research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a new benzimidazole compound, 3-{1-[(2-hy­droxyphen­yl)meth­yl]-1H-1,3-benzo­diazol-2-yl}phenol

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bPharmaceutical Sciences Research Center CRSP, Constantine 25000, Algeria
*Correspondence e-mail: cherouana.aouatef@umc.edu.dz

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 26 September 2023; accepted 1 December 2023; online 1 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, C20H16N2O2, is composed of two monosubstituted benzene rings and one benzimidazole unit. The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. The crystal structure features O—H⋯N and O—H⋯O hydrogen-bonding inter­actions, which together lead to the formation of two-dimensional hydrogen-bonded layers parallel to the (101) plane. In addition, ππ inter­actions also contribute to the crystal cohesion. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are: H⋯H (47.5%), O⋯H/H⋯O (12.4%), N⋯H/H⋯N (6.1%), C⋯H/H⋯C (27.6%) and C⋯C (4.6%).

1. Chemical context

The benzimidazole unit comprises a phenyl ring fused to an imidazole ring. The first benzimidazole compound was prepared by Hoebrecker (1872[Hoebrecker, F. (1872). Ber. Dtsch. Chem. Ges. 5, 920-924.]). Benzimidazole is an important structural core in medicinal chemistry and this class of compounds displays a broad range of biological activities such as anti­microbial, anti­viral, anti­cancer, anti-inflammatory, gastroprotective and analgesic (Spasov et al., 1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, o232-o243.]; Sevak et al., 2002[Sevak, R., Paul, A., Goswami, S. & Santani, D. (2002). Pharmacol. Res. 46, 351-356.]; Demirayak et al., 2005[Demirayak, S., Karaburun, A. C., Kayagil, I., Uçucu, U. & Beis, R. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, o1841-o1848.]). The use of benzimidazole derivatives with common drugs employed in the treatment of giardiasis has been reviewed (Harris et al., 2001[Harris, J., Plummer, S. & Lloyd, D. (2001). Appl. Microbiol. Biotechnol. 57, 614-619.]). The coord­ination behavior of benzimidazole derivatives towards trans­ition-metal ions was explored in order to increase their biological activity (Téllez et al., 2007[Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2007). Arkivoc, 2008, 245-275.]). The present work describes the synthesis, structural characterization and Hirshfeld analysis of a new benzimidazole compound, 3-{1-[(2-hy­droxy­phen­yl)meth­yl]-1H-1,3-benzo­diazol-2-yl}phenol.

[Scheme 1]

2. Structural commentary

The title compound is composed of two monosubstituted benzene rings and one benzimidazole unit (Fig. 1[link]). The benzimidazole moiety subtends dihedral angles of 46.16 (7) and 77.45 (8)° with the benzene rings, which themselves form a dihedral angle of 54.34 (9)°. These angles are in agreement with those observed in similar structures (Quezada-Miriel et al., 2012[Quezada-Miriel, M., Avila-Sorrosa, A., German-Acacio, J. M., Reyes-Martínez, R. & Morales-Morales, D. (2012). Acta Cryst. E68, o3053-o3054.]; Shu-Ping Yang et al., 2007[Yang, S.-P., Wang, D.-Q., Han, L.-J. & Xia, H.-T. (2007). Acta Cryst. E63, o3758.]).

[Figure 1]
Figure 1
ORTEP view of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of the title compound reveals inter­molecular hydrogen bonding, specifically O—H⋯O inter­actions involving benzene rings and O—H⋯N interaction between the benzimidazole moieties and benzene rings (Table 1[link]). The mol­ecules are self-assembled by inter­molecular hydrogen bonds between the hydroxyl groups and the N1 atoms of the benzimid­azole moieties, forming hydrogen-bonded ribbons with a C(8) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) parallel to the (111) plane. The combination of the O—H⋯O and O—H⋯N hydrogen bonds leads to rings with R44 (18) and R44(38) graph-set motifs (Fig. 2[link]). Further cohesion of the crystal packing is provided by ππ stacking inter­actions between C1–C6 benzene rings with centroid–centroid distances of 3.5957 (11) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.04 2.861 (2) 173
O2—H2⋯N1ii 0.82 1.89 2.7124 (19) 178
C16—H16⋯N2 0.93 2.55 2.878 (2) 101
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The R44 (18) and R44(38) graph-set motifs parallel to the ab plane generated by the combination of O—H⋯O and O—H⋯N hydrogen bonds.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was undertaken in order to better understand the inter­molecular inter­actions within the crystal structure using graphical tools (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Hirshfeld surface analysis provides a three-dimensional picture of the inter­molecular inter­actions. These inter­actions can be summarized by using fingerprint plots. The Hirshfeld surface of the title compound mapped over dnorm is shown in Fig. 3[link]. The red spots on the surface indicate the presence of atoms in very close proximity to the outside of the surface, the white means that the atoms are in medium proximity while the blue areas are completely devoid of close contacts. The combination of the 3D Hirshfeld surface and the 2D fingerprint plots (Fig. 4[link]), shows that inter­molecular H⋯H contacts make the main contribution, corresponding to 47.5% of the total Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and that there are short inter­molecular H⋯H contacts where de = di = 1 Å. In the fingerprint plot delineated into C⋯H/H⋯C contacts (27.6% of the total Hirshfeld surface) there are two short spikes. The red spots on the dnorm surface in Fig. 3[link] are due to the HO⋯O contacts corresponding to O—H⋯O and O—H⋯N hydrogen bonds. The O⋯H and N⋯H contacts represent 12.4% and 6.1% of the total Hirshfeld surface, respectively, Fig. 5[link]. These contacts are manifested as sharp spikes at de + di = 1.8 Å for N⋯H and 1.9 Å for O⋯H. Finally, packing cohesion in this structure is also provided by C⋯N and C⋯C inter­actions, which correspond to ππ stacking inter­actions.

[Figure 3]
Figure 3
Hirshfeld surface of the title compound mapped with dnorm.
[Figure 4]
Figure 4
Two-dimensional fingerprints plots of the title compound, showing H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N and C⋯C contacts.
[Figure 5]
Figure 5
Relative contributions of various inter­actions to the Hirshfeld surface area of the title compound.

5. Synthesis and crystallization

All chemicals were commercially available, purchased from Sigma-Aldrich, and used as received without purification. 3-Hy­droxy­benzaldehyde (0.244 g, 2 mmol) and salicyl­aldehyde (0.244 g, 2 mmol) were added to an ethano­lic solution of o-phenyl­enedi­amine (0.216 g, 2 mmol). The reaction mixture was stirred for 4 h under reflux at 348 K. The resulting brown solution was cooled in an ice bath. The obtained filtrate was left to evaporate slowly at room temperature, giving after two weeks colorless crystals suitable for single-crystal x-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference electron-density maps and were treated as riding on their parent atoms with C—H = 0.93 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C20H16N2O2
Mr 316.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6474 (3), 13.2429 (3), 11.4176 (3)
β (°) 99.067 (1)
V3) 1589.79 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.1 × 0.1 × 0.08
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 33506, 4650, 2866
Rint 0.056
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.190, 1.06
No. of reflections 4643
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.30
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

3-{1-[(2-Hydroxyphenyl)methyl]-1H-1,3-benzodiazol-2-yl}phenol top
Crystal data top
C20H16N2O2F(000) = 664
Mr = 316.35Least Squares Treatment of 25 SET4 setting angles.
Monoclinic, P21/nDx = 1.322 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.6474 (3) ÅCell parameters from 33506 reflections
b = 13.2429 (3) Åθ = 2.4–30.1°
c = 11.4176 (3) ŵ = 0.09 mm1
β = 99.067 (1)°T = 100 K
V = 1589.79 (7) Å3Prism, colourless
Z = 40.1 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2866 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 30.1°, θmin = 2.4°
ω scansh = 1514
33506 measured reflectionsk = 1718
4650 independent reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.190 W = 1/[Σ2(FO2) + (0.1027P)2 + 0.1399P] WHERE P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max < 0.001
4643 reflectionsΔρmax = 0.50 e Å3
217 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71485 (14)0.50588 (12)0.85134 (15)0.0674 (6)
O20.86823 (12)0.19463 (10)0.75574 (10)0.0484 (4)
N10.50090 (14)0.18753 (11)1.12414 (12)0.0415 (4)
N20.64015 (13)0.13212 (10)1.01162 (12)0.0365 (4)
C10.54208 (16)0.30396 (13)0.96699 (14)0.0393 (5)
C20.64184 (18)0.36170 (13)0.93853 (15)0.0434 (5)
C30.61480 (19)0.45154 (14)0.87656 (16)0.0470 (6)
C40.49058 (19)0.48277 (14)0.84368 (16)0.0496 (6)
C50.3922 (2)0.42579 (16)0.87286 (17)0.0524 (6)
C60.41675 (19)0.33701 (15)0.93432 (16)0.0475 (6)
C70.56219 (15)0.20898 (13)1.03474 (14)0.0376 (5)
C80.62905 (16)0.05631 (12)1.09273 (15)0.0386 (5)
C90.54146 (16)0.09200 (13)1.16216 (15)0.0405 (5)
C100.50993 (19)0.03349 (15)1.25517 (17)0.0504 (6)
C110.5675 (2)0.05921 (16)1.27507 (19)0.0584 (7)
C120.6536 (2)0.09453 (14)1.20405 (19)0.0573 (7)
C130.68637 (19)0.03791 (14)1.11183 (17)0.0485 (6)
C140.71836 (15)0.12707 (14)0.91676 (14)0.0389 (5)
C150.85421 (16)0.16113 (12)0.95674 (14)0.0353 (5)
C160.91028 (19)0.16091 (16)1.07445 (16)0.0500 (6)
C171.0337 (2)0.19263 (17)1.10898 (18)0.0565 (7)
C181.10283 (19)0.22691 (18)1.02536 (18)0.0561 (7)
C191.04917 (17)0.22814 (16)0.90709 (17)0.0505 (6)
C200.92539 (16)0.19490 (12)0.87220 (14)0.0364 (5)
H10.690160.561610.826220.1010*
H20.909900.229340.716430.0730*
H2A0.725550.340620.960580.0520*
H40.473400.542630.801610.0590*
H50.308710.447420.850900.0630*
H60.349930.298820.954250.0570*
H100.451940.056501.302050.0600*
H110.548680.099181.337010.0700*
H120.689910.157991.219300.0690*
H130.743900.061621.064860.0580*
H14A0.680170.169200.851200.0470*
H14B0.718910.058130.888140.0470*
H160.863490.138801.131760.0600*
H171.069990.190811.188560.0680*
H181.185840.249331.048310.0670*
H191.096260.251380.850550.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (9)0.0611 (9)0.0872 (12)0.0017 (7)0.0269 (8)0.0158 (8)
O20.0457 (7)0.0684 (8)0.0323 (6)0.0122 (6)0.0096 (5)0.0031 (5)
N10.0386 (8)0.0533 (8)0.0348 (7)0.0000 (6)0.0125 (6)0.0014 (6)
N20.0342 (7)0.0432 (7)0.0342 (7)0.0025 (6)0.0118 (6)0.0014 (5)
C10.0426 (9)0.0459 (9)0.0300 (8)0.0020 (7)0.0080 (7)0.0044 (6)
C20.0446 (10)0.0482 (9)0.0383 (9)0.0035 (8)0.0092 (8)0.0003 (7)
C30.0536 (11)0.0493 (10)0.0407 (10)0.0016 (8)0.0157 (8)0.0028 (7)
C40.0579 (12)0.0499 (10)0.0395 (10)0.0095 (9)0.0034 (8)0.0003 (8)
C50.0495 (11)0.0612 (11)0.0446 (10)0.0083 (9)0.0012 (8)0.0028 (9)
C60.0458 (10)0.0550 (10)0.0418 (10)0.0037 (8)0.0072 (8)0.0037 (8)
C70.0346 (8)0.0475 (9)0.0312 (8)0.0019 (7)0.0068 (6)0.0039 (6)
C80.0349 (8)0.0438 (8)0.0370 (9)0.0085 (7)0.0058 (7)0.0033 (7)
C90.0365 (9)0.0489 (9)0.0371 (9)0.0074 (7)0.0089 (7)0.0024 (7)
C100.0487 (11)0.0623 (11)0.0426 (10)0.0139 (9)0.0146 (8)0.0028 (8)
C110.0643 (13)0.0582 (12)0.0519 (12)0.0225 (10)0.0063 (10)0.0102 (9)
C120.0674 (14)0.0410 (9)0.0600 (12)0.0101 (9)0.0006 (10)0.0029 (9)
C130.0506 (11)0.0445 (9)0.0505 (11)0.0031 (8)0.0081 (9)0.0044 (8)
C140.0360 (9)0.0501 (9)0.0325 (8)0.0039 (7)0.0117 (7)0.0054 (7)
C150.0343 (8)0.0411 (8)0.0317 (8)0.0004 (6)0.0085 (6)0.0022 (6)
C160.0484 (11)0.0690 (12)0.0331 (9)0.0117 (9)0.0076 (8)0.0055 (8)
C170.0517 (12)0.0776 (14)0.0362 (10)0.0147 (10)0.0051 (8)0.0049 (9)
C180.0373 (10)0.0784 (13)0.0500 (11)0.0128 (9)0.0007 (8)0.0048 (10)
C190.0382 (10)0.0718 (12)0.0432 (10)0.0084 (9)0.0120 (8)0.0076 (9)
C200.0370 (9)0.0427 (8)0.0304 (8)0.0018 (7)0.0077 (7)0.0008 (6)
Geometric parameters (Å, º) top
O1—C31.354 (3)C14—C151.515 (2)
O2—C201.372 (2)C15—C201.392 (2)
N1—C71.326 (2)C15—C161.382 (2)
N1—C91.384 (2)C16—C171.377 (3)
O1—H10.8200C17—C181.372 (3)
N2—C71.365 (2)C18—C191.381 (3)
N2—C141.468 (2)C19—C201.387 (3)
O2—H20.8200C2—H2A0.9300
N2—C81.384 (2)C4—H40.9300
C1—C61.398 (3)C5—H50.9300
C1—C21.388 (3)C6—H60.9300
C1—C71.475 (2)C10—H100.9300
C2—C31.391 (3)C11—H110.9300
C3—C41.380 (3)C12—H120.9300
C4—C51.374 (3)C13—H130.9300
C5—C61.373 (3)C14—H14A0.9700
C8—C131.391 (2)C14—H14B0.9700
C8—C91.398 (2)C16—H160.9300
C9—C101.398 (3)C17—H170.9300
C10—C111.375 (3)C18—H180.9300
C11—C121.397 (3)C19—H190.9300
C12—C131.382 (3)
C7—N1—C9105.67 (14)C17—C18—C19119.99 (19)
C3—O1—H1109.00C18—C19—C20120.34 (18)
C7—N2—C14127.55 (14)C15—C20—C19119.96 (15)
C8—N2—C14125.38 (14)O2—C20—C15117.67 (15)
C7—N2—C8107.03 (13)O2—C20—C19122.37 (15)
C20—O2—H2109.00C1—C2—H2A120.00
C6—C1—C7117.43 (16)C3—C2—H2A120.00
C2—C1—C6119.90 (16)C3—C4—H4120.00
C2—C1—C7122.65 (15)C5—C4—H4120.00
C1—C2—C3119.05 (17)C4—C5—H5120.00
C2—C3—C4120.49 (18)C6—C5—H5120.00
O1—C3—C2117.14 (18)C1—C6—H6120.00
O1—C3—C4122.37 (17)C5—C6—H6120.00
C3—C4—C5120.27 (18)C9—C10—H10121.00
C4—C5—C6120.21 (19)C11—C10—H10121.00
C1—C6—C5120.08 (18)C10—C11—H11119.00
N1—C7—C1122.56 (15)C12—C11—H11119.00
N1—C7—N2112.15 (15)C11—C12—H12119.00
N2—C7—C1125.24 (14)C13—C12—H12119.00
N2—C8—C13132.39 (16)C8—C13—H13122.00
C9—C8—C13121.99 (16)C12—C13—H13122.00
N2—C8—C9105.62 (14)N2—C14—H14A109.00
C8—C9—C10120.33 (16)N2—C14—H14B109.00
N1—C9—C8109.52 (15)C15—C14—H14A109.00
N1—C9—C10130.13 (16)C15—C14—H14B109.00
C9—C10—C11117.80 (18)H14A—C14—H14B108.00
C10—C11—C12121.29 (19)C15—C16—H16119.00
C11—C12—C13121.90 (18)C17—C16—H16119.00
C8—C13—C12116.69 (18)C16—C17—H17120.00
N2—C14—C15112.94 (13)C18—C17—H17120.00
C16—C15—C20118.44 (16)C17—C18—H18120.00
C14—C15—C16122.54 (15)C19—C18—H18120.00
C14—C15—C20119.02 (14)C18—C19—H19120.00
C15—C16—C17121.63 (18)C20—C19—H19120.00
C16—C17—C18119.63 (19)
C9—N1—C7—N20.45 (19)C3—C4—C5—C60.4 (3)
C9—N1—C7—C1178.12 (15)C4—C5—C6—C10.3 (3)
C7—N1—C9—C80.12 (19)N2—C8—C9—N10.25 (19)
C7—N1—C9—C10178.39 (19)N2—C8—C9—C10178.92 (16)
C8—N2—C7—N10.62 (19)C13—C8—C9—N1179.53 (16)
C8—N2—C7—C1178.22 (15)C13—C8—C9—C100.9 (3)
C14—N2—C7—N1177.32 (15)N2—C8—C13—C12179.02 (18)
C14—N2—C7—C10.3 (3)C9—C8—C13—C120.7 (3)
C7—N2—C8—C90.51 (18)N1—C9—C10—C11178.49 (18)
C7—N2—C8—C13179.25 (19)C8—C9—C10—C110.1 (3)
C14—N2—C8—C9177.49 (15)C9—C10—C11—C120.7 (3)
C14—N2—C8—C132.8 (3)C10—C11—C12—C130.9 (3)
C7—N2—C14—C1594.94 (19)C11—C12—C13—C80.2 (3)
C8—N2—C14—C1587.5 (2)N2—C14—C15—C1622.2 (2)
C6—C1—C2—C30.6 (3)N2—C14—C15—C20157.17 (15)
C7—C1—C2—C3178.60 (16)C14—C15—C16—C17179.68 (19)
C2—C1—C6—C50.8 (3)C20—C15—C16—C170.3 (3)
C7—C1—C6—C5178.91 (17)C14—C15—C20—O20.6 (2)
C2—C1—C7—N1134.27 (18)C14—C15—C20—C19178.84 (16)
C2—C1—C7—N248.4 (2)C16—C15—C20—O2179.98 (16)
C6—C1—C7—N143.8 (2)C16—C15—C20—C190.6 (3)
C6—C1—C7—N2133.60 (18)C15—C16—C17—C181.0 (3)
C1—C2—C3—O1179.55 (16)C16—C17—C18—C190.9 (3)
C1—C2—C3—C40.1 (3)C17—C18—C19—C200.0 (3)
O1—C3—C4—C5179.00 (18)C18—C19—C20—O2179.92 (19)
C2—C3—C4—C50.6 (3)C18—C19—C20—C150.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.042.861 (2)173
O2—H2···N1ii0.821.892.7124 (19)178
C16—H16···N20.932.552.878 (2)101
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate-General for Scientific Research and Technological Development for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDemirayak, S., Karaburun, A. C., Kayagil, I., Uçucu, U. & Beis, R. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, o1841–o1848.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHarris, J., Plummer, S. & Lloyd, D. (2001). Appl. Microbiol. Biotechnol. 57, 614–619.  CrossRef PubMed Google Scholar
First citationHoebrecker, F. (1872). Ber. Dtsch. Chem. Ges. 5, 920–924.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationQuezada-Miriel, M., Avila-Sorrosa, A., German-Acacio, J. M., Reyes-Martínez, R. & Morales-Morales, D. (2012). Acta Cryst. E68, o3053–o3054.  CSD CrossRef IUCr Journals Google Scholar
First citationSevak, R., Paul, A., Goswami, S. & Santani, D. (2002). Pharmacol. Res. 46, 351–356.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, o232–o243.  CrossRef Google Scholar
First citationTéllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2007). Arkivoc, 2008, 245–275.  Google Scholar
First citationYang, S.-P., Wang, D.-Q., Han, L.-J. & Xia, H.-T. (2007). Acta Cryst. E63, o3758.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds