research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis and structural properties of a chlorido­bis­­{N-[(4-meth­­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­tri­chlorido­zincate coordination complex

crossmark logo

aDepartment of Chemistry, University of Idaho, 875 Perimeter Dr. MS 2343, Moscow, ID 83844, USA
*Correspondence e-mail: kwaynant@uidaho.edu

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 18 October 2023; accepted 4 December 2023; online 1 January 2024)

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3] counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.

1. Chemical context

Herein is presented pyrrolidinyl-4-meth­oxy­phenyl­azo­form­amide, an aryl­azoformamide (AAF), acting as a ligand through its 1,3-heterodiene N=N—C=O motif to form a coordination complex with a zinc(II) metal atom. AAFs belong to the semicarbazone ligand family and there have been numerous reports and reviews of their use as ligands (Casas et al., 2000[Casas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]; Mir et al., 2024[Mir, I. A., Ain, Q. U., Qadir, T., Malik, A. Q., Jan, S., Shahverdi, S. & Nabi, S. A. (2024). J. Mol. Struct. 1295, 136216.]; Padhyé & Kauffman, 1985[Padhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]). Semicarbazones and thio­semicarbazones have the capability to coordinate with late transition metals (e.g. Cu, Pd, Zn, and Ni) and these complexes have found applications due to their thermal stability, noteworthy biological properties, and high synthetic flexibility (Casas et al., 2000[Casas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]; Garg & Jain, 1988[Garg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144-169.]; Kasuga et al., 2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]; Siji et al., 2010[Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 76, 22-28.]). Extending from the semicarbazones, numerous zinc(II) complexes have been reported to form with Schiff base ligands, exhibiting applications in catalysis and demonstrating anti­bacterial and anti­cancer properties (Kasuga et al., 2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]; Pieczonka et al., 2014[Pieczonka, A. M., Leśniak, S. & Rachwalski, M. (2014). Tetrahedron Lett. 55, 2373-2375.]). AAFs, however, have been underexplored as ligands yet have been indicated as reagents for the Mitsunobu reaction (Hirose, et al., 2018[Hirose, D., Gazvoda, M., Košmrlj, J. & Taniguchi, T. (2018). J. Org. Chem. 83, 4712-4729.]). As ligands, AAFs differ from semicarbazones in the manner of the 1,3-heterodiene motif; where the semicarbazones form a five-membered coordination ring through a Schiff base of type R—C=N—NH(R)—C=O, the azoformamide uses the RN=N—C=O to generate the five-membered metal-chelate. For the coordination process described herein, two AAF ligands are coordinated by zinc(II) chloride, displacing a chloride that is then taken on by a separate aceto­nitrile-coordinated zinc(II) chloride, creating an aceto­nitrile zinc(II) trichloride anion and resulting in a 2:1 ratio of ligands to the metal atom in the formed cationic complex. The ligands remain neutral while the resultant zinc inter­action is similar to the complexes formed with azo­thio­formamide ligands when bound to copper(I) and silver(I) coordination complexes (Groner et al., 2019[Groner, V. M., Larson, G. E., Kan, Y., Roll, M. F., Moberly, J. G. & Waynant, K. V. (2019). Acta Cryst. E75, 1394-1398.]; Johnson et al., 2017[Johnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. 2017, 5576-5581.]; Pradhan et al., 2023[Pradhan, R., Tiwari, L., Groner, V. M., Leach, C., Lusk, K., Harrison, N. S., Cornell, K. A. & Waynant, K. V. (2023). J. Inorg. Biochem. 246, 112294.]).

[Scheme 1]

2. Structural commentary

The X-ray crystal structure of the asymmetric unit of the title complex 1 and its packing structure are shown in Fig. 1[link]. This complex crystallizes in the ortho­rhom­bic space group Pbca (61). In this structure, the ZnII ion coordinates two nitro­gen atoms and two oxygen atoms of two pyrrolidine p-meth­oxy phenyl­azoformamide mol­ecules along with one chlorine atom, providing a distorted trigonal–bipyramidal shape and rendering the complex positively charged. This positive charge is counterbalanced by the presence of [(CH3CN)ZnCl3] as counter-ion. Notably, the bond length of Zn1 and the attached chlorine atom (Cl2) is 2.2202 (10) Å; Zn1 and the O1 atom of the azoformamide are measured at 2.002 (3) and 2.012 (3) in the two ligands whereas the Zn1—N1 bonds are 2.207 (3) and 2.211 (3) Å.

[Figure 1]
Figure 1
(a) A view of the mol­ecular structure of the title complex in its found asymmetric unit, with atom labeling. All displacement ellipsoids are drawn at the 50% probability level. (b) Crystal packing diagram of the title complex in ball-and-stick format.

3. Supra­molecular features, Hirshfeld surface analysis and 2D fingerprint plots

In the crystal, the positive complexes alternate with inverted [(CH3CN)ZnCl3] counter-ions, as seen in Fig. 1[link]b.

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which was also used to generate the associated two-dimensional fingerprint plots. Red and blue dots on the Hirshfeld surfaces (Fig. 2[link]) indicate intermolecular contacts with distances shorter and longer than the van der Waals radii, respectively.

[Figure 2]
Figure 2
(a) Hirshfeld surface of the title compound mapped over dnorm with Zn—Zn bond lengths in Å. (b) Arrangement of the compound in the crystal with inter­actions indicated.

The two-dimensional fingerprint plots of the most abundant contacts are presented in Fig. 3[link] and indicate that H⋯H (39.9%) and H⋯Cl/Cl⋯H (28.2%) contacts are responsible for the largest contributions to the Hirshfeld surface. Besides these contacts, C⋯H/H⋯C (7.2%), H⋯N/N⋯H (6.8%) and H⋯O/O⋯H (6.2%) inter­actions also contribute to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯N/N⋯C (3.8%), C⋯C (3.6%), C⋯O/O⋯C (1.6%), H⋯Zn/Zn⋯H (1.2%), O⋯O (0.3%), N⋯O/O⋯N (0.3%), N⋯Cl/Cl⋯N (0.3%), O⋯Cl/Cl⋯O (0.3%), and C⋯Cl/Cl⋯C (0.3%).

[Figure 3]
Figure 3
Two-dimensional fingerprint plots for the title compound showing (a) all inter­actions and delineated into (b) H⋯H (39.9%) and (c) H⋯Cl/Cl⋯H (28.2%) contacts. The values di (x-axis) and de (y-axis) are the closest inter­nal and external distances from given places on the Hirshfeld surface (in Å).

4. Synthesis and crystallization

The pyrrolidinyl-4-meth­oxy­phenyl­azoformamide ligand was prepared in a two-step synthesis from commercially available 4-meth­oxy­phenyl­hydrazine·HCl and methyl chloro­formate as shown in Fig. 4[link]. The inter­mediate ester was isolated prior to forming the formamide similar to a recently reported synthesis of biologically active aryl­azo­thio­formamides (Pradhan et al., 2023[Pradhan, R., Tiwari, L., Groner, V. M., Leach, C., Lusk, K., Harrison, N. S., Cornell, K. A. & Waynant, K. V. (2023). J. Inorg. Biochem. 246, 112294.]).

[Figure 4]
Figure 4
Synthesis of the pyrrolidinyl-4-meth­oxy­phenyl­azoformamide ligand from phenyl­hydrazine hydro­chloride.

Pyrrolidinyl-4-meth­oxy­phenyl­azoformamide (4): 4-meth­oxy­phenyl­hydrazine·HCl (5.00 mmol, 0.873 g) was dissolved in 20 mL of di­chloro­methane in a round-bottom flask fitted with a magnetic stirrer followed by degassing under nitro­gen flow. Then, pre-dried pyridine (10.0 mmol, 0.805 mL) was added to the solution followed by a dropwise addition of methyl chloro­formate (5.5 mmol, 0.425 mL). The reaction was stirred for 30 minutes at 273 K and 1 h at room temperature. The mixture was diluted with 20 mL of water and was extracted with ether (3 × 40 mL), before the organic layer was separated and concentrated in vacuo. Pure product was obtained from column chromatography (3:2 hexa­ne: ethyl acetate) yielding the ester as a light brown solid (0.892 g, 77% yield) identified as methyl 2-(4-meth­oxy­phen­yl)hydrazine-1-carboxyl­ate and matching previously reported NMR data (Käsnänen et al., 2013[Käsnänen, H., Minkkilä, A., Taupila, S., Patel, J. Z., Parkkari, T., Lahtela-Kakkonen, M., Saario, S. M., Nevalainen, T. & Poso, A. (2013). Eur. J. Pharm. Sci. 49, 423-433.]). This ester, 3 (4 mmol, 0.785 g), was dissolved in 10 mL of toluene and to the solution was added pyrrolidine (4.8 mmol, 0.473 mL) followed by tri­ethyl­amine (6.0 mmol, 0.855 mL). The solution was refluxed at 363 K under nitro­gen for 48 h. The solution was then cooled to room temperature, opened to air, and stirred for 4 h. The solution was then washed with brine (2 × 25 mL), extracted with ethyl acetate, and dried with MgSO4. After concentration, the crude product was subjected to column chromatography (7:3 hexa­ne: ethyl acetate) to give 0.612 g of a bright-orange solid (65% yield). 1H NMR (500 MHz, Chloro­form-d) δ 7.93 (d, J = 9.1 Hz, 2H), 6.98 (d, J = 9.1 Hz, 2H), 3.89 (s, 3H), 3.71–3.68 (m, 2H), 3.64 (t, J = 6.8 Hz, 2H), 1.98–1.95 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 161.114, 146.612, 126.022, 114.429, 114.421, 55.801, 46.781, 26.183, 24.470 FTIR (cm−1): 2974, 2884, 1690, 1500, 1256, 1025, 848. HRMS [M + H]+, Measured: 234.1243; found: 234.1236, m.p.339 K.

Chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­tri­chlorido­zincate (1): Zinc(II) chloride (0.136 g, 1.00 mmol) was added to a solution of pyrrolidine-4-meth­oxy­phen­ylazoformamide, 4 (0.233 g, 1 mmol) in 5 ml of toluene and the mixture was refluxed for 2 h at 363 K to obtain a yellow solution of the zinc complex. The solution was concentrated by rotary evaporation, and the resulting solid was purified using several cold hexane washes to remove any residual ligand, yielding 0.569 g (74% yield) of a yellow solid. 15–25 mg of the material were dissolved in 2 mL of aceto­nitrile for crystallization. After 2 days of slow evaporation, yellow plate-like crystals were obtained. 1H NMR (500 MHz, Chloro­form-d) δ 8.04 (d, J = 8.5 Hz, 4H), 7.04 (d, J = 7.2 Hz, 4H), 3.92 (s, 6H), 3.76 (dt, J = 12.7, 6.0 Hz, 8H), 2.07–1.98 (m, 8H). 13C NMR (126 MHz, CDCl3) δ 165.150, 161.404, 146.278, 127.316, 114.971, 56.062, 47.320, 26.143, 24.515. FTIR (cm−1): 2979, 1647, 1370, 1267, 1047, 846; m.p. 467 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C). Methyl H atoms were positioned geometrically and were allowed to ride on C atoms and rotate around the C—C bond, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [ZnCl(C12H15N3O2)2][ZnCl3(C2H3N)]
Mr 780.13
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 28.4313 (7), 7.6516 (2), 29.5461 (9)
V3) 6427.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.87
Crystal size (mm) 0.19 × 0.17 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE Duo
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 167426, 7354, 5790
Rint 0.088
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.104, 1.15
No. of reflections 7354
No. of parameters 391
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.54
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX2 and SAINT. Bruker AXS, Inc. Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Chloridobis{N-[(4-methoxyphenyl)imino]pyrrolidine-1-carboxamide}zinc(II) (acetonitrile)trichloridozincate top
Crystal data top
[ZnCl(C12H15N3O2)2][ZnCl3(C2H3N)]Dx = 1.612 Mg m3
Mr = 780.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9702 reflections
a = 28.4313 (7) Åθ = 2.8–27.4°
b = 7.6516 (2) ŵ = 1.87 mm1
c = 29.5461 (9) ÅT = 100 K
V = 6427.6 (3) Å3Plate, yellow
Z = 80.19 × 0.17 × 0.02 mm
F(000) = 3184
Data collection top
Bruker D8 VENTURE Duo
diffractometer
7354 independent reflections
Radiation source: sealed tube, fine-focus5790 reflections with I > 2σ(I)
TRIUMPH graphite monochromatorRint = 0.088
Detector resolution: 7.39 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω and φ scansh = 3631
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.665, Tmax = 0.746l = 3838
167426 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.019P)2 + 31.9684P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
7354 reflectionsΔρmax = 1.05 e Å3
391 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.38392 (2)0.32189 (6)0.53246 (2)0.01362 (10)
Cl20.35537 (3)0.06498 (13)0.51090 (3)0.01896 (19)
O1A0.41294 (9)0.3767 (4)0.59256 (9)0.0187 (6)
O2A0.55202 (9)0.1012 (4)0.36437 (9)0.0229 (6)
N1A0.46035 (10)0.2952 (4)0.52134 (10)0.0133 (6)
N2A0.48565 (10)0.3201 (4)0.55606 (10)0.0154 (6)
N3A0.48118 (10)0.3960 (4)0.63111 (10)0.0142 (6)
C1A0.45700 (13)0.3661 (5)0.59420 (12)0.0148 (7)
C2A0.48421 (13)0.2478 (5)0.48157 (12)0.0155 (7)
C3A0.45684 (13)0.2099 (5)0.44347 (12)0.0172 (8)
H3A0.4235630.2190670.4450910.021*
C4A0.47807 (13)0.1593 (5)0.40346 (12)0.0167 (8)
H4A0.4594930.1319540.3776850.020*
C5A0.52690 (13)0.1487 (5)0.40129 (13)0.0169 (8)
C6A0.55441 (13)0.1885 (6)0.43970 (14)0.0223 (9)
H6A0.5877240.1819190.4378990.027*
C7A0.53351 (13)0.2365 (6)0.47949 (13)0.0188 (8)
H7A0.5520750.2619200.5054020.023*
C8A0.45700 (13)0.4426 (6)0.67395 (12)0.0177 (8)
H8AA0.4308420.3608910.6804130.021*
H8AB0.4445520.5633360.6728260.021*
C9A0.49607 (13)0.4258 (5)0.70924 (13)0.0186 (8)
H9AA0.4977860.3050920.7212140.022*
H9AB0.4909180.5075730.7347230.022*
C10A0.54098 (13)0.4729 (5)0.68302 (13)0.0193 (8)
H10A0.5447620.6011970.6807220.023*
H10B0.5691370.4229800.6978960.023*
C11A0.53340 (12)0.3916 (5)0.63639 (12)0.0168 (8)
H11A0.5490770.4610790.6124920.020*
H11B0.5453990.2701770.6353720.020*
C12A0.52662 (14)0.0592 (6)0.32387 (13)0.0218 (9)
H12A0.5488220.0248030.3001130.033*
H12B0.5087390.1616750.3138820.033*
H12C0.5049360.0375760.3299360.033*
O1B0.37393 (9)0.5185 (4)0.48827 (9)0.0157 (5)
O2B0.20169 (9)0.1946 (4)0.68988 (9)0.0215 (6)
N1B0.31512 (10)0.4348 (4)0.55143 (10)0.0130 (6)
N2B0.29743 (11)0.5328 (4)0.52118 (10)0.0139 (6)
N3B0.31713 (10)0.6878 (4)0.45738 (10)0.0145 (6)
C1B0.33246 (12)0.5774 (5)0.48798 (12)0.0132 (7)
C2B0.28426 (13)0.3787 (5)0.58569 (12)0.0134 (7)
C3B0.30428 (13)0.3026 (5)0.62401 (13)0.0168 (8)
H3B0.3374260.2892600.6261180.020*
C4B0.27560 (13)0.2466 (5)0.65894 (13)0.0167 (8)
H4B0.2890680.1999290.6857710.020*
C5B0.22695 (14)0.2588 (5)0.65466 (13)0.0170 (8)
C6B0.20650 (13)0.3330 (5)0.61614 (13)0.0179 (8)
H6B0.1732730.3409300.6134480.021*
C7B0.23534 (13)0.3947 (5)0.58204 (13)0.0167 (8)
H7B0.2219300.4481560.5560450.020*
C8B0.34803 (13)0.7567 (5)0.42103 (13)0.0176 (8)
H8BA0.3572930.6630330.3996850.021*
H8BB0.3767170.8110380.4337780.021*
C9B0.31677 (14)0.8932 (5)0.39776 (13)0.0211 (8)
H9BA0.3213481.0102560.4113550.025*
H9BB0.3236860.8997910.3649630.025*
C10B0.26686 (14)0.8269 (5)0.40602 (13)0.0193 (8)
H10C0.2435350.9221700.4027260.023*
H10D0.2587480.7309940.3849330.023*
C11B0.26919 (13)0.7620 (5)0.45464 (13)0.0174 (8)
H11C0.2650530.8592310.4763890.021*
H11D0.2450050.6717370.4604940.021*
C12B0.15132 (13)0.1884 (6)0.68501 (14)0.0245 (9)
H12D0.1432250.1252260.6572270.037*
H12E0.1388700.3076600.6833820.037*
H12F0.1375750.1280650.7111130.037*
Zn1C0.36227 (2)0.31087 (6)0.79662 (2)0.01579 (11)
Cl1C0.37575 (3)0.15712 (13)0.73339 (3)0.0198 (2)
Cl2C0.40356 (3)0.55957 (13)0.79884 (3)0.0216 (2)
Cl3C0.36050 (3)0.17133 (13)0.86338 (3)0.0205 (2)
N1C0.29085 (12)0.3713 (5)0.78907 (12)0.0232 (8)
C1C0.25046 (15)0.3671 (5)0.78836 (13)0.0209 (8)
C2C0.19989 (13)0.3640 (6)0.78872 (14)0.0213 (9)
H2CA0.1878970.4353020.7636980.032*
H2CB0.1884090.4112430.8175000.032*
H2CC0.1889070.2433700.7851970.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00912 (19)0.0189 (2)0.0128 (2)0.00014 (17)0.00164 (15)0.00036 (18)
Cl20.0149 (4)0.0205 (5)0.0215 (5)0.0035 (4)0.0028 (4)0.0032 (4)
O1A0.0113 (12)0.0294 (15)0.0154 (13)0.0016 (11)0.0021 (10)0.0013 (12)
O2A0.0149 (13)0.0378 (17)0.0160 (14)0.0033 (12)0.0018 (11)0.0041 (13)
N1A0.0108 (14)0.0183 (16)0.0110 (15)0.0008 (12)0.0008 (11)0.0010 (12)
N2A0.0129 (14)0.0217 (17)0.0116 (15)0.0002 (13)0.0022 (12)0.0015 (13)
N3A0.0092 (14)0.0216 (17)0.0116 (15)0.0005 (12)0.0012 (12)0.0010 (13)
C1A0.0144 (17)0.0174 (18)0.0124 (17)0.0014 (14)0.0002 (14)0.0019 (14)
C2A0.0157 (17)0.0172 (18)0.0137 (18)0.0016 (15)0.0001 (14)0.0021 (15)
C3A0.0128 (17)0.023 (2)0.0158 (19)0.0017 (15)0.0006 (14)0.0000 (16)
C4A0.0145 (17)0.023 (2)0.0124 (17)0.0017 (15)0.0012 (14)0.0004 (16)
C5A0.0176 (18)0.020 (2)0.0128 (17)0.0037 (15)0.0025 (15)0.0027 (15)
C6A0.0086 (16)0.036 (2)0.022 (2)0.0011 (17)0.0003 (15)0.0020 (19)
C7A0.0151 (18)0.030 (2)0.0117 (18)0.0007 (16)0.0051 (14)0.0007 (16)
C8A0.0142 (18)0.026 (2)0.0130 (18)0.0022 (16)0.0002 (14)0.0001 (16)
C9A0.0190 (19)0.025 (2)0.0119 (18)0.0012 (16)0.0030 (15)0.0002 (16)
C10A0.0148 (18)0.023 (2)0.020 (2)0.0004 (16)0.0046 (15)0.0007 (16)
C11A0.0115 (17)0.026 (2)0.0126 (18)0.0001 (15)0.0032 (14)0.0025 (16)
C12A0.024 (2)0.027 (2)0.0146 (19)0.0010 (18)0.0008 (16)0.0061 (17)
O1B0.0103 (12)0.0208 (14)0.0162 (13)0.0003 (10)0.0012 (10)0.0032 (11)
O2B0.0159 (13)0.0321 (16)0.0164 (13)0.0041 (12)0.0037 (11)0.0020 (12)
N1B0.0126 (14)0.0149 (15)0.0115 (15)0.0017 (12)0.0023 (12)0.0016 (12)
N2B0.0130 (14)0.0172 (16)0.0115 (15)0.0032 (12)0.0012 (12)0.0012 (12)
N3B0.0133 (14)0.0170 (15)0.0131 (15)0.0007 (13)0.0008 (12)0.0016 (13)
C1B0.0118 (17)0.0161 (18)0.0118 (17)0.0026 (14)0.0000 (13)0.0027 (14)
C2B0.0155 (17)0.0143 (17)0.0105 (17)0.0002 (14)0.0023 (14)0.0022 (14)
C3B0.0108 (16)0.021 (2)0.0184 (19)0.0008 (15)0.0009 (14)0.0005 (16)
C4B0.0182 (18)0.0217 (19)0.0101 (17)0.0004 (16)0.0002 (14)0.0003 (15)
C5B0.0219 (19)0.0193 (19)0.0098 (17)0.0024 (16)0.0015 (15)0.0038 (15)
C6B0.0107 (16)0.023 (2)0.0198 (19)0.0008 (15)0.0005 (14)0.0040 (17)
C7B0.0153 (17)0.021 (2)0.0140 (18)0.0001 (15)0.0018 (14)0.0011 (15)
C8B0.0168 (18)0.0205 (19)0.0153 (18)0.0012 (15)0.0034 (15)0.0025 (15)
C9B0.030 (2)0.020 (2)0.0137 (19)0.0012 (17)0.0000 (16)0.0037 (16)
C10B0.0230 (19)0.0192 (19)0.0157 (18)0.0027 (16)0.0045 (15)0.0023 (16)
C11B0.0153 (18)0.0179 (19)0.0189 (19)0.0034 (15)0.0041 (15)0.0018 (15)
C12B0.0146 (18)0.039 (3)0.020 (2)0.0044 (18)0.0067 (15)0.0000 (19)
Zn1C0.0128 (2)0.0178 (2)0.0167 (2)0.00073 (17)0.00144 (16)0.00044 (18)
Cl1C0.0193 (4)0.0226 (5)0.0174 (4)0.0003 (4)0.0029 (4)0.0003 (4)
Cl2C0.0193 (4)0.0212 (5)0.0244 (5)0.0042 (4)0.0017 (4)0.0005 (4)
Cl3C0.0222 (4)0.0211 (5)0.0180 (4)0.0010 (4)0.0017 (4)0.0022 (4)
N1C0.0196 (18)0.031 (2)0.0189 (18)0.0049 (15)0.0022 (14)0.0016 (15)
C1C0.021 (2)0.020 (2)0.021 (2)0.0044 (16)0.0020 (17)0.0002 (16)
C2C0.0155 (19)0.027 (2)0.022 (2)0.0029 (16)0.0005 (16)0.0000 (17)
Geometric parameters (Å, º) top
Zn1—Cl22.2202 (10)O2B—C12B1.440 (5)
Zn1—O1A2.002 (3)N1B—N2B1.270 (4)
Zn1—N1A2.207 (3)N1B—C2B1.407 (5)
Zn1—O1B2.012 (3)N2B—C1B1.439 (5)
Zn1—N1B2.211 (3)N3B—C1B1.311 (5)
O1A—C1A1.256 (4)N3B—C8B1.484 (5)
O2A—C5A1.354 (4)N3B—C11B1.479 (5)
O2A—C12A1.434 (5)C2B—C3B1.395 (5)
N1A—N2A1.267 (4)C2B—C7B1.400 (5)
N1A—C2A1.405 (5)C3B—H3B0.9500
N2A—C1A1.435 (5)C3B—C4B1.383 (5)
N3A—C1A1.309 (5)C4B—H4B0.9500
N3A—C8A1.484 (5)C4B—C5B1.392 (5)
N3A—C11A1.493 (4)C5B—C6B1.399 (5)
C2A—C3A1.399 (5)C6B—H6B0.9500
C2A—C7A1.406 (5)C6B—C7B1.382 (5)
C3A—H3A0.9500C7B—H7B0.9500
C3A—C4A1.383 (5)C8B—H8BA0.9900
C4A—H4A0.9500C8B—H8BB0.9900
C4A—C5A1.392 (5)C8B—C9B1.535 (5)
C5A—C6A1.412 (5)C9B—H9BA0.9900
C6A—H6A0.9500C9B—H9BB0.9900
C6A—C7A1.367 (6)C9B—C10B1.527 (6)
C7A—H7A0.9500C10B—H10C0.9900
C8A—H8AA0.9900C10B—H10D0.9900
C8A—H8AB0.9900C10B—C11B1.521 (5)
C8A—C9A1.529 (5)C11B—H11C0.9900
C9A—H9AA0.9900C11B—H11D0.9900
C9A—H9AB0.9900C12B—H12D0.9800
C9A—C10A1.536 (5)C12B—H12E0.9800
C10A—H10A0.9900C12B—H12F0.9800
C10A—H10B0.9900Zn1C—Cl1C2.2408 (10)
C10A—C11A1.527 (5)Zn1C—Cl2C2.2368 (11)
C11A—H11A0.9900Zn1C—Cl3C2.2435 (10)
C11A—H11B0.9900Zn1C—N1C2.095 (3)
C12A—H12A0.9800N1C—C1C1.149 (5)
C12A—H12B0.9800C1C—C2C1.438 (5)
C12A—H12C0.9800C2C—H2CA0.9800
O1B—C1B1.262 (4)C2C—H2CB0.9800
O2B—C5B1.356 (5)C2C—H2CC0.9800
O1A—Zn1—Cl2126.20 (9)N2B—N1B—Zn1113.7 (2)
O1A—Zn1—N1A75.27 (11)N2B—N1B—C2B116.1 (3)
O1A—Zn1—O1B118.48 (11)C2B—N1B—Zn1128.0 (2)
O1A—Zn1—N1B93.31 (11)N1B—N2B—C1B110.2 (3)
N1A—Zn1—Cl2103.62 (9)C1B—N3B—C8B122.1 (3)
N1A—Zn1—N1B160.92 (12)C1B—N3B—C11B126.3 (3)
O1B—Zn1—Cl2115.10 (8)C11B—N3B—C8B111.7 (3)
O1B—Zn1—N1A96.41 (11)O1B—C1B—N2B123.9 (3)
O1B—Zn1—N1B75.36 (11)O1B—C1B—N3B123.0 (3)
N1B—Zn1—Cl295.47 (8)N3B—C1B—N2B113.1 (3)
C1A—O1A—Zn1115.6 (2)C3B—C2B—N1B117.2 (3)
C5A—O2A—C12A117.8 (3)C3B—C2B—C7B120.3 (3)
N2A—N1A—Zn1115.1 (2)C7B—C2B—N1B122.5 (3)
N2A—N1A—C2A116.2 (3)C2B—C3B—H3B120.2
C2A—N1A—Zn1128.6 (2)C4B—C3B—C2B119.6 (3)
N1A—N2A—C1A110.5 (3)C4B—C3B—H3B120.2
C1A—N3A—C8A120.6 (3)C3B—C4B—H4B120.1
C1A—N3A—C11A127.2 (3)C3B—C4B—C5B119.8 (4)
C8A—N3A—C11A112.1 (3)C5B—C4B—H4B120.1
O1A—C1A—N2A123.5 (3)O2B—C5B—C4B115.6 (4)
O1A—C1A—N3A123.0 (3)O2B—C5B—C6B123.5 (3)
N3A—C1A—N2A113.5 (3)C4B—C5B—C6B120.9 (4)
N1A—C2A—C7A122.3 (3)C5B—C6B—H6B120.5
C3A—C2A—N1A117.3 (3)C7B—C6B—C5B119.0 (3)
C3A—C2A—C7A120.5 (4)C7B—C6B—H6B120.5
C2A—C3A—H3A119.9C2B—C7B—H7B119.9
C4A—C3A—C2A120.2 (3)C6B—C7B—C2B120.2 (4)
C4A—C3A—H3A119.9C6B—C7B—H7B119.9
C3A—C4A—H4A120.3N3B—C8B—H8BA111.2
C3A—C4A—C5A119.4 (4)N3B—C8B—H8BB111.2
C5A—C4A—H4A120.3N3B—C8B—C9B102.9 (3)
O2A—C5A—C4A125.4 (4)H8BA—C8B—H8BB109.1
O2A—C5A—C6A114.4 (3)C9B—C8B—H8BA111.2
C4A—C5A—C6A120.2 (4)C9B—C8B—H8BB111.2
C5A—C6A—H6A119.7C8B—C9B—H9BA111.0
C7A—C6A—C5A120.6 (3)C8B—C9B—H9BB111.0
C7A—C6A—H6A119.7H9BA—C9B—H9BB109.0
C2A—C7A—H7A120.4C10B—C9B—C8B103.9 (3)
C6A—C7A—C2A119.2 (4)C10B—C9B—H9BA111.0
C6A—C7A—H7A120.4C10B—C9B—H9BB111.0
N3A—C8A—H8AA111.2C9B—C10B—H10C111.2
N3A—C8A—H8AB111.2C9B—C10B—H10D111.2
N3A—C8A—C9A103.0 (3)H10C—C10B—H10D109.2
H8AA—C8A—H8AB109.1C11B—C10B—C9B102.6 (3)
C9A—C8A—H8AA111.2C11B—C10B—H10C111.2
C9A—C8A—H8AB111.2C11B—C10B—H10D111.2
C8A—C9A—H9AA111.0N3B—C11B—C10B102.6 (3)
C8A—C9A—H9AB111.0N3B—C11B—H11C111.3
C8A—C9A—C10A103.9 (3)N3B—C11B—H11D111.3
H9AA—C9A—H9AB109.0C10B—C11B—H11C111.3
C10A—C9A—H9AA111.0C10B—C11B—H11D111.3
C10A—C9A—H9AB111.0H11C—C11B—H11D109.2
C9A—C10A—H10A111.0O2B—C12B—H12D109.5
C9A—C10A—H10B111.0O2B—C12B—H12E109.5
H10A—C10A—H10B109.0O2B—C12B—H12F109.5
C11A—C10A—C9A104.0 (3)H12D—C12B—H12E109.5
C11A—C10A—H10A111.0H12D—C12B—H12F109.5
C11A—C10A—H10B111.0H12E—C12B—H12F109.5
N3A—C11A—C10A103.0 (3)Cl1C—Zn1C—Cl3C119.15 (4)
N3A—C11A—H11A111.2Cl2C—Zn1C—Cl1C112.42 (4)
N3A—C11A—H11B111.2Cl2C—Zn1C—Cl3C113.01 (4)
C10A—C11A—H11A111.2N1C—Zn1C—Cl1C101.12 (10)
C10A—C11A—H11B111.2N1C—Zn1C—Cl2C108.91 (11)
H11A—C11A—H11B109.1N1C—Zn1C—Cl3C100.19 (10)
O2A—C12A—H12A109.5C1C—N1C—Zn1C164.7 (4)
O2A—C12A—H12B109.5N1C—C1C—C2C178.4 (5)
O2A—C12A—H12C109.5C1C—C2C—H2CA109.5
H12A—C12A—H12B109.5C1C—C2C—H2CB109.5
H12A—C12A—H12C109.5C1C—C2C—H2CC109.5
H12B—C12A—H12C109.5H2CA—C2C—H2CB109.5
C1B—O1B—Zn1113.8 (2)H2CA—C2C—H2CC109.5
C5B—O2B—C12B117.5 (3)H2CB—C2C—H2CC109.5
Zn1—O1A—C1A—N2A0.7 (5)C11A—N3A—C1A—O1A178.3 (4)
Zn1—O1A—C1A—N3A179.2 (3)C11A—N3A—C1A—N2A1.8 (6)
Zn1—N1A—N2A—C1A2.0 (4)C11A—N3A—C8A—C9A12.7 (4)
Zn1—N1A—C2A—C3A0.7 (5)C12A—O2A—C5A—C4A0.5 (6)
Zn1—N1A—C2A—C7A179.8 (3)C12A—O2A—C5A—C6A179.8 (4)
Zn1—O1B—C1B—N2B10.7 (4)O2B—C5B—C6B—C7B180.0 (4)
Zn1—O1B—C1B—N3B170.1 (3)N1B—N2B—C1B—O1B3.5 (5)
Zn1—N1B—N2B—C1B14.5 (4)N1B—N2B—C1B—N3B175.8 (3)
Zn1—N1B—C2B—C3B31.2 (5)N1B—C2B—C3B—C4B179.4 (3)
Zn1—N1B—C2B—C7B147.8 (3)N1B—C2B—C7B—C6B178.2 (3)
O2A—C5A—C6A—C7A179.3 (4)N2B—N1B—C2B—C3B166.9 (3)
N1A—N2A—C1A—O1A1.0 (5)N2B—N1B—C2B—C7B14.0 (5)
N1A—N2A—C1A—N3A179.1 (3)N3B—C8B—C9B—C10B27.7 (4)
N1A—C2A—C3A—C4A178.8 (4)C1B—N3B—C8B—C9B173.7 (3)
N1A—C2A—C7A—C6A179.6 (4)C1B—N3B—C11B—C10B161.6 (4)
N2A—N1A—C2A—C3A176.5 (3)C2B—N1B—N2B—C1B178.9 (3)
N2A—N1A—C2A—C7A3.0 (6)C2B—C3B—C4B—C5B3.1 (6)
N3A—C8A—C9A—C10A30.7 (4)C3B—C2B—C7B—C6B0.9 (6)
C1A—N3A—C8A—C9A168.0 (3)C3B—C4B—C5B—O2B177.6 (4)
C1A—N3A—C11A—C10A168.6 (4)C3B—C4B—C5B—C6B2.4 (6)
C2A—N1A—N2A—C1A179.5 (3)C4B—C5B—C6B—C7B0.0 (6)
C2A—C3A—C4A—C5A0.9 (6)C5B—C6B—C7B—C2B1.6 (6)
C3A—C2A—C7A—C6A0.2 (6)C7B—C2B—C3B—C4B1.5 (6)
C3A—C4A—C5A—O2A179.9 (4)C8B—N3B—C1B—O1B1.8 (6)
C3A—C4A—C5A—C6A0.3 (6)C8B—N3B—C1B—N2B177.6 (3)
C4A—C5A—C6A—C7A0.5 (6)C8B—N3B—C11B—C10B19.8 (4)
C5A—C6A—C7A—C2A0.8 (7)C8B—C9B—C10B—C11B40.2 (4)
C7A—C2A—C3A—C4A0.7 (6)C9B—C10B—C11B—N3B36.3 (4)
C8A—N3A—C1A—O1A0.9 (6)C11B—N3B—C1B—O1B179.7 (3)
C8A—N3A—C1A—N2A179.0 (3)C11B—N3B—C1B—N2B0.9 (5)
C8A—N3A—C11A—C10A10.6 (4)C11B—N3B—C8B—C9B4.9 (4)
C8A—C9A—C10A—C11A38.0 (4)C12B—O2B—C5B—C4B173.9 (4)
C9A—C10A—C11A—N3A29.5 (4)C12B—O2B—C5B—C6B6.1 (6)
 

Acknowledgements

This project was partly supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant No. P20GM103408. X-ray crystallographic data were collected at the University of Montana X-ray diffraction core facility supported by the Center for Biomolecular Structure and Dynamics CoBRE (National Institutes of Health, CoBRE NIGMS P20GM103546).

Funding information

Funding for this research was provided by: National Institutes of Health, National Institute of General Medical Sciences (award No. P20GM103408 to KW; award No. P20GM103546).

References

First citationBruker (2021). APEX2 and SAINT. Bruker AXS, Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144–169.  CrossRef CAS Web of Science Google Scholar
First citationGroner, V. M., Larson, G. E., Kan, Y., Roll, M. F., Moberly, J. G. & Waynant, K. V. (2019). Acta Cryst. E75, 1394–1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHirose, D., Gazvoda, M., Košmrlj, J. & Taniguchi, T. (2018). J. Org. Chem. 83, 4712–4729.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJohnson, N. A., Wolfe, S. R., Kabir, H., Andrade, G. A., Yap, G. P. A., Heiden, Z. M., Moberly, J. G., Roll, M. F. & Waynant, K. V. (2017). Eur. J. Inorg. Chem. 2017, 5576–5581.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKäsnänen, H., Minkkilä, A., Taupila, S., Patel, J. Z., Parkkari, T., Lahtela-Kakkonen, M., Saario, S. M., Nevalainen, T. & Poso, A. (2013). Eur. J. Pharm. Sci. 49, 423–433.  Web of Science PubMed Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMir, I. A., Ain, Q. U., Qadir, T., Malik, A. Q., Jan, S., Shahverdi, S. & Nabi, S. A. (2024). J. Mol. Struct. 1295, 136216.  Web of Science CrossRef Google Scholar
First citationPadhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  CrossRef CAS Web of Science Google Scholar
First citationPieczonka, A. M., Leśniak, S. & Rachwalski, M. (2014). Tetrahedron Lett. 55, 2373–2375.  Web of Science CrossRef CAS Google Scholar
First citationPradhan, R., Tiwari, L., Groner, V. M., Leach, C., Lusk, K., Harrison, N. S., Cornell, K. A. & Waynant, K. V. (2023). J. Inorg. Biochem. 246, 112294.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 76, 22–28.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds