.5 (15)
H12B—C12—H12C109.5N2'—C24'—H24C108.9
C9—C13—H13A109.5C25'—C24'—H24C108.9
C9—C13—H13B109.5N2'—C24'—H24D108.9
H13A—C13—H13B109.5C25'—C24'—H24D108.9
C9—C13—H13C109.5H24C—C24'—H24D107.7
H13A—C13—H13C109.5C26'—C25'—C30'117.1 (15)
H13B—C13—H13C109.5C26'—C25'—C24'120.1 (14)
C11—C14—H14A109.5C30'—C25'—C24'122.8 (14)
C11—C14—H14B109.5C27'—C26'—C25'120.0 (16)
H14A—C14—H14B109.5C27'—C26'—H26'120.0
C11—C14—H14C109.5C25'—C26'—H26'120.0
H14A—C14—H14C109.5C28'—C27'—C26'121.3 (17)
H14B—C14—H14C109.5C28'—C27'—H27'119.3
C20—C15—C16121.73 (17)C26'—C27'—H27'119.3
C20—C15—N3119.80 (17)C27'—C28'—C29'118.4 (18)
C16—C15—N3118.11 (17)C27'—C28'—H28'120.8
C17—C16—C15117.70 (19)C29'—C28'—H28'120.8
C17—C16—C21120.32 (18)C28'—C29'—C30'118.0 (18)
C15—C16—C21121.95 (17)C28'—C29'—H29'121.0
C16—C17—C18122.0 (2)C30'—C29'—H29'121.0
C16—C17—H17119.0C29'—C30'—C25'121.1 (17)
C18—C17—H17119.0C29'—C30'—C31'117.7 (18)
C19—C18—C17118.4 (2)C25'—C30'—C31'120.1 (19)
C19—C18—C22120.9 (2)C30'—C31'—Ru1130.8 (19)
C17—C18—C22120.6 (2)C30'—C31'—H31'114.6
C18—C19—C20122.1 (2)Ru1—C31'—H31'114.6
C18—C19—H19118.9N2'—C32'—H32D109.5
C20—C19—H19118.9N2'—C32'—H32E109.5
C19—C20—C15117.78 (19)H32D—C32'—H32E109.5
C19—C20—C23120.05 (19)N2'—C32'—H32F109.5
C15—C20—C23122.17 (18)H32D—C32'—H32F109.5
C16—C21—H21A109.5H32E—C32'—H32F109.5
C16—C21—H21B109.5C34'—C33'—N2'117.9 (16)
H21A—C21—H21B109.5C34'—C33'—H33C107.8
C16—C21—H21C109.5N2'—C33'—H33C107.8
H21A—C21—H21C109.5C34'—C33'—H33D107.8
H21B—C21—H21C109.5N2'—C33'—H33D107.8
C18—C22—H22A109.5H33C—C33'—H33D107.2
C18—C22—H22B109.5O1'—C34'—C33'105.7 (15)
H22A—C22—H22B109.5O1'—C34'—H34C110.6
C18—C22—H22C109.5C33'—C34'—H34C110.6
H22A—C22—H22C109.5O1'—C34'—H34D110.6
H22B—C22—H22C109.5C33'—C34'—H34D110.6
C20—C23—H23A109.5H34C—C34'—H34D108.7
C20—C23—H23B109.5C35'—O1'—C34'112.1 (17)
H23A—C23—H23B109.5O1'—C35'—H35D109.5
C20—C23—H23C109.5O1'—C35'—H35E109.5
H23A—C23—H23C109.5H35D—C35'—H35E109.5
H23B—C23—H23C109.5O1'—C35'—H35F109.5
C32—N2—C24107.9 (2)H35D—C35'—H35F109.5
C32—N2—C33108.6 (2)H35E—C35'—H35F109.5
C15—N3—C2—N1167.34 (17)C33—N2—C24—C25176.1 (2)
C4—N3—C2—N11.9 (2)Ru1—N2—C24—C2565.6 (2)
C15—N3—C2—Ru124.1 (2)N2—C24—C25—C26138.3 (2)
C4—N3—C2—Ru1166.63 (14)N2—C24—C25—C3042.9 (4)
C6—N1—C2—N3170.61 (17)C30—C25—C26—C271.6 (5)
C5—N1—C2—N30.9 (2)C24—C25—C26—C27177.2 (3)
C6—N1—C2—Ru122.5 (3)C25—C26—C27—C280.3 (5)
C5—N1—C2—Ru1167.80 (14)C26—C27—C28—C290.5 (5)
C2—N3—C4—C53.7 (2)C27—C28—C29—C300.2 (5)
C15—N3—C4—C5166.58 (17)C28—C29—C30—C251.5 (6)
C2—N1—C5—C43.1 (2)C28—C29—C30—C31179.1 (4)
C6—N1—C5—C4174.01 (16)C26—C25—C30—C292.2 (6)
N3—C4—C5—N13.7 (2)C24—C25—C30—C29176.6 (3)
C2—N1—C6—C1178.7 (2)C26—C25—C30—C31178.5 (4)
C5—N1—C6—C1190.8 (2)C24—C25—C30—C312.8 (7)
C2—N1—C6—C7104.2 (2)C29—C30—C31—Ru1178.9 (3)
C5—N1—C6—C786.3 (2)C25—C30—C31—Ru11.7 (8)
C11—C6—C7—C82.9 (3)C2—Ru1—C31—C30156.7 (4)
N1—C6—C7—C8179.88 (17)N2—Ru1—C31—C3018.9 (5)
C11—C6—C7—C12177.59 (19)Cl2—Ru1—C31—C3068.3 (5)
N1—C6—C7—C120.6 (3)Cl1—Ru1—C31—C30106.8 (4)
C6—C7—C8—C90.3 (3)C32—N2—C33—C3478.3 (3)
C12—C7—C8—C9179.8 (2)C24—N2—C33—C34166.5 (2)
C7—C8—C9—C102.2 (3)Ru1—N2—C33—C3449.6 (3)
C7—C8—C9—C13176.8 (2)N2—C33—C34—O1162.1 (2)
C8—C9—C10—C112.2 (3)C33—C34—O1—C35169.0 (3)
C13—C9—C10—C11176.80 (19)C32'—N2'—C24'—C25'53 (2)
C9—C10—C11—C60.3 (3)C33'—N2'—C24'—C25'172.0 (16)
C9—C10—C11—C14177.06 (18)Ru1—N2'—C24'—C25'68.4 (17)
C7—C6—C11—C102.9 (3)N2'—C24'—C25'—C26'128 (2)
N1—C6—C11—C10179.88 (16)N2'—C24'—C25'—C30'51 (4)
C7—C6—C11—C14179.65 (18)C30'—C25'—C26'—C27'2 (4)
N1—C6—C11—C143.3 (3)C24'—C25'—C26'—C27'178 (2)
C2—N3—C15—C20105.2 (2)C25'—C26'—C27'—C28'16 (4)
C4—N3—C15—C2085.9 (2)C26'—C27'—C28'—C29'22 (5)
C2—N3—C15—C1681.5 (2)C27'—C28'—C29'—C30'9 (5)
C4—N3—C15—C1687.4 (2)C28'—C29'—C30'—C25'9 (7)
C20—C15—C16—C175.4 (3)C28'—C29'—C30'—C31'177 (4)
N3—C15—C16—C17178.51 (18)C26'—C25'—C30'—C29'15 (6)
C20—C15—C16—C21172.71 (19)C24'—C25'—C30'—C29'166 (3)
N3—C15—C16—C210.4 (3)C26'—C25'—C30'—C31'178 (4)
C15—C16—C17—C182.5 (3)C24'—C25'—C30'—C31'1 (7)
C21—C16—C17—C18175.7 (2)C29'—C30'—C31'—Ru1175 (3)
C16—C17—C18—C191.5 (3)C25'—C30'—C31'—Ru116 (8)
C16—C17—C18—C22179.6 (2)C2—Ru1—C31'—C30'174 (5)
C17—C18—C19—C202.7 (4)N2'—Ru1—C31'—C30'5 (5)
C22—C18—C19—C20178.4 (2)Cl1—Ru1—C31'—C30'87 (5)
C18—C19—C20—C150.1 (3)Cl2'—Ru1—C31'—C30'95 (5)
C18—C19—C20—C23179.1 (2)C24'—N2'—C33'—C34'160 (2)
C16—C15—C20—C194.2 (3)C32'—N2'—C33'—C34'80 (2)
N3—C15—C20—C19177.24 (18)Ru1—N2'—C33'—C34'44 (2)
C16—C15—C20—C23174.9 (2)N2'—C33'—C34'—O1'147 (2)
N3—C15—C20—C231.9 (3)C33'—C34'—O1'—C35'171 (3)
C32—N2—C24—C2560.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl1i0.992.893.651 (2)134
C5—H5B···Cl1i0.992.833.622 (2)137
C24—H24A···Cl20.992.563.257 (3)127
C24—H24B···Cl2ii0.992.723.693 (3)167
C33—H33B···Cl20.992.873.399 (3)114
C34—H34A···Cl10.992.943.570 (3)123
C24—H24D···Cl10.992.683.391 (19)129
C32—H32D···Cl20.982.593.07 (2)110
C32—H32F···Cl2ii0.982.623.57 (2)164
C4—H4A···Cl1i0.992.893.651 (2)134
C5—H5B···Cl1i0.992.833.622 (2)137
C24—H24A···Cl20.992.563.257 (3)127
C24—H24B···Cl2ii0.992.723.693 (3)167
C33—H33B···Cl20.992.873.399 (3)114
C34—H34A···Cl10.992.943.570 (3)123
C24—H24D···Cl10.992.683.391 (19)129
C32—H32D···Cl20.982.593.07 (2)110
C32—H32F···Cl2ii0.982.623.57 (2)164
C34—H34C···Cg30.992.963.83 (2)149
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H14B···H4A2.463/2 - x, 1/2 + y, 1/2 - z
*H34D···*H262.175/2 - x, -1/2 + y, 1/2 - z
*H29'···H12C2.412 - x, 1 - y, -z
C9···H192.94-1/2 + x, 1/2 - y, -1/2 + z
*H28···*H35B2.32-1/2 + x, 3/2 - y, -1/2 + z
*H26'···H23A2.42x, 1 + y, z
*H33···H22B2.402 - x, 1 - y, 1 - z
 

Acknowledgements

The author's contributions are as follows. Conceptualization, MA and AB; synthesis, MSG, NSV and ASA; X-ray analysis, ZA and MSG; writing (review and editing of the manuscript), funding acquisition, MSG, NSV and ASA; supervision, MA and AB.

Funding information

Funding for this research was provided by the Russian Science Foundation (award No. 22-23-00490).

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAntonova, A. S., Vinokurova, M. A., Kumandin, P. A., Merkulova, N. L., Sinelshchikova, A. A., Grigoriev, M. S., Novikov, R. A., Kouznetsov, V. V., Polyanskii, K. B. & Zubkov, F. I. (2020). Molecules, 25, 5379.  CrossRef PubMed Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCopéret, C., Berkson, Z. J., Chan, K. W., de Jesus Silva, J., Gordon, C. P., Pucino, M. & Zhizhko, P. A. (2021). Chem. Sci. 12, 3092–3115.  PubMed Google Scholar
First citationEivgi, O., Phatake, R. S., Nechmad, N. B. & Lemcoff, N. G. (2020). Acc. Chem. Res. 53, 2456–2471.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrela, K. (2014). Olefin Metathesis. Wiley, ISBN 978-1-118-20794-9.  Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozłowska, A., Dranka, M., Zachara, J., Pump, E., Slugovc, C., Skowerski, K. & Grela, K. (2014). Chem. A Eur. J. 20, 14120–14125.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumandin, P. A., Antonova, A. S., Alekseeva, K. A., Nikitina, E. V., Novikov, R. A., Vasilyev, K. A., Sinelshchikova, A. A., Grigoriev, M. S., Polyanskii, K. B. & Zubkov, F. I. (2020). Organometallics, 39, 4599–4607.  CSD CrossRef Google Scholar
First citationKumandin, P. A., Antonova, A. S., Novikov, R. A., Vasilyev, K. A., Vinokurova, M. A., Grigoriev, M. S., Novikov, A. P., Polianskaia, D. K., Polyanskii, K. B. & Zubkov, F. I. (2023). Organometallics, 42, 218–234.  CSD CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861.  CrossRef Google Scholar
First citationMukherjee, N., Planer, S. & Grela, K. (2018). Org. Chem. Front. 5, 494–516.  CrossRef Google Scholar
First citationOgba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510–4544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPederson, R. L., Fellows, I. M., Ung, T. A., Ishihara, H. & Hajela, S. P. (2002). Adv. Synth. Catal. 344, 728.  CrossRef Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Kumandin, P. A., Atioğlu, Z., Akkurt, M. & Toze, F. A. A. (2019a). Acta Cryst. E75, 342–345.  CSD CrossRef IUCr Journals Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019b). Beilstein J. Org. Chem. 15, 769–779.  CSD CrossRef PubMed Google Scholar
First citationSamojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708–3742.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622–3626.  Web of Science CSD CrossRef CAS Google Scholar
First citationSlugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). Acta Cryst. E66, m154–m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsedalu, A. A. (2021). J. Chem. 2021, e3590613.  Google Scholar
First citationVasilyev, K. A., Antonova, A. S., Volchkov, N. S., Logvinenko, N. A., Nikitina, E. V., Grigoriev, M. S., Novikov, A. P., Kouznetsov, V. V., Polyanskii, K. B. & Zubkov, F. I. (2023). Molecules, 28, 1188.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds