research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of boryl ortho-silylaryl tri­fluoro­methane­sulfonates

crossmark logo

aDepartment of Chemistry-BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden, and bUppsala University Ångström Laboratories, Box 523, 75120 Uppsala, Sweden
*Correspondence e-mail: lukasz.pilarski@kemi.uu.se

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 21 August 2023; accepted 8 January 2024; online 12 January 2024)

We report the synthesis and structural characterization of three crystalline borylated ortho-silylaryl tri­fluoro­methane­sulfonates: 5-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate, C16H24BF3O5SSi (1a), 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate, C16H24BF3O5SSi (1b), and 2-methyl-4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-6-(tri­methyl­silyl)phen­yl tri­fluoro­methane­sulfonate, C17H26BF3O5SSi (2), which are versatile aryne precursors. For all three compounds, the heteroatom substituents are almost coplanar with the central aromatic moiety. C—heteroatom bonding metrics are unexceptional and fall withing the typical range of C—B, C—Si, and C—O single bonds. Despite numerous electronegative sites, only weak inter­molecular inter­actions are observed in the solid state.

1. Chemical context

Arynes are remarkably versatile inter­mediates in organic synthesis (Anthony et al., 2021[Anthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. (2021). JACS Au, 1, 897-912.]; Takikawa et al., 2018[Takikawa, H., Nishii, A., Sakai, T. & Suzuki, K. (2018). Chem. Soc. Rev. 47, 8030-8056.]; Tadross et al., 2012[Tadross, P. M. & Stoltz, B. M. (2012). Chem. Rev. 112, 3550-3577.]). Their generation from ortho-silylaryl triflates (Shi et al., 2021[Shi, J., Li, L. & Li, Y. (2021). Chem. Rev. 121, 3892-4044.]) using fluoride salts (Himeshima et al., 1983[Himeshima, Y., Sonoda, T. & Kobayashi, H. (1983). Chem. Lett. 12, 1211-1214.]) or other mild bases (Idiris & Jones, 2017[Idiris, F. I. M. & Jones, C. R. (2017). Org. Biomol. Chem. 15, 9044-9056.]) has enabled the development of many otherwise impossible transformations. However, ortho-silylaryl triflates can themselves be challenging to introduce in many chemical contexts, which has limited their usefulness. We previously showed (Demory et al., 2015[Demory, E., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Angew. Chem. Int. Ed. 54, 11765-11769.]) that simple ortho-silylaryl triflate aryne precursors can be diversified in a straightforward manner by leveraging the versatility of organoboronate groups introduced via Ir-catalysed C—H borylation (Bisht et al., 2022[Bisht, R., Haldar, C., Hassan, M. M. M., Hoque, M. E., Chaturvedi, J. & Chattopadhyay, B. (2022). Chem. Soc. Rev. 51, 5042-5100.]; Mkhalid et al., 2010[Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. (2010). Chem. Rev. 110, 890-931.]). Hosoya and co-workers published a closely related study showcasing a complementary reaction scope (Yoshida et al., 2015[Yoshida, S., Shimomori, K., Nonaka, T. & Hosoya, T. (2015). Chem. Lett. 44, 1324-1326.]). In the course of our studies, we prepared crystals of several boryl aryne precursors.

[Scheme 1]

2. Structural commentary

Compound 1a crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit (Z = 4). The central ring and the directly attached heteratoms form a nearly planar motif (average deviation from the least squares plane = 0.062 Å). The C—B, C—Si, and C—O bond distances are within the expected values for single bonds: 1.572 (4), 1.909 (3) and 1.450 (3) Å, respectively. Compound 1b crystallizes in the monoclinic space group C2/c as colourless blocks with one mol­ecule in the asymmetric unit. The central benzene ring and its direct heteroatom (O, Si, and B) form a nearly perfect plane (mean deviation from the least squares plane = 0.021 Å). The pinacolate moiety is disordered over two sites with site occupancy factors of 0.905 and 0.095, attached to one pivot borane atom. The C—B, C—Si, and C—O bonds are 1.599 (3), 1.908 (2), and 1.443 (2) Å, respectively, in the typical range for Csp2E single bonds. Compound 2 crystallizes in the monoclinic space group P21/n (Z = 8) with two mol­ecules in the asymmetric unit of very similar metric parameters, except for the orientation of the triflate group [C2—O1—S1—C10 = 95.7 (3) and 150.1 (3)°], as shown in Fig. 4. The C—B, C—Si, and C—O bonds are 1.558 (5)/1.553 (5), 1.451 (4)/1.450 (4), and 1.908 (4)/1.899 (4) Å, respectively. It is noteworthy that the variation of the C—B bond length is the largest in this series, albeit still within the expected bond length for a carbon–boron single bond and within the respective standard deviations (see Table 1[link] and Figs. 1[link]–4[link][link][link]).

Table 1
Selected bond distances (Å)

  1a 1b 2
C—B 1.572 (4) 1.599 (3) 1.558 (5) /1.553 (5)
C—O 1.450 (3) 1.443 (2) 1.451 (4) / 1.450 (4)
C—Si 1.909 (3) 1.908 (2) 1.908 (4) / 1.899 (4)
[Figure 1]
Figure 1
The mol­ecular structure of compound 1a. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound 1b. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The two independent mol­ecules in compound 2. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
Overlay of the two independent mol­ecules of compound 2.

3. Supra­molecular features

The supra­molecular arrangement of 1a, 1b, and 2 is unexceptional and shows only very weak inter­molecular ar­yl/methyl-H⋯O (>2.58 Å) and ar­yl/methyl-H⋯F (>2.60 Å) inter­actions, the latter being slightly below the sum of their van der Waals radii. In compound 1a, the mol­ecular motifs arrange in a slipped manner giving a stair-like arrangement. Besides these weak Si(CH3)3⋯O inter­actions [2.797 (2) Å], further aryl-H⋯O inter­actions [2.683 (2) Å] dominate the packing. The crystal structure of 1b is characterized by inter­molecular CH3⋯O inter­actions of two neighbouring pinacolborane units [H⋯O: 2.637 (2) Å] and weak F⋯π inter­actions [O⋯centroid: 3.574 (3) Å]. The major packing motif of 2 involves a head-to-tail arrangement of two symmetry-related mol­ecules resulting in weak CH3(pinacol)⋯O(triflate) inter­actions [2.632 (3) Å]. Supra­molecular features are illustrated in Figs. 5[link]–7[link][link].

[Figure 5]
Figure 5
Solid-state packing of compound 1a showing short inter- and intra­molecular inter­actions.
[Figure 6]
Figure 6
Solid-state packing of compound 1b showing short inter- and intra­molecular inter­actions.
[Figure 7]
Figure 7
Solid-state packing of compound 2 showing short inter- and intra­molecular inter­actions.

4. Database survey

A database survey (Cambridge Structural Database, WEBCSD v.1.9.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that, despite the large inter­est in these aryne precursors, only a limited number of ortho-silylaryl triflates have been structurally characterized, including precursors for complex natural products (Guo et al., 2023[Guo, F.-W., Zhou, T.-Y., Qu, Y., Wei, M.-Y., Chen, G.-Y., Gu, Y.-C., Wang, C.-Y. & Shao, C.-L. (2023). Org. Chem. Front. 10, 852-858.]: BEVBIR), polycyclic hydro­carbons (Dauvergne et al., 2022[Dauvergne, G., Naubron, J.-V., Giorgi, M., Bugaut, X., Rodriguez, J., Carissan, Y. & Coquerel, Y. (2022). Chem. Eur. J. 28, e202202473.]: DIBPIR; Wu et al., 2022[Wu, Y., Zhao, T., Rong, J., Rao, Y., Zhou, M., Yin, B., Ni, X., Osuka, A., Xu, L. & Song, J. (2022). Angew. Chem. Int. Ed. 61, e202201327.]: PAVBOH, PAVCIC; Elbert et al., 2020[Elbert, S. M., Baumgärtner, K., Esteves, J. A., Weber, L., Rominger, F. & Mastalerz, M. (2020). Org. Mater. 02, 358-361.]: UVANUD; Tozawa et al., 2017[Tozawa, H., Kakuda, T., Adachi, K. & Hamura, T. (2017). Org. Lett. 19, 4118-4121.]: WEDRUV), polymers (Xin et al., 2019[Xin, D., Qin, A. & Tang, B. Z. (2019). Polym. Chem. 10, 4271-4278.]: LONCID) and others (Mochida et al., 2009[Mochida, K., Shimizu, M. & Hiyama, T. (2009). J. Am. Chem. Soc. 131, 8350-8351.]: UQAXIV; Haas et al., 2022[Haas, T. M., Wiesler, S., Dürr-Mayer, T., Ripp, A., Fouka, P., Qiu, D. & Jessen, H. J. (2022). Angew. Chem. Int. Ed. 61, e202113231.]: XATROD). To the best of our knowledge, no borylated ortho-silylaryl triflates have been structurally characterized so far.

5. Synthesis and crystallization

Aryl boronates 12 were synthesised via Ir-catalysed C—H borylation according to a previously reported protocol (Demory et al., 2015[Demory, E., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Angew. Chem. Int. Ed. 54, 11765-11769.]). Crystals of 12 were grown according to the following procedures:

5-(4,4,5,5-Tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­meth­yl­sil­yl)phenyl tri­fluoro­methane­sulfonate (1a):

In a 100 mL round-bottom flask placed in an oil bath, 1a (10.00 g, 23.56 mmol) was heated to 313 K and dissolved in a minimal amount of n-pentane. The solution was cooled to RT and then placed in a freezer (255 K) for 2 h. Crystals of 1a formed as colourless shards, which were filtered and washed with ice-cold pentane.

4-(4,4,5,5-Tetra­methyl-1,3,2-dioxaborolan-2-yl)-2-(tri­meth­yl­sil­yl)phenyl tri­fluoro­methane­sulfonate (1b):

A 100 mL round-bottom flask containing a suspension of 1a and 1b (4.00 g, 9.42 mmol, 1a/1b ≃ 2.5:1) in n-pentane (15 mL) was heated gently to 313 K and filtered through a sintered frit. The filtrate was concentrated under reduced pressure, giving a colourless solid. This procedure was repeated twice, yielding a viscous colourless oil, storage of which under air for six weeks at RT afforded cubic crystals of 1b.

2-Methyl-4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-6-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (2):

In a 25 mL round-bottom flask placed in an oil bath, 2 (0.20 g, 0.46 mmol) was heated to 313 K and dissolved in a minimal amount of n-pentane. The flask was stoppered and cooled in a freezer to 155 K over the course of 0.5 h. Cubic crystals of 2 (approx. 1 mm in width) formed as a suspension. These were separated from the mother liquor by filtration and then washed with cold (155 K) n-pentane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Compound 1b was modelled with a positional disorder of the pinacolborane moiety pivoting around the boron atom. The site occupancy factors were freely refined to give a 0.097 (4):0.903 (4) occupancy.

Table 2
Experimental details

  1a 1b 2
Crystal data
Chemical formula C16H24BF3O5SSi C16H24BF3O5SSi C17H26BF3O5SSi
Mr 424.31 424.31 438.34
Crystal system, space group Orthorhombic, Pna21 Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 150 170 150
a, b, c (Å) 10.4316 (7), 25.1732 (17), 7.7756 (5) 28.334 (3), 11.8449 (13), 12.9139 (14) 10.2407 (8), 12.6295 (10), 34.127 (3)
α, β, γ (°) 90, 90, 90 90, 92.723 (2), 90 90, 95.689 (2), 90
V3) 2041.8 (2) 4329.1 (8) 4392.1 (6)
Z 4 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.27 0.25 0.25
Crystal size (mm) 0.3 × 0.22 × 0.18 0.13 × 0.13 × 0.12 0.32 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEX-II CCD Bruker APEX-II CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.680, 0.746 0.717, 0.746 0.639, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 13726, 5205, 4654 44626, 5373, 4180 104215, 9044, 6597
Rint 0.042 0.042 0.091
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.04 0.048, 0.139, 1.05 0.072, 0.186, 1.14
No. of reflections 5205 5373 9044
No. of parameters 251 328 521
No. of restraints 1 171 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.25 0.56, −0.36 0.60, −0.48
Absolute structure Flack x determined using 1809 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.11 (5)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Attempts to model the tri­fluoro­methane­sulfonate group in 1b with a positional disorder using two (and three) parts, did not produced a satisfactory model. Hence the refinement with somewhat large ellipsoids for the tri­fluoro­methane­sulfonate group was finally used. Hydrogen atoms were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with methyl groups allowed to freely rotate about the C—C bond. The distances for methyl and aromatic C—H groups were set to 0.98 Å and 0.95 Å, respectively.

Supporting information


Computing details top

5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (1_a) top
Crystal data top
C16H24BF3O5SSiDx = 1.380 Mg m3
Mr = 424.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3068 reflections
a = 10.4316 (7) Åθ = 2.5–26.6°
b = 25.1732 (17) ŵ = 0.27 mm1
c = 7.7756 (5) ÅT = 150 K
V = 2041.8 (2) Å3Block, clear colourless
Z = 40.3 × 0.22 × 0.18 mm
F(000) = 888
Data collection top
Bruker APEXII CCD
diffractometer
4654 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.8°, θmin = 1.6°
Tmin = 0.680, Tmax = 0.746h = 1314
13726 measured reflectionsk = 3423
5205 independent reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1163P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5205 reflectionsΔρmax = 0.31 e Å3
251 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack x determined using 1809 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.01340 (7)0.66139 (3)0.65946 (11)0.02312 (17)
Si10.84369 (7)0.55136 (3)0.93641 (11)0.01775 (17)
O40.5211 (2)0.67505 (8)0.2262 (3)0.0228 (5)
O50.45562 (19)0.58908 (8)0.1909 (3)0.0222 (4)
O10.86972 (19)0.66011 (7)0.7168 (3)0.0196 (4)
F30.9583 (2)0.69871 (8)0.3559 (3)0.0431 (6)
F20.9483 (2)0.75640 (8)0.5581 (3)0.0450 (6)
F11.13163 (19)0.72872 (8)0.4680 (3)0.0430 (6)
O21.0494 (2)0.61447 (9)0.5732 (4)0.0373 (6)
O31.0836 (2)0.68223 (10)0.8003 (3)0.0390 (6)
C20.7803 (2)0.62207 (11)0.6445 (4)0.0170 (5)
C10.7643 (3)0.57397 (11)0.7276 (4)0.0165 (5)
C110.4470 (3)0.67413 (12)0.0647 (4)0.0212 (6)
C60.6722 (3)0.54073 (11)0.6516 (4)0.0211 (6)
H60.6572740.5066550.7001370.025*
C120.3703 (3)0.62130 (12)0.0824 (4)0.0217 (6)
C90.7285 (3)0.50567 (13)1.0438 (4)0.0281 (7)
H9A0.7206830.4729370.9763340.042*
H9B0.6444980.5229051.0521250.042*
H9C0.7596670.4970951.1593850.042*
C50.6021 (3)0.55591 (12)0.5078 (4)0.0208 (6)
H50.5425560.5317020.4587000.025*
C30.7097 (3)0.63938 (11)0.5050 (4)0.0179 (6)
H30.7240250.6736760.4577290.021*
C40.6174 (2)0.60599 (11)0.4345 (4)0.0179 (5)
C70.8752 (3)0.60863 (12)1.0824 (4)0.0253 (7)
H7A0.7981440.6307771.0902360.038*
H7B0.9462580.6298121.0367070.038*
H7C0.8976950.5954001.1970290.038*
C101.0115 (3)0.71493 (13)0.4994 (4)0.0261 (7)
C130.3650 (3)0.72370 (12)0.0530 (5)0.0317 (8)
H13A0.3112960.7265310.1559870.048*
H13B0.3101900.7215900.0492000.048*
H13C0.4203940.7550270.0445140.048*
C80.9948 (3)0.51573 (13)0.8842 (4)0.0281 (7)
H8A1.0345370.5029200.9906210.042*
H8B1.0537490.5399920.8254210.042*
H8C0.9757500.4854810.8090930.042*
C140.5449 (3)0.67315 (15)0.0799 (5)0.0329 (8)
H14A0.6009160.7042530.0705670.049*
H14B0.5003650.6738490.1908730.049*
H14C0.5964180.6407080.0715300.049*
C150.2458 (3)0.62724 (15)0.1819 (5)0.0352 (8)
H15A0.2105660.5919970.2070240.053*
H15B0.1841770.6474590.1128630.053*
H15C0.2623620.6460870.2898870.053*
C160.3481 (4)0.59221 (13)0.0848 (5)0.0360 (9)
H16A0.4307770.5834980.1375160.054*
H16B0.2986740.6148410.1630790.054*
H16C0.3003260.5594000.0623880.054*
B10.5305 (3)0.62397 (14)0.2799 (4)0.0190 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (3)0.0228 (3)0.0272 (4)0.0035 (3)0.0057 (3)0.0051 (3)
Si10.0167 (3)0.0241 (4)0.0125 (3)0.0017 (3)0.0021 (3)0.0018 (3)
O40.0244 (11)0.0242 (11)0.0198 (10)0.0003 (9)0.0106 (9)0.0009 (9)
O50.0236 (10)0.0230 (10)0.0202 (11)0.0003 (8)0.0110 (9)0.0018 (9)
O10.0202 (9)0.0206 (10)0.0180 (10)0.0023 (8)0.0062 (8)0.0016 (8)
F30.0592 (14)0.0485 (13)0.0215 (10)0.0185 (11)0.0091 (10)0.0045 (10)
F20.0694 (15)0.0230 (10)0.0426 (13)0.0106 (10)0.0058 (12)0.0066 (10)
F10.0371 (11)0.0424 (12)0.0495 (15)0.0163 (9)0.0026 (10)0.0122 (10)
O20.0287 (12)0.0236 (12)0.0595 (17)0.0027 (9)0.0093 (12)0.0017 (12)
O30.0298 (12)0.0516 (16)0.0356 (14)0.0156 (12)0.0179 (11)0.0106 (12)
C20.0138 (12)0.0199 (13)0.0172 (13)0.0007 (10)0.0020 (12)0.0033 (12)
C10.0158 (12)0.0190 (13)0.0145 (13)0.0017 (11)0.0006 (11)0.0019 (11)
C110.0238 (15)0.0256 (15)0.0144 (14)0.0033 (12)0.0080 (13)0.0015 (12)
C60.0214 (13)0.0204 (13)0.0216 (14)0.0032 (11)0.0024 (13)0.0041 (13)
C120.0199 (14)0.0259 (15)0.0193 (14)0.0040 (12)0.0100 (12)0.0014 (12)
C90.0270 (16)0.0381 (19)0.0194 (15)0.0042 (13)0.0019 (13)0.0073 (14)
C50.0182 (13)0.0249 (15)0.0193 (14)0.0033 (11)0.0035 (12)0.0019 (12)
C30.0166 (13)0.0200 (14)0.0170 (13)0.0022 (11)0.0022 (11)0.0002 (12)
C40.0152 (11)0.0241 (14)0.0144 (12)0.0039 (10)0.0002 (12)0.0013 (12)
C70.0273 (15)0.0327 (17)0.0161 (14)0.0025 (13)0.0035 (12)0.0025 (13)
C100.0313 (16)0.0244 (16)0.0227 (16)0.0047 (13)0.0021 (13)0.0006 (13)
C130.0355 (17)0.0281 (17)0.0315 (18)0.0094 (14)0.0131 (16)0.0017 (15)
C80.0239 (15)0.0389 (19)0.0215 (16)0.0099 (14)0.0008 (12)0.0044 (14)
C140.0310 (17)0.044 (2)0.0239 (17)0.0036 (14)0.0043 (15)0.0072 (16)
C150.0187 (14)0.049 (2)0.038 (2)0.0012 (14)0.0016 (15)0.0097 (17)
C160.047 (2)0.0318 (18)0.029 (2)0.0002 (15)0.0207 (17)0.0064 (15)
B10.0168 (14)0.0240 (17)0.0161 (15)0.0010 (13)0.0014 (13)0.0028 (13)
Geometric parameters (Å, º) top
S1—O11.564 (2)C9—H9A0.9800
S1—O21.409 (3)C9—H9B0.9800
S1—O31.418 (2)C9—H9C0.9800
S1—C101.834 (3)C5—H50.9500
Si1—C11.909 (3)C5—C41.393 (4)
Si1—C91.861 (3)C3—H30.9500
Si1—C71.864 (3)C3—C41.390 (4)
Si1—C81.858 (3)C4—B11.572 (4)
O4—C111.474 (3)C7—H7A0.9800
O4—B11.356 (4)C7—H7B0.9800
O5—C121.470 (3)C7—H7C0.9800
O5—B11.364 (4)C13—H13A0.9800
O1—C21.450 (3)C13—H13B0.9800
F3—C101.311 (4)C13—H13C0.9800
F2—C101.316 (4)C8—H8A0.9800
F1—C101.323 (4)C8—H8B0.9800
C2—C11.383 (4)C8—H8C0.9800
C2—C31.382 (4)C14—H14A0.9800
C1—C61.405 (4)C14—H14B0.9800
C11—C121.558 (4)C14—H14C0.9800
C11—C131.516 (4)C15—H15A0.9800
C11—C141.518 (5)C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C6—C51.389 (4)C16—H16A0.9800
C12—C151.519 (4)C16—H16B0.9800
C12—C161.511 (4)C16—H16C0.9800
O1—S1—C10101.43 (13)C5—C4—B1120.5 (3)
O2—S1—O1111.95 (13)C3—C4—C5117.7 (3)
O2—S1—O3122.67 (16)C3—C4—B1121.8 (3)
O2—S1—C10107.20 (16)Si1—C7—H7A109.5
O3—S1—O1106.41 (14)Si1—C7—H7B109.5
O3—S1—C10104.94 (14)Si1—C7—H7C109.5
C9—Si1—C1106.59 (13)H7A—C7—H7B109.5
C9—Si1—C7108.58 (16)H7A—C7—H7C109.5
C7—Si1—C1111.33 (13)H7B—C7—H7C109.5
C8—Si1—C1109.03 (14)F3—C10—S1110.7 (2)
C8—Si1—C9110.32 (15)F3—C10—F2109.3 (3)
C8—Si1—C7110.91 (15)F3—C10—F1109.0 (3)
B1—O4—C11106.6 (2)F2—C10—S1110.7 (2)
B1—O5—C12106.4 (2)F2—C10—F1109.3 (3)
C2—O1—S1121.32 (17)F1—C10—S1107.9 (2)
C1—C2—O1118.3 (2)C11—C13—H13A109.5
C3—C2—O1116.0 (2)C11—C13—H13B109.5
C3—C2—C1125.4 (3)C11—C13—H13C109.5
C2—C1—Si1127.3 (2)H13A—C13—H13B109.5
C2—C1—C6114.0 (2)H13A—C13—H13C109.5
C6—C1—Si1118.5 (2)H13B—C13—H13C109.5
O4—C11—C12102.0 (2)Si1—C8—H8A109.5
O4—C11—C13109.5 (2)Si1—C8—H8B109.5
O4—C11—C14106.2 (2)Si1—C8—H8C109.5
C13—C11—C12114.7 (2)H8A—C8—H8B109.5
C13—C11—C14110.4 (3)H8A—C8—H8C109.5
C14—C11—C12113.4 (3)H8B—C8—H8C109.5
C1—C6—H6118.8C11—C14—H14A109.5
C5—C6—C1122.3 (3)C11—C14—H14B109.5
C5—C6—H6118.8C11—C14—H14C109.5
O5—C12—C11102.2 (2)H14A—C14—H14B109.5
O5—C12—C15106.3 (2)H14A—C14—H14C109.5
O5—C12—C16108.6 (2)H14B—C14—H14C109.5
C15—C12—C11113.6 (3)C12—C15—H15A109.5
C16—C12—C11114.6 (3)C12—C15—H15B109.5
C16—C12—C15110.8 (3)C12—C15—H15C109.5
Si1—C9—H9A109.5H15A—C15—H15B109.5
Si1—C9—H9B109.5H15A—C15—H15C109.5
Si1—C9—H9C109.5H15B—C15—H15C109.5
H9A—C9—H9B109.5C12—C16—H16A109.5
H9A—C9—H9C109.5C12—C16—H16B109.5
H9B—C9—H9C109.5C12—C16—H16C109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C6—C5—C4121.2 (3)H16A—C16—H16C109.5
C4—C5—H5119.4H16B—C16—H16C109.5
C2—C3—H3120.4O4—B1—O5114.4 (3)
C2—C3—C4119.2 (3)O4—B1—C4123.4 (3)
C4—C3—H3120.4O5—B1—C4122.2 (3)
S1—O1—C2—C191.5 (3)C11—O4—B1—O59.8 (3)
S1—O1—C2—C393.9 (3)C11—O4—B1—C4171.6 (3)
Si1—C1—C6—C5174.5 (2)C6—C5—C4—C33.0 (4)
O4—C11—C12—O528.5 (3)C6—C5—C4—B1175.7 (3)
O4—C11—C12—C1585.5 (3)C12—O5—B1—O49.9 (3)
O4—C11—C12—C16145.7 (3)C12—O5—B1—C4168.7 (3)
O1—S1—C10—F374.9 (2)C5—C4—B1—O4165.7 (3)
O1—S1—C10—F246.4 (2)C5—C4—B1—O512.8 (4)
O1—S1—C10—F1165.9 (2)C3—C2—C1—Si1171.8 (2)
O1—C2—C1—Si12.2 (4)C3—C2—C1—C63.7 (4)
O1—C2—C1—C6177.7 (2)C3—C4—B1—O413.0 (5)
O1—C2—C3—C4176.8 (2)C3—C4—B1—O5168.5 (3)
O2—S1—O1—C216.3 (2)C10—S1—O1—C297.7 (2)
O2—S1—C10—F342.6 (3)C13—C11—C12—O5146.7 (3)
O2—S1—C10—F2163.9 (2)C13—C11—C12—C1532.7 (4)
O2—S1—C10—F176.5 (2)C13—C11—C12—C1696.0 (3)
O3—S1—O1—C2152.8 (2)C14—C11—C12—O585.2 (3)
O3—S1—C10—F3174.5 (2)C14—C11—C12—C15160.8 (3)
O3—S1—C10—F264.2 (3)C14—C11—C12—C1632.0 (4)
O3—S1—C10—F155.3 (3)B1—O4—C11—C1223.7 (3)
C2—C1—C6—C51.4 (4)B1—O4—C11—C13145.5 (3)
C2—C3—C4—C50.9 (4)B1—O4—C11—C1495.3 (3)
C2—C3—C4—B1177.8 (3)B1—O5—C12—C1123.8 (3)
C1—C2—C3—C42.6 (4)B1—O5—C12—C1595.5 (3)
C1—C6—C5—C41.9 (5)B1—O5—C12—C16145.2 (3)
4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (1b) top
Crystal data top
C16H24BF3O5SSiF(000) = 1776
Mr = 424.31Dx = 1.302 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.334 (3) ÅCell parameters from 9969 reflections
b = 11.8449 (13) Åθ = 2.4–28.3°
c = 12.9139 (14) ŵ = 0.25 mm1
β = 92.723 (2)°T = 170 K
V = 4329.1 (8) Å3Block, clear colourless
Z = 80.13 × 0.13 × 0.12 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4180 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.717, Tmax = 0.746h = 3737
44626 measured reflectionsk = 1515
5373 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 4.7508P]
where P = (Fo2 + 2Fc2)/3
5373 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.56 e Å3
171 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.39267 (2)0.53526 (5)0.90754 (5)0.04790 (17)
Si10.28275 (2)0.42873 (4)0.71167 (5)0.03740 (15)
O5B0.43496 (8)0.02880 (19)0.5736 (2)0.0351 (5)0.903 (4)
O4B0.35390 (7)0.00957 (18)0.57175 (19)0.0369 (5)0.903 (4)
O10.38245 (5)0.51171 (12)0.78959 (12)0.0442 (4)
F20.46272 (6)0.64218 (17)0.99534 (13)0.0846 (6)
F30.48082 (6)0.55425 (18)0.86149 (16)0.0944 (7)
O30.40303 (8)0.43500 (16)0.96328 (14)0.0731 (6)
C60.34638 (6)0.24848 (15)0.66026 (13)0.0300 (4)
H60.3184340.2128830.6329700.036*
C50.38952 (6)0.19229 (14)0.65209 (13)0.0286 (4)
C10.34246 (6)0.35492 (14)0.70687 (13)0.0290 (4)
C20.38459 (7)0.39985 (15)0.74578 (15)0.0335 (4)
C40.43043 (7)0.24455 (16)0.69264 (15)0.0356 (4)
H40.4601030.2081580.6874060.043*
O20.35905 (7)0.6142 (2)0.9391 (2)0.0953 (8)
F10.44191 (9)0.70485 (18)0.8471 (2)0.1268 (10)
C30.42828 (7)0.34885 (17)0.74042 (17)0.0400 (5)
H30.4560460.3843980.7687290.048*
B10.39244 (7)0.07486 (17)0.59818 (16)0.0295 (4)
C80.28793 (10)0.57681 (19)0.6644 (2)0.0584 (6)
H8A0.3084480.6199430.7131170.088*
H8B0.2565400.6116660.6591500.088*
H8C0.3015290.5766290.5959960.088*
C70.26378 (9)0.4261 (2)0.8470 (2)0.0590 (7)
H7A0.2634710.3479240.8719530.089*
H7B0.2319840.4582010.8495860.089*
H7C0.2858490.4706320.8911420.089*
C11B0.37310 (8)0.10017 (19)0.5400 (2)0.0386 (5)0.903 (4)
C90.23972 (9)0.3503 (2)0.6250 (2)0.0633 (7)
H9A0.2492850.3555720.5532470.095*
H9B0.2081800.3831260.6302220.095*
H9C0.2390640.2707860.6460290.095*
C12B0.42315 (8)0.0675 (2)0.5057 (2)0.0403 (5)0.903 (4)
C100.44796 (9)0.6143 (2)0.90158 (19)0.0526 (6)
C16B0.46034 (11)0.1584 (3)0.5218 (3)0.0599 (9)0.903 (4)
H16A0.4903300.1318440.4958790.090*0.903 (4)
H16B0.4502160.2267050.4840720.090*0.903 (4)
H16C0.4645330.1755960.5959050.090*0.903 (4)
C14B0.34042 (12)0.1493 (3)0.4542 (3)0.0602 (9)0.903 (4)
H14A0.3094430.1651570.4815980.090*0.903 (4)
H14B0.3540360.2194800.4285960.090*0.903 (4)
H14C0.3367830.0949390.3971620.090*0.903 (4)
C13B0.37450 (10)0.1748 (2)0.6353 (2)0.0558 (7)0.903 (4)
H13A0.3967850.1432550.6880370.084*0.903 (4)
H13B0.3847020.2508610.6166740.084*0.903 (4)
H13C0.3429220.1785000.6629940.084*0.903 (4)
C15B0.42273 (13)0.0214 (3)0.3952 (2)0.0667 (9)0.903 (4)
H15A0.3986740.0377440.3867940.100*0.903 (4)
H15B0.4154340.0826640.3459890.100*0.903 (4)
H15C0.4538220.0102390.3818970.100*0.903 (4)
O4A0.3600 (7)0.023 (2)0.547 (2)0.044 (4)0.097 (4)
O5A0.4304 (8)0.0112 (18)0.594 (2)0.046 (5)0.097 (4)
C12A0.4213 (7)0.0996 (16)0.5538 (18)0.045 (3)0.097 (4)
C11A0.3740 (7)0.0733 (18)0.4901 (17)0.051 (4)0.097 (4)
C14A0.3772 (10)0.030 (2)0.3808 (15)0.067 (6)0.097 (4)
H14D0.3467480.0404960.3428030.101*0.097 (4)
H14E0.4018270.0709360.3460020.101*0.097 (4)
H14F0.3849760.0510010.3827710.101*0.097 (4)
C16A0.4204 (10)0.179 (2)0.6455 (18)0.066 (6)0.097 (4)
H16D0.4526170.2037220.6643810.099*0.097 (4)
H16E0.4006450.2442260.6272820.099*0.097 (4)
H16F0.4073530.1390950.7044170.099*0.097 (4)
C15A0.4579 (9)0.128 (2)0.483 (2)0.051 (5)0.097 (4)
H15D0.4637070.0625480.4381700.077*0.097 (4)
H15E0.4476470.1920480.4395860.077*0.097 (4)
H15F0.4871250.1472890.5223530.077*0.097 (4)
C13A0.3402 (9)0.164 (2)0.502 (3)0.060 (6)0.097 (4)
H13D0.3385480.1827000.5750780.090*0.097 (4)
H13E0.3502610.2299800.4630840.090*0.097 (4)
H13F0.3090550.1389890.4741680.090*0.097 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0458 (3)0.0514 (3)0.0123 (2)0.0120 (2)0.0229 (2)
Si10.0328 (3)0.0282 (3)0.0505 (3)0.0018 (2)0.0045 (2)0.0038 (2)
O5B0.0295 (7)0.0330 (9)0.0433 (10)0.0030 (6)0.0051 (7)0.0123 (8)
O4B0.0282 (8)0.0277 (8)0.0551 (13)0.0027 (6)0.0039 (7)0.0112 (8)
O10.0452 (8)0.0332 (7)0.0536 (9)0.0006 (6)0.0042 (7)0.0165 (6)
F20.0823 (12)0.1048 (14)0.0658 (10)0.0355 (10)0.0041 (8)0.0400 (10)
F30.0573 (10)0.1180 (16)0.1100 (15)0.0340 (10)0.0253 (10)0.0636 (13)
O30.1234 (18)0.0539 (11)0.0433 (9)0.0297 (11)0.0178 (10)0.0027 (8)
C60.0333 (9)0.0267 (8)0.0297 (9)0.0028 (7)0.0007 (7)0.0011 (7)
C50.0355 (9)0.0260 (8)0.0246 (8)0.0004 (7)0.0039 (7)0.0003 (6)
C10.0339 (9)0.0261 (8)0.0270 (8)0.0002 (7)0.0025 (7)0.0004 (7)
C20.0383 (9)0.0270 (8)0.0356 (9)0.0032 (7)0.0063 (8)0.0071 (7)
C40.0308 (9)0.0355 (10)0.0411 (10)0.0000 (7)0.0067 (7)0.0072 (8)
O20.0619 (12)0.1032 (17)0.1217 (19)0.0035 (11)0.0138 (12)0.0790 (16)
F10.145 (2)0.0774 (14)0.152 (2)0.0628 (14)0.0520 (17)0.0488 (14)
C30.0306 (9)0.0396 (10)0.0500 (12)0.0060 (8)0.0035 (8)0.0149 (9)
B10.0325 (8)0.0274 (9)0.0286 (9)0.0009 (7)0.0014 (7)0.0016 (7)
C80.0623 (15)0.0328 (11)0.0786 (18)0.0045 (10)0.0137 (13)0.0030 (11)
C70.0430 (12)0.0708 (17)0.0647 (16)0.0017 (11)0.0180 (11)0.0043 (13)
C11B0.0290 (9)0.0288 (9)0.0577 (13)0.0028 (7)0.0003 (9)0.0139 (9)
C90.0447 (13)0.0465 (13)0.096 (2)0.0029 (10)0.0240 (13)0.0159 (13)
C12B0.0348 (10)0.0346 (11)0.0518 (13)0.0008 (8)0.0049 (9)0.0179 (9)
C100.0576 (14)0.0483 (13)0.0516 (13)0.0172 (11)0.0002 (11)0.0135 (11)
C16B0.0355 (12)0.0406 (17)0.104 (3)0.0067 (11)0.0063 (15)0.0228 (15)
C14B0.0422 (14)0.0529 (17)0.084 (2)0.0033 (12)0.0143 (15)0.0350 (16)
C13B0.0582 (16)0.0333 (12)0.0767 (17)0.0001 (11)0.0128 (13)0.0028 (11)
C15B0.091 (2)0.0653 (18)0.0448 (12)0.0116 (16)0.0158 (13)0.0189 (11)
O4A0.032 (3)0.046 (5)0.055 (8)0.005 (3)0.001 (4)0.025 (6)
O5A0.032 (3)0.032 (5)0.073 (12)0.003 (3)0.005 (4)0.017 (6)
C12A0.043 (5)0.029 (4)0.063 (8)0.003 (4)0.003 (5)0.012 (5)
C11A0.046 (5)0.050 (5)0.056 (7)0.010 (4)0.006 (5)0.030 (5)
C14A0.074 (12)0.074 (12)0.053 (7)0.030 (10)0.003 (7)0.026 (7)
C16A0.090 (13)0.040 (8)0.069 (10)0.009 (9)0.003 (8)0.004 (8)
C15A0.046 (8)0.032 (10)0.075 (11)0.004 (7)0.002 (9)0.015 (7)
C13A0.038 (8)0.044 (7)0.097 (18)0.015 (6)0.006 (8)0.035 (8)
Geometric parameters (Å, º) top
S1—O11.5620 (16)C9—H9A0.9800
S1—O31.412 (2)C9—H9B0.9800
S1—O21.409 (2)C9—H9C0.9800
S1—C101.830 (2)C12B—C16B1.515 (4)
Si1—C11.9080 (18)C12B—C15B1.527 (4)
Si1—C81.865 (2)C16B—H16A0.9800
Si1—C71.853 (3)C16B—H16B0.9800
Si1—C91.864 (2)C16B—H16C0.9800
O5B—B11.373 (3)C14B—H14A0.9800
O5B—C12B1.468 (3)C14B—H14B0.9800
O4B—B11.368 (3)C14B—H14C0.9800
O4B—C11B1.475 (3)C13B—H13A0.9800
O1—C21.443 (2)C13B—H13B0.9800
F2—C101.305 (3)C13B—H13C0.9800
F3—C101.298 (3)C15B—H15A0.9800
C6—H60.9500C15B—H15B0.9800
C6—C51.400 (2)C15B—H15C0.9800
C6—C11.404 (2)O4A—C11A1.42 (2)
C5—C41.394 (3)O5A—C12A1.43 (2)
C5—B11.559 (3)C12A—C11A1.57 (2)
C1—C21.380 (3)C12A—C16A1.51 (3)
C2—C31.382 (3)C12A—C15A1.46 (3)
C4—H40.9500C11A—C14A1.51 (3)
C4—C31.384 (3)C11A—C13A1.45 (3)
F1—C101.290 (3)C14A—H14D0.9800
C3—H30.9500C14A—H14E0.9800
B1—O4A1.26 (2)C14A—H14F0.9800
B1—O5A1.32 (2)C16A—H16D0.9800
C8—H8A0.9800C16A—H16E0.9800
C8—H8B0.9800C16A—H16F0.9800
C8—H8C0.9800C15A—H15D0.9800
C7—H7A0.9800C15A—H15E0.9800
C7—H7B0.9800C15A—H15F0.9800
C7—H7C0.9800C13A—H13D0.9800
C11B—C12B1.555 (3)C13A—H13E0.9800
C11B—C14B1.526 (4)C13A—H13F0.9800
C11B—C13B1.514 (4)
O1—S1—C1099.77 (10)F2—C10—S1109.14 (18)
O3—S1—O1111.79 (10)F3—C10—S1111.62 (16)
O3—S1—C10107.08 (13)F3—C10—F2107.7 (2)
O2—S1—O1107.72 (13)F1—C10—S1110.88 (19)
O2—S1—O3122.51 (16)F1—C10—F2108.9 (2)
O2—S1—C10105.37 (13)F1—C10—F3108.5 (3)
C8—Si1—C1109.67 (10)C12B—C16B—H16A109.5
C7—Si1—C1108.67 (10)C12B—C16B—H16B109.5
C7—Si1—C8110.84 (13)C12B—C16B—H16C109.5
C7—Si1—C9110.30 (14)H16A—C16B—H16B109.5
C9—Si1—C1107.92 (10)H16A—C16B—H16C109.5
C9—Si1—C8109.38 (13)H16B—C16B—H16C109.5
B1—O5B—C12B105.62 (19)C11B—C14B—H14A109.5
B1—O4B—C11B105.48 (18)C11B—C14B—H14B109.5
C2—O1—S1122.48 (13)C11B—C14B—H14C109.5
C5—C6—H6118.4H14A—C14B—H14B109.5
C5—C6—C1123.12 (16)H14A—C14B—H14C109.5
C1—C6—H6118.4H14B—C14B—H14C109.5
C6—C5—B1121.51 (16)C11B—C13B—H13A109.5
C4—C5—C6118.29 (16)C11B—C13B—H13B109.5
C4—C5—B1120.20 (16)C11B—C13B—H13C109.5
C6—C1—Si1120.92 (13)H13A—C13B—H13B109.5
C2—C1—Si1124.37 (13)H13A—C13B—H13C109.5
C2—C1—C6114.70 (16)H13B—C13B—H13C109.5
C1—C2—O1116.45 (16)C12B—C15B—H15A109.5
C1—C2—C3125.07 (17)C12B—C15B—H15B109.5
C3—C2—O1118.37 (16)C12B—C15B—H15C109.5
C5—C4—H4119.6H15A—C15B—H15B109.5
C3—C4—C5120.70 (17)H15A—C15B—H15C109.5
C3—C4—H4119.6H15B—C15B—H15C109.5
C2—C3—C4118.10 (17)B1—O4A—C11A116.4 (16)
C2—C3—H3120.9B1—O5A—C12A113.9 (17)
C4—C3—H3120.9O5A—C12A—C11A98.2 (15)
O5B—B1—C5121.55 (18)O5A—C12A—C16A107.2 (19)
O4B—B1—O5B114.60 (19)O5A—C12A—C15A108 (2)
O4B—B1—C5123.84 (17)C16A—C12A—C11A119.3 (19)
O4A—B1—C5127.7 (9)C15A—C12A—C11A109.3 (18)
O4A—B1—O5A106.0 (13)C15A—C12A—C16A113.0 (17)
O5A—B1—C5126.2 (9)O4A—C11A—C12A98.2 (15)
Si1—C8—H8A109.5O4A—C11A—C14A103.5 (19)
Si1—C8—H8B109.5O4A—C11A—C13A110 (2)
Si1—C8—H8C109.5C14A—C11A—C12A118.1 (19)
H8A—C8—H8B109.5C13A—C11A—C12A110.6 (19)
H8A—C8—H8C109.5C13A—C11A—C14A114.7 (18)
H8B—C8—H8C109.5C11A—C14A—H14D109.5
Si1—C7—H7A109.5C11A—C14A—H14E109.5
Si1—C7—H7B109.5C11A—C14A—H14F109.5
Si1—C7—H7C109.5H14D—C14A—H14E109.5
H7A—C7—H7B109.5H14D—C14A—H14F109.5
H7A—C7—H7C109.5H14E—C14A—H14F109.5
H7B—C7—H7C109.5C12A—C16A—H16D109.5
O4B—C11B—C12B102.31 (17)C12A—C16A—H16E109.5
O4B—C11B—C14B108.6 (2)C12A—C16A—H16F109.5
O4B—C11B—C13B106.5 (2)H16D—C16A—H16E109.5
C14B—C11B—C12B114.7 (3)H16D—C16A—H16F109.5
C13B—C11B—C12B112.8 (2)H16E—C16A—H16F109.5
C13B—C11B—C14B111.1 (2)C12A—C15A—H15D109.5
Si1—C9—H9A109.5C12A—C15A—H15E109.5
Si1—C9—H9B109.5C12A—C15A—H15F109.5
Si1—C9—H9C109.5H15D—C15A—H15E109.5
H9A—C9—H9B109.5H15D—C15A—H15F109.5
H9A—C9—H9C109.5H15E—C15A—H15F109.5
H9B—C9—H9C109.5C11A—C13A—H13D109.5
O5B—C12B—C11B102.02 (18)C11A—C13A—H13E109.5
O5B—C12B—C16B109.5 (2)C11A—C13A—H13F109.5
O5B—C12B—C15B105.8 (2)H13D—C13A—H13E109.5
C16B—C12B—C11B114.9 (2)H13D—C13A—H13F109.5
C16B—C12B—C15B110.9 (2)H13E—C13A—H13F109.5
C15B—C12B—C11B112.9 (2)
S1—O1—C2—C1113.56 (17)O2—S1—C10—F151.3 (2)
S1—O1—C2—C370.1 (2)B1—O5B—C12B—C11B26.2 (3)
Si1—C1—C2—O12.0 (2)B1—O5B—C12B—C16B148.4 (3)
Si1—C1—C2—C3178.15 (16)B1—O5B—C12B—C15B92.0 (3)
O4B—C11B—C12B—O5B31.0 (3)B1—O4B—C11B—C12B24.8 (3)
O4B—C11B—C12B—C16B149.4 (3)B1—O4B—C11B—C14B146.5 (3)
O4B—C11B—C12B—C15B82.0 (2)B1—O4B—C11B—C13B93.8 (2)
O1—S1—C10—F2179.84 (18)B1—C5—C4—C3179.85 (18)
O1—S1—C10—F360.9 (2)B1—O4A—C11A—C12A22 (3)
O1—S1—C10—F160.2 (2)B1—O4A—C11A—C14A100 (2)
O1—C2—C3—C4176.13 (18)B1—O4A—C11A—C13A137 (2)
O3—S1—O1—C21.04 (19)B1—O5A—C12A—C11A24 (3)
O3—S1—C10—F263.3 (2)B1—O5A—C12A—C16A100 (2)
O3—S1—C10—F355.7 (2)B1—O5A—C12A—C15A137 (2)
O3—S1—C10—F1176.8 (2)C11B—O4B—B1—O5B9.3 (3)
C6—C5—C4—C30.5 (3)C11B—O4B—B1—C5170.63 (19)
C6—C5—B1—O5B168.2 (2)C12B—O5B—B1—O4B11.8 (3)
C6—C5—B1—O4B11.9 (3)C12B—O5B—B1—C5168.3 (2)
C6—C5—B1—O4A9.0 (16)C10—S1—O1—C2111.90 (16)
C6—C5—B1—O5A174.2 (17)C14B—C11B—C12B—O5B148.4 (3)
C6—C1—C2—O1176.92 (16)C14B—C11B—C12B—C16B93.2 (4)
C6—C1—C2—C30.8 (3)C14B—C11B—C12B—C15B35.4 (3)
C5—C6—C1—Si1178.10 (13)C13B—C11B—C12B—O5B83.0 (2)
C5—C6—C1—C20.9 (3)C13B—C11B—C12B—C16B35.3 (3)
C5—C4—C3—C20.6 (3)C13B—C11B—C12B—C15B163.9 (2)
C5—B1—O4A—C11A169.2 (14)O4A—B1—O5A—C12A12 (3)
C5—B1—O5A—C12A170.6 (14)O5A—B1—O4A—C11A8 (3)
C1—C6—C5—C40.3 (3)O5A—C12A—C11A—O4A24 (2)
C1—C6—C5—B1179.04 (16)O5A—C12A—C11A—C14A86 (2)
C1—C2—C3—C40.1 (3)O5A—C12A—C11A—C13A139 (2)
C4—C5—B1—O5B11.1 (3)C16A—C12A—C11A—O4A91 (2)
C4—C5—B1—O4B168.8 (2)C16A—C12A—C11A—C14A159 (2)
C4—C5—B1—O4A170.3 (16)C16A—C12A—C11A—C13A24 (3)
C4—C5—B1—O5A6.5 (17)C15A—C12A—C11A—O4A137 (2)
O2—S1—O1—C2138.38 (17)C15A—C12A—C11A—C14A27 (3)
O2—S1—C10—F268.6 (2)C15A—C12A—C11A—C13A108 (3)
O2—S1—C10—F3172.4 (2)
2-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (2) top
Crystal data top
C17H26BF3O5SSiF(000) = 1840
Mr = 438.34Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2407 (8) ÅCell parameters from 9873 reflections
b = 12.6295 (10) Åθ = 2.6–24.6°
c = 34.127 (3) ŵ = 0.25 mm1
β = 95.689 (2)°T = 150 K
V = 4392.1 (6) Å3Block, clear colourless
Z = 80.32 × 0.15 × 0.1 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6597 reflections with I > 2σ(I)
φ and ω scansRint = 0.091
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 1.7°
Tmin = 0.639, Tmax = 0.745h = 1212
104215 measured reflectionsk = 1515
9044 independent reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0509P)2 + 12.3091P]
where P = (Fo2 + 2Fc2)/3
9044 reflections(Δ/σ)max = 0.001
521 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.39123 (11)0.84786 (9)0.43431 (3)0.0367 (3)
Si1B0.75607 (11)0.94084 (8)0.41946 (3)0.0267 (2)
Si1A0.26207 (12)0.68943 (8)0.58381 (3)0.0286 (3)
S1B0.07148 (12)0.59691 (10)0.55902 (3)0.0414 (3)
O5A0.1189 (2)0.4650 (2)0.75825 (7)0.0225 (5)
O4B0.6223 (2)0.6987 (2)0.24683 (7)0.0240 (6)
O4A0.2966 (2)0.5687 (2)0.73914 (7)0.0233 (6)
O5B0.7967 (2)0.8073 (2)0.26404 (7)0.0254 (6)
O1B0.5185 (3)0.7790 (2)0.43092 (7)0.0296 (6)
O1A0.0337 (3)0.5168 (2)0.57101 (7)0.0296 (6)
F3A0.2121 (3)0.4247 (3)0.55218 (9)0.0686 (10)
F2B0.2221 (3)0.8207 (3)0.48361 (10)0.0727 (10)
O2B0.3001 (3)0.8361 (3)0.40083 (9)0.0530 (9)
F1A0.2615 (3)0.5144 (3)0.60534 (9)0.0771 (11)
O3A0.0498 (3)0.6103 (3)0.51792 (9)0.0550 (9)
C1B0.6656 (4)0.8416 (3)0.38444 (10)0.0215 (7)
F3B0.3002 (5)0.6761 (3)0.46304 (13)0.1001 (15)
O2A0.0867 (4)0.6828 (3)0.58530 (11)0.0684 (12)
C5B0.6530 (3)0.7577 (3)0.31891 (10)0.0207 (7)
C13A0.1943 (3)0.4711 (3)0.79228 (10)0.0212 (7)
C5A0.1518 (3)0.5148 (3)0.68522 (10)0.0210 (7)
C2B0.5681 (4)0.7713 (3)0.39265 (10)0.0233 (8)
C6B0.7041 (3)0.8326 (3)0.34623 (10)0.0208 (7)
H6B0.7687150.8802650.3385740.025*
C2A0.0768 (4)0.5180 (3)0.61022 (10)0.0240 (8)
F1B0.4153 (4)0.7733 (4)0.50509 (9)0.1033 (16)
C6A0.2007 (3)0.5909 (3)0.65788 (10)0.0205 (7)
H6A0.2599310.6424930.6659670.025*
C12A0.2839 (4)0.5688 (3)0.78219 (10)0.0224 (8)
C1A0.1667 (4)0.5949 (3)0.61922 (10)0.0219 (7)
F2A0.3151 (3)0.5730 (4)0.55004 (11)0.0955 (14)
C3B0.5177 (4)0.6894 (3)0.36839 (11)0.0247 (8)
C12B0.6972 (3)0.7018 (3)0.21252 (10)0.0224 (8)
O3B0.4257 (4)0.9493 (3)0.44926 (13)0.0666 (11)
C13B0.7845 (4)0.8013 (3)0.22089 (10)0.0250 (8)
C4A0.0700 (4)0.4361 (3)0.67235 (11)0.0276 (8)
H4A0.0388710.3819300.6902040.033*
C4B0.5622 (4)0.6855 (3)0.33111 (11)0.0245 (8)
H4B0.5294670.6315910.3133470.029*
C16A0.1012 (4)0.4827 (3)0.82908 (11)0.0284 (8)
H16D0.0454530.5449420.8266400.043*
H16E0.0461570.4192920.8326780.043*
H16F0.1514500.4914270.8518590.043*
C3A0.0328 (4)0.4346 (3)0.63432 (11)0.0292 (9)
C14A0.2205 (5)0.6734 (3)0.79484 (12)0.0364 (10)
H14D0.2074720.6766000.8236600.055*
H14E0.2775790.7318070.7849220.055*
H14F0.1355090.6795330.7841340.055*
C17A0.2701 (4)0.3675 (3)0.79309 (11)0.0297 (9)
H17D0.3160210.3647080.8169280.045*
H17E0.2088490.3078530.7930560.045*
H17F0.3340570.3632420.7698110.045*
C15B0.6026 (4)0.7080 (4)0.17555 (11)0.0346 (10)
H15A0.5528200.6417520.1722860.052*
H15B0.6518930.7189140.1526860.052*
H15C0.5419960.7671930.1777530.052*
C14B0.7745 (4)0.5988 (3)0.21287 (12)0.0331 (9)
H14A0.8369040.5959920.2365560.050*
H14B0.8224320.5953600.1894320.050*
H14C0.7139670.5386890.2128550.050*
B1A0.1884 (4)0.5160 (3)0.72831 (12)0.0213 (8)
C15A0.4193 (4)0.5606 (4)0.79631 (12)0.0370 (10)
H15D0.4669310.5014100.7829410.056*
H15E0.4675630.6265390.7903140.056*
H15F0.4108970.5484120.8248140.056*
C16B0.9199 (4)0.7920 (4)0.20710 (13)0.0406 (11)
H16A0.9689090.8575400.2133070.061*
H16B0.9120060.7802090.1785800.061*
H16C0.9664580.7323550.2204610.061*
C11B0.4230 (4)0.6088 (4)0.38077 (13)0.0386 (10)
H11A0.4473160.5891290.4083030.058*
H11B0.4253770.5458730.3640640.058*
H11C0.3342330.6386680.3780560.058*
C7A0.4221 (5)0.7105 (4)0.60373 (13)0.0427 (11)
H7AA0.4783910.7546100.5854600.064*
H7AB0.4078570.7459820.6293350.064*
H7AC0.4646890.6419480.6069380.064*
B1B0.6925 (4)0.7542 (3)0.27600 (12)0.0223 (8)
C9B0.9271 (4)0.9507 (4)0.40559 (15)0.0433 (11)
H9BA0.9769021.0009120.4231360.065*
H9BB0.9253560.9754000.3783250.065*
H9BC0.9690090.8809150.4080210.065*
C17B0.7191 (5)0.9031 (4)0.20578 (14)0.0457 (12)
H17A0.6324500.9089400.2154510.069*
H17B0.7093810.9025820.1769250.069*
H17C0.7733220.9636530.2152100.069*
C9A0.2931 (5)0.6271 (4)0.53447 (12)0.0480 (13)
H9AA0.2106180.6225670.5222520.072*
H9AB0.3562230.6700450.5178690.072*
H9AC0.3288180.5558160.5372590.072*
C8B0.6781 (5)1.0733 (3)0.41309 (14)0.0440 (11)
H8BA0.5899121.0707780.4218720.066*
H8BB0.6720561.0935200.3852450.066*
H8BC0.7312471.1255300.4287940.066*
C7B0.7648 (5)0.8966 (4)0.47155 (12)0.0494 (13)
H7BA0.6762860.8956440.4801740.074*
H7BB0.8200870.9455920.4881390.074*
H7BC0.8024670.8253170.4738260.074*
C11A0.0460 (5)0.3433 (4)0.62091 (14)0.0487 (13)
H11D0.1396830.3573390.6275850.073*
H11E0.0280840.3348410.5923400.073*
H11F0.0215520.2783390.6340740.073*
C10B0.3294 (6)0.7731 (5)0.47419 (15)0.0565 (15)
C10A0.2237 (5)0.5213 (6)0.56719 (14)0.0584 (15)
C8A0.1799 (6)0.8207 (4)0.58119 (16)0.0554 (14)
H8AA0.1525700.8459250.6079000.083*
H8AB0.2413220.8715220.5677510.083*
H8AC0.1027920.8135940.5665450.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0388 (6)0.0388 (6)0.0350 (5)0.0072 (5)0.0163 (5)0.0046 (5)
Si1B0.0365 (6)0.0190 (5)0.0245 (5)0.0014 (5)0.0031 (4)0.0014 (4)
Si1A0.0444 (7)0.0194 (5)0.0218 (5)0.0039 (5)0.0025 (5)0.0018 (4)
S1B0.0440 (7)0.0485 (7)0.0347 (6)0.0136 (5)0.0183 (5)0.0067 (5)
O5A0.0180 (12)0.0278 (14)0.0225 (12)0.0041 (11)0.0061 (10)0.0033 (10)
O4B0.0189 (13)0.0299 (15)0.0243 (13)0.0052 (11)0.0076 (10)0.0023 (11)
O4A0.0212 (13)0.0264 (14)0.0223 (12)0.0057 (11)0.0028 (10)0.0044 (10)
O5B0.0213 (13)0.0312 (15)0.0243 (13)0.0085 (11)0.0064 (10)0.0052 (11)
O1B0.0372 (16)0.0307 (15)0.0221 (13)0.0006 (12)0.0091 (11)0.0028 (11)
O1A0.0351 (15)0.0314 (15)0.0242 (13)0.0021 (12)0.0118 (11)0.0039 (11)
F3A0.060 (2)0.098 (3)0.0511 (18)0.0208 (19)0.0204 (15)0.0170 (18)
F2B0.062 (2)0.092 (3)0.072 (2)0.0189 (19)0.0448 (17)0.0151 (19)
O2B0.0451 (19)0.077 (3)0.0378 (17)0.0178 (18)0.0069 (15)0.0078 (17)
F1A0.057 (2)0.132 (3)0.0409 (17)0.010 (2)0.0042 (14)0.0058 (19)
O3A0.055 (2)0.070 (3)0.0422 (18)0.0147 (19)0.0159 (16)0.0111 (17)
C1B0.0261 (19)0.0139 (17)0.0248 (18)0.0034 (14)0.0036 (14)0.0010 (14)
F3B0.141 (4)0.055 (2)0.121 (3)0.011 (2)0.094 (3)0.012 (2)
O2A0.084 (3)0.057 (2)0.071 (2)0.040 (2)0.043 (2)0.028 (2)
C5B0.0181 (17)0.0198 (18)0.0244 (18)0.0042 (14)0.0035 (14)0.0003 (14)
C13A0.0189 (17)0.0250 (19)0.0203 (17)0.0020 (15)0.0051 (14)0.0023 (14)
C5A0.0178 (17)0.0213 (19)0.0239 (18)0.0034 (14)0.0020 (14)0.0001 (14)
C2B0.0255 (19)0.0238 (19)0.0216 (17)0.0027 (15)0.0079 (14)0.0042 (15)
C6B0.0226 (18)0.0118 (17)0.0283 (18)0.0013 (14)0.0043 (14)0.0019 (14)
C2A0.0274 (19)0.026 (2)0.0198 (17)0.0034 (16)0.0065 (14)0.0040 (15)
F1B0.100 (3)0.175 (5)0.0381 (18)0.052 (3)0.0207 (18)0.033 (2)
C6A0.0247 (18)0.0142 (17)0.0230 (17)0.0007 (14)0.0036 (14)0.0020 (13)
C12A0.0232 (18)0.0233 (19)0.0212 (17)0.0081 (15)0.0049 (14)0.0028 (14)
C1A0.0290 (19)0.0151 (18)0.0217 (17)0.0052 (15)0.0035 (14)0.0024 (14)
F2A0.0431 (18)0.169 (4)0.079 (2)0.022 (2)0.0286 (17)0.011 (3)
C3B0.0223 (18)0.0230 (19)0.0289 (19)0.0018 (15)0.0039 (15)0.0031 (15)
C12B0.0185 (17)0.029 (2)0.0206 (17)0.0018 (15)0.0065 (14)0.0013 (15)
O3B0.061 (2)0.042 (2)0.100 (3)0.0050 (18)0.025 (2)0.017 (2)
C13B0.0248 (19)0.027 (2)0.0238 (18)0.0029 (16)0.0074 (15)0.0013 (15)
C4A0.030 (2)0.026 (2)0.0266 (19)0.0055 (17)0.0013 (16)0.0030 (16)
C4B0.028 (2)0.0200 (19)0.0250 (18)0.0034 (15)0.0024 (15)0.0024 (15)
C16A0.0234 (19)0.036 (2)0.0255 (19)0.0010 (17)0.0011 (15)0.0027 (17)
C3A0.030 (2)0.028 (2)0.030 (2)0.0079 (17)0.0049 (16)0.0034 (16)
C14A0.053 (3)0.024 (2)0.033 (2)0.0017 (19)0.0073 (19)0.0020 (17)
C17A0.034 (2)0.024 (2)0.031 (2)0.0022 (17)0.0066 (17)0.0042 (16)
C15B0.032 (2)0.046 (3)0.026 (2)0.0036 (19)0.0019 (17)0.0002 (18)
C14B0.036 (2)0.027 (2)0.038 (2)0.0013 (18)0.0102 (18)0.0036 (18)
B1A0.0174 (19)0.020 (2)0.026 (2)0.0034 (16)0.0007 (16)0.0007 (16)
C15A0.028 (2)0.050 (3)0.036 (2)0.016 (2)0.0134 (17)0.011 (2)
C16B0.033 (2)0.052 (3)0.039 (2)0.018 (2)0.0168 (19)0.012 (2)
C11B0.043 (3)0.037 (2)0.037 (2)0.018 (2)0.0107 (19)0.0007 (19)
C7A0.051 (3)0.040 (3)0.037 (2)0.020 (2)0.002 (2)0.003 (2)
B1B0.020 (2)0.021 (2)0.027 (2)0.0035 (16)0.0030 (16)0.0004 (17)
C9B0.033 (2)0.036 (3)0.061 (3)0.010 (2)0.003 (2)0.014 (2)
C17B0.069 (3)0.029 (2)0.041 (3)0.001 (2)0.013 (2)0.003 (2)
C9A0.063 (3)0.054 (3)0.025 (2)0.017 (3)0.007 (2)0.006 (2)
C8B0.061 (3)0.024 (2)0.046 (3)0.004 (2)0.003 (2)0.0076 (19)
C7B0.070 (3)0.047 (3)0.030 (2)0.014 (3)0.004 (2)0.003 (2)
C11A0.062 (3)0.042 (3)0.045 (3)0.025 (2)0.015 (2)0.002 (2)
C10B0.058 (3)0.074 (4)0.042 (3)0.022 (3)0.028 (2)0.017 (3)
C10A0.038 (3)0.102 (5)0.036 (3)0.013 (3)0.009 (2)0.005 (3)
C8A0.082 (4)0.028 (3)0.056 (3)0.005 (3)0.004 (3)0.014 (2)
Geometric parameters (Å, º) top
S1A—O1B1.581 (3)C12B—C14B1.522 (5)
S1A—O2B1.409 (3)C13B—C16B1.512 (5)
S1A—O3B1.411 (4)C13B—C17B1.517 (6)
S1A—C10B1.821 (5)C4A—H4A0.9500
Si1B—C1B1.908 (4)C4A—C3A1.388 (5)
Si1B—C9B1.863 (5)C4B—H4B0.9500
Si1B—C8B1.857 (5)C16A—H16D0.9800
Si1B—C7B1.857 (4)C16A—H16E0.9800
Si1A—C1A1.899 (4)C16A—H16F0.9800
Si1A—C7A1.855 (5)C3A—C11A1.505 (6)
Si1A—C9A1.857 (4)C14A—H14D0.9800
Si1A—C8A1.865 (5)C14A—H14E0.9800
S1B—O1A1.561 (3)C14A—H14F0.9800
S1B—O3A1.408 (3)C17A—H17D0.9800
S1B—O2A1.406 (4)C17A—H17E0.9800
S1B—C10A1.826 (6)C17A—H17F0.9800
O5A—C13A1.459 (4)C15B—H15A0.9800
O5A—B1A1.349 (5)C15B—H15B0.9800
O4B—C12B1.463 (4)C15B—H15C0.9800
O4B—B1B1.362 (5)C14B—H14A0.9800
O4A—C12A1.462 (4)C14B—H14B0.9800
O4A—B1A1.374 (5)C14B—H14C0.9800
O5B—C13B1.467 (4)C15A—H15D0.9800
O5B—B1B1.357 (5)C15A—H15E0.9800
O1B—C2B1.451 (4)C15A—H15F0.9800
O1A—C2A1.450 (4)C16B—H16A0.9800
F3A—C10A1.324 (7)C16B—H16B0.9800
F2B—C10B1.320 (6)C16B—H16C0.9800
F1A—C10A1.324 (6)C11B—H11A0.9800
C1B—C2B1.385 (5)C11B—H11B0.9800
C1B—C6B1.404 (5)C11B—H11C0.9800
F3B—C10B1.309 (7)C7A—H7AA0.9800
C5B—C6B1.393 (5)C7A—H7AB0.9800
C5B—C4B1.395 (5)C7A—H7AC0.9800
C5B—B1B1.558 (5)C9B—H9BA0.9800
C13A—C12A1.556 (5)C9B—H9BB0.9800
C13A—C16A1.507 (5)C9B—H9BC0.9800
C13A—C17A1.522 (5)C17B—H17A0.9800
C5A—C6A1.397 (5)C17B—H17B0.9800
C5A—C4A1.398 (5)C17B—H17C0.9800
C5A—B1A1.553 (5)C9A—H9AA0.9800
C2B—C3B1.392 (5)C9A—H9AB0.9800
C6B—H6B0.9500C9A—H9AC0.9800
C2A—C1A1.393 (5)C8B—H8BA0.9800
C2A—C3A1.384 (5)C8B—H8BB0.9800
F1B—C10B1.305 (7)C8B—H8BC0.9800
C6A—H6A0.9500C7B—H7BA0.9800
C6A—C1A1.399 (5)C7B—H7BB0.9800
C12A—C14A1.516 (6)C7B—H7BC0.9800
C12A—C15A1.516 (5)C11A—H11D0.9800
F2A—C10A1.325 (6)C11A—H11E0.9800
C3B—C4B1.394 (5)C11A—H11F0.9800
C3B—C11B1.496 (5)C8A—H8AA0.9800
C12B—C13B1.552 (5)C8A—H8AB0.9800
C12B—C15B1.515 (5)C8A—H8AC0.9800
O1B—S1A—C10B96.9 (2)C13A—C17A—H17D109.5
O2B—S1A—O1B111.53 (18)C13A—C17A—H17E109.5
O2B—S1A—O3B120.7 (3)C13A—C17A—H17F109.5
O2B—S1A—C10B107.5 (3)H17D—C17A—H17E109.5
O3B—S1A—O1B110.4 (2)H17D—C17A—H17F109.5
O3B—S1A—C10B107.1 (3)H17E—C17A—H17F109.5
C9B—Si1B—C1B107.15 (18)C12B—C15B—H15A109.5
C8B—Si1B—C1B110.02 (19)C12B—C15B—H15B109.5
C8B—Si1B—C9B108.3 (2)C12B—C15B—H15C109.5
C7B—Si1B—C1B112.11 (19)H15A—C15B—H15B109.5
C7B—Si1B—C9B107.8 (2)H15A—C15B—H15C109.5
C7B—Si1B—C8B111.2 (2)H15B—C15B—H15C109.5
C7A—Si1A—C1A105.92 (18)C12B—C14B—H14A109.5
C7A—Si1A—C9A108.4 (2)C12B—C14B—H14B109.5
C7A—Si1A—C8A108.0 (2)C12B—C14B—H14C109.5
C9A—Si1A—C1A109.97 (19)H14A—C14B—H14B109.5
C9A—Si1A—C8A111.8 (2)H14A—C14B—H14C109.5
C8A—Si1A—C1A112.5 (2)H14B—C14B—H14C109.5
O1A—S1B—C10A102.8 (2)O5A—B1A—O4A113.9 (3)
O3A—S1B—O1A107.10 (18)O5A—B1A—C5A123.6 (3)
O3A—S1B—C10A105.2 (2)O4A—B1A—C5A122.4 (3)
O2A—S1B—O1A111.60 (18)C12A—C15A—H15D109.5
O2A—S1B—O3A122.6 (3)C12A—C15A—H15E109.5
O2A—S1B—C10A105.5 (3)C12A—C15A—H15F109.5
B1A—O5A—C13A107.3 (3)H15D—C15A—H15E109.5
B1B—O4B—C12B106.9 (3)H15D—C15A—H15F109.5
B1A—O4A—C12A106.1 (3)H15E—C15A—H15F109.5
B1B—O5B—C13B106.6 (3)C13B—C16B—H16A109.5
C2B—O1B—S1A117.9 (2)C13B—C16B—H16B109.5
C2A—O1A—S1B121.1 (2)C13B—C16B—H16C109.5
C2B—C1B—Si1B127.5 (3)H16A—C16B—H16B109.5
C2B—C1B—C6B114.3 (3)H16A—C16B—H16C109.5
C6B—C1B—Si1B118.1 (3)H16B—C16B—H16C109.5
C6B—C5B—C4B117.5 (3)C3B—C11B—H11A109.5
C6B—C5B—B1B122.2 (3)C3B—C11B—H11B109.5
C4B—C5B—B1B120.3 (3)C3B—C11B—H11C109.5
O5A—C13A—C12A102.2 (3)H11A—C11B—H11B109.5
O5A—C13A—C16A109.1 (3)H11A—C11B—H11C109.5
O5A—C13A—C17A106.3 (3)H11B—C11B—H11C109.5
C16A—C13A—C12A114.7 (3)Si1A—C7A—H7AA109.5
C16A—C13A—C17A110.5 (3)Si1A—C7A—H7AB109.5
C17A—C13A—C12A113.3 (3)Si1A—C7A—H7AC109.5
C6A—C5A—C4A117.7 (3)H7AA—C7A—H7AB109.5
C6A—C5A—B1A121.4 (3)H7AA—C7A—H7AC109.5
C4A—C5A—B1A120.8 (3)H7AB—C7A—H7AC109.5
C1B—C2B—O1B117.6 (3)O4B—B1B—C5B122.3 (3)
C1B—C2B—C3B126.0 (3)O5B—B1B—O4B114.1 (3)
C3B—C2B—O1B116.3 (3)O5B—B1B—C5B123.6 (3)
C1B—C6B—H6B118.1Si1B—C9B—H9BA109.5
C5B—C6B—C1B123.7 (3)Si1B—C9B—H9BB109.5
C5B—C6B—H6B118.1Si1B—C9B—H9BC109.5
C1A—C2A—O1A118.6 (3)H9BA—C9B—H9BB109.5
C3A—C2A—O1A115.5 (3)H9BA—C9B—H9BC109.5
C3A—C2A—C1A125.7 (3)H9BB—C9B—H9BC109.5
C5A—C6A—H6A118.4C13B—C17B—H17A109.5
C5A—C6A—C1A123.3 (3)C13B—C17B—H17B109.5
C1A—C6A—H6A118.4C13B—C17B—H17C109.5
O4A—C12A—C13A102.3 (3)H17A—C17B—H17B109.5
O4A—C12A—C14A106.3 (3)H17A—C17B—H17C109.5
O4A—C12A—C15A109.1 (3)H17B—C17B—H17C109.5
C14A—C12A—C13A113.7 (3)Si1A—C9A—H9AA109.5
C14A—C12A—C15A110.4 (3)Si1A—C9A—H9AB109.5
C15A—C12A—C13A114.4 (3)Si1A—C9A—H9AC109.5
C2A—C1A—Si1A127.4 (3)H9AA—C9A—H9AB109.5
C2A—C1A—C6A114.5 (3)H9AA—C9A—H9AC109.5
C6A—C1A—Si1A117.6 (3)H9AB—C9A—H9AC109.5
C2B—C3B—C4B115.7 (3)Si1B—C8B—H8BA109.5
C2B—C3B—C11B123.4 (3)Si1B—C8B—H8BB109.5
C4B—C3B—C11B120.9 (3)Si1B—C8B—H8BC109.5
O4B—C12B—C13B102.2 (3)H8BA—C8B—H8BB109.5
O4B—C12B—C15B109.0 (3)H8BA—C8B—H8BC109.5
O4B—C12B—C14B106.5 (3)H8BB—C8B—H8BC109.5
C15B—C12B—C13B114.9 (3)Si1B—C7B—H7BA109.5
C15B—C12B—C14B109.9 (3)Si1B—C7B—H7BB109.5
C14B—C12B—C13B113.6 (3)Si1B—C7B—H7BC109.5
O5B—C13B—C12B102.5 (3)H7BA—C7B—H7BB109.5
O5B—C13B—C16B109.1 (3)H7BA—C7B—H7BC109.5
O5B—C13B—C17B106.7 (3)H7BB—C7B—H7BC109.5
C16B—C13B—C12B114.2 (3)C3A—C11A—H11D109.5
C16B—C13B—C17B110.3 (4)C3A—C11A—H11E109.5
C17B—C13B—C12B113.4 (3)C3A—C11A—H11F109.5
C5A—C4A—H4A118.9H11D—C11A—H11E109.5
C3A—C4A—C5A122.1 (4)H11D—C11A—H11F109.5
C3A—C4A—H4A118.9H11E—C11A—H11F109.5
C5B—C4B—H4B118.8F2B—C10B—S1A107.7 (4)
C3B—C4B—C5B122.5 (3)F3B—C10B—S1A110.8 (4)
C3B—C4B—H4B118.8F3B—C10B—F2B109.0 (5)
C13A—C16A—H16D109.5F1B—C10B—S1A110.3 (4)
C13A—C16A—H16E109.5F1B—C10B—F2B108.2 (4)
C13A—C16A—H16F109.5F1B—C10B—F3B110.7 (5)
H16D—C16A—H16E109.5F3A—C10A—S1B112.4 (4)
H16D—C16A—H16F109.5F3A—C10A—F1A109.0 (5)
H16E—C16A—H16F109.5F3A—C10A—F2A108.9 (5)
C2A—C3A—C4A116.2 (3)F1A—C10A—S1B110.3 (4)
C2A—C3A—C11A123.7 (4)F1A—C10A—F2A108.5 (4)
C4A—C3A—C11A120.0 (4)F2A—C10A—S1B107.7 (5)
C12A—C14A—H14D109.5Si1A—C8A—H8AA109.5
C12A—C14A—H14E109.5Si1A—C8A—H8AB109.5
C12A—C14A—H14F109.5Si1A—C8A—H8AC109.5
H14D—C14A—H14E109.5H8AA—C8A—H8AB109.5
H14D—C14A—H14F109.5H8AA—C8A—H8AC109.5
H14E—C14A—H14F109.5H8AB—C8A—H8AC109.5
S1A—O1B—C2B—C1B94.5 (4)C12A—O4A—B1A—C5A169.4 (3)
S1A—O1B—C2B—C3B89.0 (4)C1A—C2A—C3A—C4A8.2 (6)
Si1B—C1B—C2B—O1B6.3 (5)C1A—C2A—C3A—C11A169.2 (4)
Si1B—C1B—C2B—C3B169.8 (3)C12B—O4B—B1B—O5B8.9 (4)
Si1B—C1B—C6B—C5B174.9 (3)C12B—O4B—B1B—C5B172.6 (3)
S1B—O1A—C2A—C1A78.2 (4)O3B—S1A—O1B—C2B98.7 (3)
S1B—O1A—C2A—C3A107.6 (4)O3B—S1A—C10B—F2B63.4 (5)
O5A—C13A—C12A—O4A27.9 (3)O3B—S1A—C10B—F3B177.5 (4)
O5A—C13A—C12A—C14A86.2 (3)O3B—S1A—C10B—F1B54.5 (5)
O5A—C13A—C12A—C15A145.6 (3)C13B—O5B—B1B—O4B9.8 (4)
O4B—C12B—C13B—O5B27.1 (3)C13B—O5B—B1B—C5B168.7 (3)
O4B—C12B—C13B—C16B145.0 (3)C4A—C5A—C6A—C1A3.2 (5)
O4B—C12B—C13B—C17B87.5 (4)C4A—C5A—B1A—O5A19.8 (6)
O1B—S1A—C10B—F2B177.2 (4)C4A—C5A—B1A—O4A159.3 (4)
O1B—S1A—C10B—F3B63.6 (4)C4B—C5B—C6B—C1B2.6 (5)
O1B—S1A—C10B—F1B59.3 (4)C4B—C5B—B1B—O4B14.6 (5)
O1B—C2B—C3B—C4B177.5 (3)C4B—C5B—B1B—O5B167.1 (4)
O1B—C2B—C3B—C11B3.1 (5)C16A—C13A—C12A—O4A145.8 (3)
O1A—S1B—C10A—F3A46.8 (4)C16A—C13A—C12A—C14A31.7 (4)
O1A—S1B—C10A—F1A75.1 (4)C16A—C13A—C12A—C15A96.4 (4)
O1A—S1B—C10A—F2A166.7 (4)C3A—C2A—C1A—Si1A163.6 (3)
O1A—C2A—C1A—Si1A9.8 (5)C3A—C2A—C1A—C6A7.6 (6)
O1A—C2A—C1A—C6A178.9 (3)C17A—C13A—C12A—O4A86.1 (3)
O1A—C2A—C3A—C4A178.2 (3)C17A—C13A—C12A—C14A159.8 (3)
O1A—C2A—C3A—C11A4.4 (6)C17A—C13A—C12A—C15A31.7 (4)
O2B—S1A—O1B—C2B38.3 (3)C15B—C12B—C13B—O5B145.0 (3)
O2B—S1A—C10B—F2B67.6 (5)C15B—C12B—C13B—C16B97.1 (4)
O2B—S1A—C10B—F3B51.5 (5)C15B—C12B—C13B—C17B30.4 (5)
O2B—S1A—C10B—F1B174.5 (4)C14B—C12B—C13B—O5B87.3 (3)
O3A—S1B—O1A—C2A153.7 (3)C14B—C12B—C13B—C16B30.6 (5)
O3A—S1B—C10A—F3A65.2 (4)C14B—C12B—C13B—C17B158.1 (3)
O3A—S1B—C10A—F1A172.9 (4)B1A—O5A—C13A—C12A22.2 (4)
O3A—S1B—C10A—F2A54.7 (4)B1A—O5A—C13A—C16A144.0 (3)
C1B—C2B—C3B—C4B6.4 (6)B1A—O5A—C13A—C17A96.8 (3)
C1B—C2B—C3B—C11B173.0 (4)B1A—O4A—C12A—C13A24.1 (3)
O2A—S1B—O1A—C2A16.9 (4)B1A—O4A—C12A—C14A95.4 (3)
O2A—S1B—C10A—F3A163.8 (3)B1A—O4A—C12A—C15A145.6 (3)
O2A—S1B—C10A—F1A42.0 (5)B1A—C5A—C6A—C1A177.7 (3)
O2A—S1B—C10A—F2A76.2 (4)B1A—C5A—C4A—C3A178.2 (4)
C13A—O5A—B1A—O4A7.8 (4)C11B—C3B—C4B—C5B178.4 (4)
C13A—O5A—B1A—C5A171.3 (3)C7A—Si1A—C1A—C2A147.1 (3)
C5A—C6A—C1A—Si1A170.6 (3)C7A—Si1A—C1A—C6A23.9 (3)
C5A—C6A—C1A—C2A1.6 (5)B1B—O4B—C12B—C13B22.3 (4)
C5A—C4A—C3A—C2A2.6 (6)B1B—O4B—C12B—C15B144.3 (3)
C5A—C4A—C3A—C11A174.9 (4)B1B—O4B—C12B—C14B97.2 (3)
C2B—C1B—C6B—C5B2.0 (5)B1B—O5B—C13B—C12B22.8 (4)
C2B—C3B—C4B—C5B1.0 (6)B1B—O5B—C13B—C16B144.2 (3)
C6B—C1B—C2B—O1B177.1 (3)B1B—O5B—C13B—C17B96.6 (4)
C6B—C1B—C2B—C3B6.8 (5)B1B—C5B—C6B—C1B176.6 (3)
C6B—C5B—C4B—C3B3.1 (5)B1B—C5B—C4B—C3B176.0 (3)
C6B—C5B—B1B—O4B164.5 (3)C9A—Si1A—C1A—C2A30.2 (4)
C6B—C5B—B1B—O5B13.8 (6)C9A—Si1A—C1A—C6A140.8 (3)
C6A—C5A—C4A—C3A2.7 (6)C10B—S1A—O1B—C2B150.1 (3)
C6A—C5A—B1A—O5A161.1 (3)C10A—S1B—O1A—C2A95.7 (3)
C6A—C5A—B1A—O4A19.8 (5)C8A—Si1A—C1A—C2A95.1 (4)
C12A—O4A—B1A—O5A11.4 (4)C8A—Si1A—C1A—C6A93.9 (3)
Selected bond distances (Å) top
1a1b2
C—B1.572 (4)1.599 (3)1.558 (5) /1.553 (5)
C—O1.450 (3)1.443 (2)1.451 (4) / 1.450 (4)
C—Si1.909 (3)1.908 (2)1.908 (4) / 1.899 (4)
 

Acknowledgements

The authors would like to thank the Swedish Research Council (Vetenskapsrådet) for their financial support.

Funding information

Funding for this research was provided by: Vetenskapsrådet (grant No. 2019-05424 to Lukasz T. Pilarski; grant No. 2021-03658 to Andreas Orthaber).

References

First citationAnthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. (2021). JACS Au, 1, 897–912.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBisht, R., Haldar, C., Hassan, M. M. M., Hoque, M. E., Chaturvedi, J. & Chattopadhyay, B. (2022). Chem. Soc. Rev. 51, 5042–5100.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDauvergne, G., Naubron, J.-V., Giorgi, M., Bugaut, X., Rodriguez, J., Carissan, Y. & Coquerel, Y. (2022). Chem. Eur. J. 28, e202202473.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDemory, E., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Angew. Chem. Int. Ed. 54, 11765–11769.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElbert, S. M., Baumgärtner, K., Esteves, J. A., Weber, L., Rominger, F. & Mastalerz, M. (2020). Org. Mater. 02, 358–361.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, F.-W., Zhou, T.-Y., Qu, Y., Wei, M.-Y., Chen, G.-Y., Gu, Y.-C., Wang, C.-Y. & Shao, C.-L. (2023). Org. Chem. Front. 10, 852–858.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaas, T. M., Wiesler, S., Dürr–Mayer, T., Ripp, A., Fouka, P., Qiu, D. & Jessen, H. J. (2022). Angew. Chem. Int. Ed. 61, e202113231.  Web of Science CSD CrossRef Google Scholar
First citationHimeshima, Y., Sonoda, T. & Kobayashi, H. (1983). Chem. Lett. 12, 1211–1214.  CrossRef Web of Science Google Scholar
First citationIdiris, F. I. M. & Jones, C. R. (2017). Org. Biomol. Chem. 15, 9044–9056.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. (2010). Chem. Rev. 110, 890–931.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMochida, K., Shimizu, M. & Hiyama, T. (2009). J. Am. Chem. Soc. 131, 8350–8351.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J., Li, L. & Li, Y. (2021). Chem. Rev. 121, 3892–4044.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTadross, P. M. & Stoltz, B. M. (2012). Chem. Rev. 112, 3550–3577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTakikawa, H., Nishii, A., Sakai, T. & Suzuki, K. (2018). Chem. Soc. Rev. 47, 8030–8056.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTozawa, H., Kakuda, T., Adachi, K. & Hamura, T. (2017). Org. Lett. 19, 4118–4121.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWu, Y., Zhao, T., Rong, J., Rao, Y., Zhou, M., Yin, B., Ni, X., Osuka, A., Xu, L. & Song, J. (2022). Angew. Chem. Int. Ed. 61, e202201327.  Web of Science CSD CrossRef Google Scholar
First citationXin, D., Qin, A. & Tang, B. Z. (2019). Polym. Chem. 10, 4271–4278.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoshida, S., Shimomori, K., Nonaka, T. & Hosoya, T. (2015). Chem. Lett. 44, 1324–1326.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds