research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[(5-amino-1-tosyl-1H-pyrazol-3-yl)­­oxy]-1-(4-meth­­oxy­phen­yl)ethan-1-one 1,4-dioxane monosolvate

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 24 November 2023; accepted 10 December 2023; online 1 January 2024)

In the structure of the title compound, C19H19N3O5S·C4H8O2, the two independent dioxane mol­ecules each display inversion symmetry. The pyrazole ring is approximately parallel to the aromatic ring of the oxy-ethanone group and approximately perpendicular to the tolyl ring of the sulfonyl substituent. An extensive system of classical and `weak' hydrogen bonds connects the residues to form a layer structure parallel to (201), within which dimeric subunits are conspicuous; neighbouring layers are connected by classical hydrogen bonds to dioxanes and by `weak' hydrogen bonds from Htol­yl donors.

1. Chemical context

We are currently developing several synthetic strategies for the preparation of new heterocyclic compounds containing N-sulfonyl­amino- and N-sulfonyl moieties, which have recently been shown to possess significant biological activity as novel anti-covid-19, anti­microbial and anti­viral agents (Azzam et al., 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.]; Elgemeie et al., 2019[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099-1131.], 2022[Elgemeie, G. H., Azzam, R. A., Zaghary, W. A., Aly, A. A., Metwally, N. H. M., Sarhan, M. O., Abdelhafez, E. M. & Elsayed, R. E. (2022). N-Sulfonated-N-heterocycles: synthesis, chemistry, and biological applications, pp. 1-523 Amsterdam: Elsevier. ISBN: 978-0-12-822179-2.]; Zhu et al., 2013[Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146-4149.]). Some of our recently reported N-aryl­sulfonyl­pyrazoles (Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.], 2002[Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250-o1252.], 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]) have been used by other groups as inhibitors of NS2B-NS3 virus and cathepsin B16 (Myers et al., 2007[Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III Michael, C. M., Andrew, D. N., Nuzhat, M., Parag, P. S., Chun-Hao, C., (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]; Sidique et al., 2009[Sidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773-5777.]). In this context, we are seeking simple and innovative syntheses for other new derivatives of N-sulfonated pyrazoles, in the hope of finding different scaffolds for use as promising future drugs (Zhang et al., 2020[Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 2020, 1154-1159.]).

We have previously prepared both N-alkyl­ated (Metwally et al., 2021a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615-617.]) and O-alkyl­ated (Metwally et al., 2021b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]) derivatives of N-tosyl­pyrazole 1. In order to determine which factors lead to the formation of N-alkyl­ated or O-alkyl­ated products of N-tosyl­pyrazole, a reaction (Fig. 1[link]) was conducted of N-tosyl­pyrazole (1) with 2-bromo-1-(4-meth­oxy­phen­yl)ethan-1-one (2) and potassium carbonate in dry N,N-di­methyl­formamide at room temperature. This yielded an adduct for which two isomeric structures are possible, the O-alkyl­ated or N-alkyl­ated N-tosyl­pyrazoles 3 or 4. The 1H NMR spectrum of the product showed five singlet signals at δ = 2.37, 3.85, 4.92, 5.42 and 6.31 ppm, assigned to the CH3, OCH3, CH-pyrazole, CH2 and NH2 protons, respectively, in addition to signals from the aromatic protons. The formation of a mixture could thereby be excluded. The X-ray structure determination unambiguously confirmed the formation of the O-alkyl­ated N-sulfonyl­pyrazole 4. The synthesis of this product rather than the isomeric N-tosyl­pyrazole 3 might be attributable to the possibility that 4 is the thermodynamically controlled product because of less steric hindrance.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of 4.

2. Structural commentary

The structure of compound 4 (as its 1,4-dioxane solvate 4′) is shown in Fig. 2[link], where the dioxane rings, which lie around inversion centres, have been completed by symmetry. The dioxanes containing O81 and O91 are henceforth referred to as dioxanes 1 and 2 respectively. A selection of mol­ecular dimensions is given in Table 1[link]; these may be considered as normal. The atom sequence C5—C4—C3—O2—C2—C1—C11—C12 is characterized by torsion angles close to ±180°; the greatest deviation from anti­periplanar values is seen for C3—O2—C2—C1 at −166.35 (3)°. This extended anti­periplanar sequence causes the heterocycle and the ring at C11 to be approximately parallel, whereas the heterocycle and the tolyl rings are approximately perpendicular to each other [inter­planar angles of 7.58 (3) and 82.92 (1)°, respectively]. An intra­molecular hydrogen bond N3—H032⋯O4 is formed from an amino hydrogen atom to a sulfonyl oxygen atom (Table 2[link]). The nitro­gen atom N3 of the amine group is somewhat pyramidalized; N3 lies 0.177 (5) Å outside the plane of C5, H031 and H032, and the angle sum at N3 is 350.2°.

Table 1
Selected geometric parameters (Å, °)

N1—C5 1.4044 (4) N2—C3 1.3183 (4)
N1—N2 1.4121 (4) C3—C4 1.4190 (5)
N1—S1 1.6737 (3) C4—C5 1.3749 (5)
       
C5—N1—N2 111.05 (3) N2—C3—C4 114.91 (3)
C5—N1—S1 126.29 (2) C5—C4—C3 104.48 (3)
C3—N2—N1 102.75 (3) C4—C5—N1 106.70 (3)
       
C11—C1—C2—O2 178.02 (3) C2—C1—C11—C12 170.98 (3)
C1—C2—O2—C3 −166.35 (3) C1—C11—C12—C13 −177.59 (3)
C2—O2—C3—C4 174.67 (3) N1—S1—C21—C22 101.19 (3)
O2—C3—C4—C5 −177.41 (3)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.45 3.1317 (4) 129
C4—H4⋯O2i 0.95 2.55 3.4625 (4) 162
N3—H031⋯O4 0.87 (1) 2.28 (1) 2.8015 (5) 118 (1)
N3—H031⋯O81 0.87 (1) 2.43 (1) 3.1875 (5) 145 (1)
N3—H032⋯O1i 0.88 (1) 2.30 (1) 3.0867 (4) 150 (1)
C17—H17B⋯O91ii 0.98 2.49 3.4174 (6) 159
C12—H12⋯O4iii 0.95 2.54 3.4351 (4) 157
C25—H25⋯O5iv 0.95 2.59 3.4122 (4) 145
C27—H27A⋯O3v 0.98 2.46 3.3348 (5) 149
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x, -y+2, -z+1]; (iii) [x, y+1, z]; (iv) [x+1, y, z]; (v) [x+1, y-1, z].
[Figure 2]
Figure 2
The structure of compound 4′ in the crystal. Both dioxane mol­ecules display inversion symmetry; only the asymmetric unit is numbered. Ellipsoids represent 50% probability levels. Dashed lines indicate hydrogen bonds. See also the Refinement section.

The structure of 4′ should be compared with the closely related 2-[(5-amino-1-(phenyl­sulfon­yl)-1H-pyrazol-3-yl)­oxy]-1-(p-tol­yl)ethan-1-one 5 (Metwally et al., 2021b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]), which has a tosyl­sulfonyl rather than a phenyl­sulfonyl group, and a 4-methyl rather than a 4-meth­oxy substituent at the other phenyl ring; this compound, however, crystallized solvent-free, so that the two structures cannot be isotypic. It forms an analogous intra­molecular hydrogen bond to that of 4′. A least-squares fit of all non-hydrogen atoms except the differing substituents (Fig. 3[link]), performed with XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]) gave an r.m.s. deviation of 0.21 Å; the ring orientation of the tosyl ring is the poorest fit [cf. N1—S1—C21—C22 torsion angle of 101.19 (3)° in 4′ compared to 111.54 (3)° for the corresponding angle in 5].

[Figure 3]
Figure 3
A least-squares fit of 4 and the structure of the closely related (but solvent-free) 2-[(5-amino-1-(phenyl­sulfon­yl)-1H-pyrazol-3-yl)­oxy]-1-(p-tol­yl)ethan-1-one 5 (Metwally et al., 2021b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]); the latter is shown with dashed bonds.

3. Supra­molecular features

For details of hydrogen bonds, see Table 2[link]. Within the asymmetric unit (Fig. 2[link]), dioxane 1 is connected to the mol­ecule of 4 by a classical hydrogen bond N3—H031⋯O81, which is part of a three-centre system; the other branch is the intra­molecular N3—H032⋯O4. Dioxane 2 is connected by the `weak' hydrogen bond C17—H17B⋯O91 (henceforth, we omit the description `weak' for C—H⋯O inter­actions). The most striking supra­molecular feature is then the formation of inversion-symmetric dimers by the classical hydrogen bond N3—H032⋯O1 and the three-centre hydrogen bond system C4—H4⋯(O1,O2) (Fig. 4[link]; the operator for the acceptor atoms is 1 − x, 1 − y, −z). The dimers are further connected to ribbons parallel to the b axis by the weak hydrogen bond C12—H12⋯O4 (operator −x, 2 − y, 1 − z), and adjacent ribbons are connected via dioxanes 2 by the hydrogen bond C17—H17B⋯O91 (operator −x, 2 − y, 1 − z) (Fig. 5[link]). The translation vector between adjacent ribbons is [10[\overline{2}]], so that the ribbons lie in planes parallel to (201). The tolyl rings (forming the hydrogen bonds H25⋯O5 and H27A⋯O3) and the dioxanes 1 connect adjacent layers and are approximately perpendicular to the layers (Fig. 6[link]).

[Figure 4]
Figure 4
The hydrogen-bonded dimeric unit of compound 4′. Classical and `weak' hydrogen bonds are indicated by thick and thin dashed lines respectively. Hydrogen atoms not involved in these hydrogen bonds are omitted for clarity. Radii are arbitrary.
[Figure 5]
Figure 5
A ribbon of connected dimers of compound 4′, viewed perpendicular to (201), with dioxanes 2, which link to the neighbouring ribbons (not shown). Atoms that connect the dimeric units are labelled. Dioxanes 1 are omitted.
[Figure 6]
Figure 6
Packing of compound 4′ viewed edge-on to the layer structure (projected parallel to the b axis; the layers lie horizontally), thus showing the role of the dioxanes 1 and the hydrogen bond H25⋯O6 in bridging the layers. Hydrogen bonds H27A⋯O3, which also connect the layers, are not shown; they are formed at the points where C27 of one layer projects into the next layer and lie almost parallel to the view direction.

In our previous structure (5; Metwally et al., 2021b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]), the mol­ecules also associate via hydrogen bonds N—H⋯Ocarbon­yl, to form a broad ribbon structure.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for pyrazole structures with the same substitution pattern as 4 (i.e. S at N1, O at C3, N at C5) gave only one hit (apart from 5), namely 5-amino-1-[(4-fluoro­phen­yl)sulfon­yl]-1H-pyrazol-3-yl thio­phene-2-carboxyl­ate (refcode YILPUF; Myers et al., 2007[Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.-H., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]), in which only the O-substituent differs significantly from that of 4. Analogously to 4, the thio­phene ester group is approximately parallel to, and the sulfonate ring perpendicular to, the pyrazole ring. The packing of the solvent-free structure involves hydrogen bonds of the type N—H⋯Osulfon­yl and N—H⋯N2pyrazole, which link the mol­ecules by translation to form a ribbon structure.

5. Synthesis and crystallization

A mixture of 5-amino-1-tosyl-1,2-di­hydro-3H-pyrazol-3-one 1 (0.01 mol), 2-bromo-1-(4-meth­oxy­phen­yl)ethan-1-one 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-di­methyl­formamide (5 mL) was stirred at room temperature for 3 h. The mixture was poured onto ice–water; the solid thus formed was filtered off and recrystallized from a mixture of ethanol and 1,4-dioxane to give pale brown crystals of 4′ in 75% yield, m.p. 493 K. The crystals lose 1,4-dioxane gradually on exposure to the air. IR (KBr, cm−1): 3468, 3366 (NH2), 1691 (CO); 1H NMR (DMSO-d6): δ = 2.37 (s, 3H, CH3), 3.85 (s, 3H, OCH3), 4.92 (s, 1H, CH pyrazole), 5.42 (s, 2H, CH2), 6.31 (s, 2H, NH2), 7.06 (d, 2H, J = 8.1 Hz, Ar), 7.34 (d, 2H, J = 7.8 Hz, Ar), 7.62 (d, 2H, J = 7.8 Hz, Ar), 7.92 (d, 2H, J = 8.1 Hz, Ar); 13C NMR (DMSO-d6): δ = 21.08, 55.55, 66.36, 69.52, 77.09, 114.05, 127.24, 129.71, 130.09, 133.19, 145.04, 159.87, 163.51, 165.78, 191.69. Analysis calculated for C19H19N3O5S (401.44); C 56.85, H 4.77, N 10.47, S 7.99. Found: C 56.6, H 4.9, N10.7, S 7.8%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal (command `SADI'). The methyl groups were included as idealized rigid groups allowed to rotate but not tip (command `AFIX 137′, with C—H = 0.98 Å, H—C—H = 109.5°; all methyl hydrogens, even those of the tosyl group, were shown clearly in the circular difference-density map). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å, C—Hmethyl­ene = 0.99 Å). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens. A total of six badly fitting reflections (with |error/esd| > 9.25) were removed from the refinement with `OMIT' commands.

Table 3
Experimental details

Crystal data
Chemical formula C19H19N3O5S·C4H8O2
Mr 489.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.26968 (10), 12.50096 (14), 12.76743 (16)
α, β, γ (°) 116.9553 (12), 104.8418 (10), 91.0281 (10)
V3) 1123.39 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.2 × 0.2 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.914, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 187554, 18415, 16161
Rint 0.027
(sin θ/λ)max−1) 0.993
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.087, 1.04
No. of reflections 18415
No. of parameters 330
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Both dioxane sites involve inversion centres. The dioxane site 2 was slightly disordered, with an occupation factor of 0.069 (2) for the minor component; in the sections above, only the major component is discussed. To improve refinement stability, appropriate restraints were employed (commands `SIMU' and `SAME'), but the dimensions of disordered groups should always be inter­preted with caution. Furthermore, the assignment of O and C atoms to the minor site should be regarded as tentative. In Fig. 2[link] the dioxane 2 is centred on 0, 0.5, 0. To show its hydrogen bond H17B⋯O91, 2 would need to be transformed to a position centred on 0, 1.5, 0, which lies outside the unit cell.

Supporting information


Computing details top

2-[(5-Amino-1-tosyl-1H-pyrazol-3-yl)oxy]-1-(4-methoxyphenyl)ethan-1-one 1,4-dioxane monosolvate top
Crystal data top
C19H19N3O5S·C4H8O2Z = 2
Mr = 489.53F(000) = 516
Triclinic, P1Dx = 1.447 Mg m3
a = 8.26968 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.50096 (14) ÅCell parameters from 105453 reflections
c = 12.76743 (16) Åθ = 2.6–45.0°
α = 116.9553 (12)°µ = 0.20 mm1
β = 104.8418 (10)°T = 100 K
γ = 91.0281 (10)°Block, colourless
V = 1123.39 (3) Å30.2 × 0.2 × 0.15 mm
Data collection top
XtaLAB Synergy
diffractometer
18415 independent reflections
Radiation source: micro-focus sealed X-ray tube16161 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.027
ω scansθmax = 44.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.914, Tmax = 1.000k = 2424
187554 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.0976P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
18415 reflectionsΔρmax = 0.67 e Å3
330 parametersΔρmin = 0.38 e Å3
22 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.38399 (4)0.77886 (3)0.26518 (3)0.01184 (4)
C20.40834 (5)0.66456 (3)0.27750 (3)0.01258 (5)
H2A0.4948610.6847120.3561580.015*
H2B0.3006940.6284340.2773340.015*
O10.41714 (4)0.79016 (3)0.18236 (3)0.01691 (5)
O20.46134 (4)0.58006 (3)0.17697 (3)0.01403 (4)
N10.40343 (4)0.30638 (3)0.17661 (3)0.01166 (4)
N20.40577 (4)0.43334 (3)0.23487 (3)0.01164 (4)
C30.45301 (4)0.46582 (3)0.16098 (3)0.01109 (4)
C40.48807 (5)0.36967 (3)0.05888 (3)0.01274 (5)
H40.5235200.3742790.0042930.015*
C50.45919 (4)0.26833 (3)0.07193 (3)0.01129 (4)
N30.47670 (5)0.15066 (3)0.00274 (3)0.01555 (5)
H0310.4134 (12)0.0953 (9)0.0048 (9)0.029 (2)*
H0320.4995 (12)0.1375 (9)0.0649 (8)0.024 (2)*
C110.32316 (4)0.87608 (3)0.35963 (3)0.01120 (4)
C120.32181 (4)0.98963 (3)0.36261 (3)0.01213 (5)
H120.3555451.0016170.3024590.015*
C130.27183 (5)1.08435 (3)0.45230 (3)0.01318 (5)
H130.2692311.1604370.4526200.016*
C140.22495 (4)1.06787 (3)0.54284 (3)0.01214 (5)
C150.22215 (5)0.95479 (3)0.53954 (3)0.01378 (5)
H150.1872720.9425950.5991860.017*
C160.27095 (5)0.86004 (3)0.44803 (3)0.01366 (5)
H160.2687430.7829210.4455970.016*
O30.18634 (4)1.16720 (3)0.63073 (3)0.01711 (5)
C170.14669 (6)1.15468 (4)0.72774 (4)0.01942 (6)
H17A0.0474271.0919580.6929960.029*
H17B0.1221381.2322280.7854830.029*
H17C0.2433521.1312730.7711630.029*
S10.43246 (2)0.24477 (2)0.27095 (2)0.01097 (2)
O40.41689 (4)0.11676 (3)0.19275 (3)0.01594 (5)
O50.31959 (4)0.29146 (3)0.34374 (3)0.01605 (5)
C210.64132 (4)0.29968 (3)0.36666 (3)0.01082 (4)
C220.67431 (4)0.39426 (3)0.48634 (3)0.01175 (4)
H220.5846260.4312380.5157660.014*
C230.84106 (4)0.43351 (3)0.56194 (3)0.01265 (5)
H230.8648730.4981090.6435280.015*
C240.97428 (4)0.37942 (3)0.51979 (3)0.01249 (5)
C250.93733 (5)0.28592 (3)0.39821 (4)0.01400 (5)
H251.0270190.2498280.3680740.017*
C260.77178 (4)0.24513 (3)0.32102 (3)0.01313 (5)
H260.7477610.1814990.2389320.016*
C271.15349 (5)0.41935 (4)0.60318 (4)0.01590 (5)
H27A1.1775360.3699380.6452650.024*
H27B1.1680270.5050560.6642700.024*
H27C1.2316830.4090810.5543380.024*
O810.12771 (5)0.00966 (4)0.05908 (4)0.02415 (7)
C810.07517 (8)0.10432 (6)0.03646 (7)0.03059 (11)
H81A0.1718850.1467210.0225340.037*
H81B0.0154470.1641620.1094850.037*
C820.01034 (7)0.05411 (7)0.07474 (6)0.02876 (10)
H82A0.1032250.0016400.1487170.035*
H82B0.0270990.1216800.0876830.035*
O910.04584 (6)0.61849 (4)0.10107 (4)0.02249 (9)0.931 (2)
C910.07460 (7)0.52971 (6)0.09340 (5)0.02309 (11)0.931 (2)
H91A0.1902440.5380720.0544170.028*0.931 (2)
H91B0.0682480.5439170.1773030.028*0.931 (2)
C920.04101 (7)0.59715 (5)0.01928 (6)0.02259 (10)0.931 (2)
H92A0.1274460.6570860.0133830.027*0.931 (2)
H92B0.0715040.6074730.0611320.027*0.931 (2)
O91'0.0276 (9)0.5939 (7)0.1194 (7)0.0265 (13)*0.069 (2)
C91'0.0678 (12)0.4761 (10)0.0740 (9)0.0297 (17)*0.069 (2)
H91C0.0509560.4557400.1420580.036*0.069 (2)
H91D0.1898400.4787890.0443010.036*0.069 (2)
C92'0.0187 (13)0.6148 (10)0.0222 (10)0.0312 (18)*0.069 (2)
H92C0.0915140.6927450.0525550.037*0.069 (2)
H92D0.0992410.6238330.0110400.037*0.069 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.01442 (11)0.01135 (10)0.01179 (10)0.00285 (9)0.00588 (9)0.00610 (9)
C20.01679 (12)0.01137 (11)0.01192 (10)0.00442 (9)0.00707 (9)0.00592 (9)
O10.02551 (13)0.01563 (11)0.01559 (10)0.00521 (9)0.01201 (10)0.00921 (9)
O20.02105 (11)0.01078 (9)0.01466 (9)0.00525 (8)0.01076 (9)0.00670 (8)
N10.01493 (10)0.01194 (10)0.01105 (9)0.00369 (8)0.00563 (8)0.00690 (8)
N20.01435 (10)0.01179 (10)0.01129 (9)0.00381 (8)0.00585 (8)0.00643 (8)
C30.01304 (10)0.01109 (10)0.01116 (10)0.00323 (8)0.00541 (8)0.00594 (8)
C40.01717 (12)0.01201 (11)0.01200 (11)0.00383 (9)0.00776 (9)0.00628 (9)
C50.01295 (11)0.01167 (10)0.01045 (10)0.00282 (8)0.00444 (8)0.00569 (8)
N30.02191 (13)0.01141 (10)0.01416 (11)0.00400 (9)0.00808 (10)0.00526 (9)
C110.01324 (11)0.01081 (10)0.01189 (10)0.00300 (8)0.00540 (9)0.00641 (9)
C120.01438 (11)0.01145 (11)0.01278 (11)0.00217 (9)0.00468 (9)0.00725 (9)
C130.01621 (12)0.01050 (10)0.01455 (11)0.00268 (9)0.00521 (10)0.00700 (9)
C140.01351 (11)0.01032 (10)0.01294 (11)0.00290 (8)0.00475 (9)0.00532 (9)
C150.01852 (13)0.01216 (11)0.01507 (12)0.00501 (10)0.00930 (10)0.00776 (10)
C160.01935 (13)0.01153 (11)0.01547 (12)0.00551 (10)0.00982 (10)0.00828 (10)
O30.02369 (13)0.01157 (9)0.01659 (11)0.00557 (9)0.00988 (10)0.00497 (8)
C170.02350 (16)0.01854 (15)0.01523 (13)0.00552 (13)0.00945 (12)0.00517 (12)
S10.01077 (3)0.01276 (3)0.01195 (3)0.00076 (2)0.00380 (2)0.00779 (3)
O40.01896 (11)0.01203 (9)0.01620 (10)0.00143 (8)0.00272 (9)0.00760 (8)
O50.01293 (9)0.02379 (13)0.01726 (11)0.00318 (9)0.00781 (8)0.01279 (10)
C210.01101 (10)0.01183 (10)0.01159 (10)0.00221 (8)0.00432 (8)0.00666 (9)
C220.01253 (10)0.01267 (11)0.01202 (10)0.00323 (8)0.00491 (8)0.00677 (9)
C230.01372 (11)0.01260 (11)0.01227 (11)0.00202 (9)0.00366 (9)0.00652 (9)
C240.01179 (10)0.01305 (11)0.01505 (11)0.00145 (9)0.00357 (9)0.00888 (10)
C250.01213 (11)0.01514 (12)0.01644 (12)0.00372 (9)0.00603 (9)0.00792 (10)
C260.01300 (11)0.01351 (11)0.01350 (11)0.00308 (9)0.00568 (9)0.00597 (9)
C270.01265 (11)0.01752 (13)0.01942 (14)0.00062 (10)0.00188 (10)0.01186 (12)
O810.01741 (12)0.03412 (18)0.02501 (15)0.00010 (12)0.00789 (11)0.01670 (14)
C810.0258 (2)0.0336 (3)0.0431 (3)0.00625 (19)0.0175 (2)0.0232 (2)
C820.02010 (17)0.0471 (3)0.0310 (2)0.00227 (18)0.00602 (16)0.0293 (2)
O910.02279 (16)0.01833 (15)0.01779 (15)0.00159 (12)0.00519 (12)0.00195 (12)
C910.02285 (19)0.0278 (3)0.01701 (17)0.00463 (16)0.00868 (14)0.00778 (16)
C920.02260 (19)0.0223 (2)0.0241 (2)0.00333 (15)0.00477 (16)0.01313 (17)
Geometric parameters (Å, º) top
C1—O11.2229 (4)C21—C221.3944 (5)
C1—C111.4793 (5)C21—C261.3988 (5)
C1—C21.5182 (5)C22—C231.3923 (5)
C2—O21.4251 (4)C22—H220.9500
C2—H2A0.9900C23—C241.4004 (5)
C2—H2B0.9900C23—H230.9500
O2—C31.3457 (4)C24—C251.4030 (5)
N1—C51.4044 (4)C24—C271.5042 (5)
N1—N21.4121 (4)C25—C261.3906 (5)
N1—S11.6737 (3)C25—H250.9500
N2—C31.3183 (4)C26—H260.9500
C3—C41.4190 (5)C27—H27A0.9800
C4—C51.3749 (5)C27—H27B0.9800
C4—H40.9500C27—H27C0.9800
C5—N31.3639 (5)O81—C811.4241 (7)
N3—H0310.874 (9)O81—C821.4279 (7)
N3—H0320.875 (9)C81—C82i1.5137 (9)
C11—C161.3973 (5)C81—H81A0.9900
C11—C121.4030 (5)C81—H81B0.9900
C12—C131.3839 (5)C82—H82A0.9900
C12—H120.9500C82—H82B0.9900
C13—C141.4040 (5)O91—C921.4249 (8)
C13—H130.9500O91—C911.4301 (8)
C14—O31.3555 (4)C91—C92ii1.5091 (8)
C14—C151.3947 (5)C91—H91A0.9900
C15—C161.3911 (5)C91—H91B0.9900
C15—H150.9500C92—H92A0.9900
C16—H160.9500C92—H92B0.9900
O3—C171.4310 (5)O91'—C92'1.364 (11)
C17—H17A0.9800O91'—C91'1.441 (11)
C17—H17B0.9800C91'—C92'ii1.404 (15)
C17—H17C0.9800C91'—H91C0.9900
S1—O51.4310 (3)C91'—H91D0.9900
S1—O41.4326 (3)C92'—H92C0.9900
S1—C211.7502 (3)C92'—H92D0.9900
O1—C1—C11122.11 (3)C23—C22—C21118.80 (3)
O1—C1—C2121.06 (3)C23—C22—H22120.6
C11—C1—C2116.81 (3)C21—C22—H22120.6
O2—C2—C1108.97 (3)C22—C23—C24121.14 (3)
O2—C2—H2A109.9C22—C23—H23119.4
C1—C2—H2A109.9C24—C23—H23119.4
O2—C2—H2B109.9C23—C24—C25118.70 (3)
C1—C2—H2B109.9C23—C24—C27120.92 (3)
H2A—C2—H2B108.3C25—C24—C27120.38 (3)
C3—O2—C2115.38 (3)C26—C25—C24121.18 (3)
C5—N1—N2111.05 (3)C26—C25—H25119.4
C5—N1—S1126.29 (2)C24—C25—H25119.4
N2—N1—S1114.68 (2)C25—C26—C21118.67 (3)
C3—N2—N1102.75 (3)C25—C26—H26120.7
N2—C3—O2123.26 (3)C21—C26—H26120.7
N2—C3—C4114.91 (3)C24—C27—H27A109.5
O2—C3—C4121.78 (3)C24—C27—H27B109.5
C5—C4—C3104.48 (3)H27A—C27—H27B109.5
C5—C4—H4127.8C24—C27—H27C109.5
C3—C4—H4127.8H27A—C27—H27C109.5
N3—C5—C4130.68 (3)H27B—C27—H27C109.5
N3—C5—N1122.63 (3)C81—O81—C82109.31 (4)
C4—C5—N1106.70 (3)O81—C81—C82i110.95 (5)
C5—N3—H031116.3 (6)O81—C81—H81A109.4
C5—N3—H032113.2 (6)C82i—C81—H81A109.4
H031—N3—H032121.0 (9)O81—C81—H81B109.4
C16—C11—C12118.70 (3)C82i—C81—H81B109.4
C16—C11—C1122.44 (3)H81A—C81—H81B108.0
C12—C11—C1118.84 (3)O81—C82—C81i111.17 (4)
C13—C12—C11120.65 (3)O81—C82—H82A109.4
C13—C12—H12119.7C81i—C82—H82A109.4
C11—C12—H12119.7O81—C82—H82B109.4
C12—C13—C14119.93 (3)C81i—C82—H82B109.4
C12—C13—H13120.0H82A—C82—H82B108.0
C14—C13—H13120.0C92—O91—C91110.01 (4)
O3—C14—C15123.98 (3)O91—C91—C92ii110.96 (4)
O3—C14—C13115.95 (3)O91—C91—H91A109.4
C15—C14—C13120.06 (3)C92ii—C91—H91A109.4
C16—C15—C14119.33 (3)O91—C91—H91B109.4
C16—C15—H15120.3C92ii—C91—H91B109.4
C14—C15—H15120.3H91A—C91—H91B108.0
C15—C16—C11121.28 (3)O91—C92—C91ii110.33 (4)
C15—C16—H16119.4O91—C92—H92A109.6
C11—C16—H16119.4C91ii—C92—H92A109.6
C14—O3—C17117.13 (3)O91—C92—H92B109.6
O3—C17—H17A109.5C91ii—C92—H92B109.6
O3—C17—H17B109.5H92A—C92—H92B108.1
H17A—C17—H17B109.5C92'—O91'—C91'108.6 (7)
O3—C17—H17C109.5C92'ii—C91'—O91'111.9 (8)
H17A—C17—H17C109.5C92'ii—C91'—H91C109.2
H17B—C17—H17C109.5O91'—C91'—H91C109.2
O5—S1—O4120.39 (2)C92'ii—C91'—H91D109.2
O5—S1—N1106.165 (17)O91'—C91'—H91D109.2
O4—S1—N1105.240 (17)H91C—C91'—H91D107.9
O5—S1—C21108.966 (18)O91'—C92'—H92C108.5
O4—S1—C21108.862 (18)C91'ii—C92'—H92C108.5
N1—S1—C21106.306 (16)O91'—C92'—H92D108.5
C22—C21—C26121.49 (3)C91'ii—C92'—H92D108.5
C22—C21—S1119.94 (3)H92C—C92'—H92D107.5
C26—C21—S1118.56 (3)
O1—C1—C2—O23.58 (5)C15—C14—O3—C172.39 (6)
C11—C1—C2—O2178.02 (3)C13—C14—O3—C17176.83 (4)
C1—C2—O2—C3166.35 (3)C5—N1—S1—O5165.61 (3)
C5—N1—N2—C33.25 (4)N2—N1—S1—O548.49 (3)
S1—N1—N2—C3154.29 (2)C5—N1—S1—O436.94 (4)
N1—N2—C3—O2175.41 (3)N2—N1—S1—O4177.16 (3)
N1—N2—C3—C41.98 (4)C5—N1—S1—C2178.45 (3)
C2—O2—C3—N22.54 (5)N2—N1—S1—C2167.45 (3)
C2—O2—C3—C4174.67 (3)O5—S1—C21—C2212.84 (3)
N2—C3—C4—C50.01 (4)O4—S1—C21—C22145.89 (3)
O2—C3—C4—C5177.41 (3)N1—S1—C21—C22101.19 (3)
C3—C4—C5—N3178.08 (4)O5—S1—C21—C26165.95 (3)
C3—C4—C5—N12.01 (4)O4—S1—C21—C2632.90 (3)
N2—N1—C5—N3176.69 (3)N1—S1—C21—C2680.02 (3)
S1—N1—C5—N329.78 (5)C26—C21—C22—C230.89 (5)
N2—N1—C5—C43.38 (4)S1—C21—C22—C23177.87 (3)
S1—N1—C5—C4150.30 (3)C21—C22—C23—C240.25 (5)
O1—C1—C11—C16174.25 (4)C22—C23—C24—C251.37 (5)
C2—C1—C11—C167.36 (5)C22—C23—C24—C27177.93 (3)
O1—C1—C11—C127.40 (6)C23—C24—C25—C261.40 (5)
C2—C1—C11—C12170.98 (3)C27—C24—C25—C26177.90 (3)
C16—C11—C12—C130.82 (5)C24—C25—C26—C210.32 (5)
C1—C11—C12—C13177.59 (3)C22—C21—C26—C250.85 (5)
C11—C12—C13—C141.22 (5)S1—C21—C26—C25177.92 (3)
C12—C13—C14—O3176.66 (3)C82—O81—C81—C82i57.05 (7)
C12—C13—C14—C152.59 (6)C81—O81—C82—C81i57.18 (7)
O3—C14—C15—C16177.31 (4)C92—O91—C91—C92ii57.63 (6)
C13—C14—C15—C161.88 (6)C91—O91—C92—C91ii57.25 (6)
C14—C15—C16—C110.19 (6)C92'—O91'—C91'—C92'ii52.2 (12)
C12—C11—C16—C151.54 (6)C91'—O91'—C92'—C91'ii53.9 (12)
C1—C11—C16—C15176.81 (4)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1iii0.952.453.1317 (4)129
C4—H4···O2iii0.952.553.4625 (4)162
N3—H031···O40.87 (1)2.28 (1)2.8015 (5)118 (1)
N3—H031···O810.87 (1)2.43 (1)3.1875 (5)145 (1)
N3—H032···O1iii0.88 (1)2.30 (1)3.0867 (4)150 (1)
C17—H17B···O91iv0.982.493.4174 (6)159
C12—H12···O4v0.952.543.4351 (4)157
C25—H25···O5vi0.952.593.4122 (4)145
C27—H27A···O3vii0.982.463.3348 (5)149
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+2, z+1; (v) x, y+1, z; (vi) x+1, y, z; (vii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Azzam, R. A., Zaghary, W. A., Aly, A. A., Metwally, N. H. M., Sarhan, M. O., Abdelhafez, E. M. & Elsayed, R. E. (2022). N-Sulfonated-N-heterocycles: synthesis, chemistry, and biological applications, pp. 1–523 Amsterdam: Elsevier. ISBN: 978-0-12-822179-2.  Google Scholar
First citationElgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615–617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054–1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMyers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III Michael, C. M., Andrew, D. N., Nuzhat, M., Parag, P. S., Chun-Hao, C., (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.  Google Scholar
First citationMyers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.-H., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 2020, 1154–1159.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds