research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)di­azan-1-yl­­idene]naphthalen-2(1H)-one

crossmark logo

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté du Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, and cUMR 6226 CNRS–Université Rennes 1, `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: hibeterrahmanemeroua.akkache@doc.umc.edu.dz

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 27 October 2023; accepted 6 January 2024; online 12 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic ππ stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.

1. Chemical context

In dye chemistry, azo dyes are produced in the most significant qu­anti­ties (Benkhaya et al., 2020[Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271. https://doi.org/10.1016/j.heliyon.2020.e03271]). Azo compounds are commonly used in various industrial applications, including as colourants (Mohammadi et al., 2015[Mohammadi, A., Golshahi, F. & Ghafoori, H. (2015). Prog. Color Colorants Coat. 8, 317-327. https://doi.org/10.30509/pccc.2015.75869]) and pigments (Ramugade et al., 2019[Ramugade, S. H., Warde, U. S. & Sekar, N. (2019). Dyes Pigments, 170, 107626.]; Vafaei et al., 2012[Vafaei, F., Khataee, A. R., Movafeghi, A., Salehi Lisar, S. Y. & Zarei, M. (2012). Int. Biodeterior. Biodegradation, 75, 194-200.]) and in printing (Nawwar et al., 2020[Nawwar, G. A. M., Zaher, K. S. A., Shaban, E. & El-Ebiary, N. M. A. (2020). Fibers Polymers, 21, 1293-1299.]). Azo dyes are generally used in the leather, food, and cosmetics industries because they have bright colours and good stability. Apart from this, they have been widely employed in a variety of areas including the food (Yamjala et al., 2016[Yamjala, K., Nainar, M. S. & Ramisetti, N. R. (2016). Food Chem. 192, 813-824. ]) and cosmetics industries (Leulescu et al., 2021[Leulescu, M., Rotaru, A., Moanţă, A., Iacobescu, G., Pălărie, I., Cioateră, N., Popescu, M., Criveanu, M. C., Morîntale, E., Bojan, M. & Rotaru, P. (2021). J. Therm. Anal. Calorim. 143, 3945-3967.]) and as metal–organic frameworks (MOFs) (Ayati et al., 2016[Ayati, A., Shahrak, M. N., Tanhaei, B. & Sillanpää, M. (2016). Emerging adsorptive removal of azo dye by metal-organic frameworks. In Chemosphere, Vol. 160, pp. 30-44. Amsterdam: Elsevier. https://doi.org/10.1016/j.chemosphere.2016.06.065]), covalent–organic frameworks (COFs) (Xue et al., 2023[Xue, H., Xiong, S., Mi, K. & Wang, Y. (2023). Energy Environ. 8, 194-199.]), corrosion inhibitors for iron (Madkour et al., 2018[Madkour, L. H., Kaya, S., Guo, L. & Kaya, C. (2018). J. Mol. Struct. 1163, 397-417.]), catalysis (Liu et al., 2016[Liu, X., Liang, M., Liu, M., Su, R., Wang, M., Qi, W. & He, Z. (2016). Nanoscale Res. Lett. 11, 440. https://doi. org/10.1186/s11671-016-1647-7]), non-linear optics (Kato et al., 1994[Kato, M., Hirayama, T., Matsuda, H., Minami, N., Okada, S. & Nakanishi, H. (1994). Macromol. Rapid Commun. 15, 741-750.]) and fibre optics (Kavitha et al., 2022[Kavitha, G., Vinoth kumar, J., Arulmozhi, R., Kamath, S. M., Priya, A. K., Rao, K. S. & Abirami, N. (2022). J. Mater. Sci. Mater. Electron. 33, 9498-9511.]). In addition to this, azo dyes have been found to have biological, biomedical, and pharmacological applications, such as in DNA binding and anti­oxidants (Qamar et al., 2019[Qamar, S., Akhter, Z., Yousuf, S., Bano, H. & Perveen, F. (2019). J. Mol. Struct. 1197, 345-353.]), drug design (Demirçalı & Topal, 2023[Demirçalı, A. & Topal, T. (2023). J. Mol. Struct. 1288, 135782.]), and virology (Meng et al., 2021[Meng, T., Wong, S. M. & Chua, K. B. (2021). J. Virol. 95, e0105521.]). However, it is important to understand that some azo dyes can harm human health and the environment. This is because of their potential to release carcinogenic aromatic amines when they undergo degradation processes triggered by bacteria or sunlight (Golka et al., 2004[Golka, K., Kopps, S. & Myslak, Z. W. (2004). Toxicol. Lett. 151, 203-210.]). Following our inter­est in azo dyes, we present the crystal structure of a new azo compound 1-[(E)-2-(2-fluoro­phen­yl)di­azan-1-yl­idene]naphthalen-2(1H)-one.

[Scheme 1]

2. Structural commentary

The structure of the title compound is illustrated in Fig. 1[link]. The N19—N20 [1.310 (2) Å] and C8—O17 [1.264 (3) Å] bond lengths indicate that the compound adopts the neutral hydrazo tautomer form upon crystallization. This is common when an OH group is in the ortho-position relative to the azo group, leading to a proton being transferred from the naphthol group to the azo group (Benaouida et al., 2023[Benaouida, M. A., Benosmane, A., Boutebdja, M. & Merazig, H. (2023). Acta Cryst. E79, 142-145.]; Bougueria et al., 2021[Bougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672-676.]). The inter­nal alternate angles at N19 and N20 are identical within experimental error with an average value of 118.25 (2)°. This is not observed in the isotypic product (Bougueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. & Merazig, H. (2017). IUCrData, 2, x170039.]). Bond lengths are within normal ranges and resemble those observed in isotypic crystal structures (Bougueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. & Merazig, H. (2017). IUCrData, 2, x170039.]). The naphthol and benzene rings, which are connected to the hydrazo group, are not perfectly planar. The dihedral angle between these rings is 18.75 (7)°. However, in the isotopic variant of the mol­ecule, this angle was slightly smaller at 15.33 (7)° (Bougueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. & Merazig, H. (2017). IUCrData, 2, x170039.]). An intra­molecular hydrogen bond (Table 1[link]) contributes to the mol­ecular stability. The most significant exocyclic angle C7—C8—O17 [121.5 (2)°] adjacent to the C8—O17 bond could be attributed to the critical inter­action between the O17 and H21 atoms. The smallest exocyclic angle C1—C6—F18 [117.4 (2)°] adjacent to the C6—F18 bond may be due to an attractive inter­action between fluorine and hydrogen.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H21⋯O17 0.88 1.84 2.541 (3) 135
C2—H22⋯O17i 0.95 2.63 3.242 (3) 122
C5—H25⋯O17ii 0.95 2.64 3.539 (3) 159
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds (Table 1[link]), see Fig. 2[link]. Cohesion of the crystal is enhanced by the presence of parallel displaced ππ stacking inter­actions (Fig. 3[link]), the most significant of which is between naphthalene ring systems [CgCg([{1\over 2}] − x, y,1/2 + z) = 3.6171 (4) Å where Cg is the centroid of the C7–C12 ring], forming sinusoidal chains along the c-axis direction.

[Figure 2]
Figure 2
A view along the c axis of the crystal packing.
[Figure 3]
Figure 3
ππ stacking inter­actions in the title compound. Dotted black lines indicate CgCg contacts.

4. Hirshfeld surface analysis (HS), inter­action energies and energy frameworks

The weak inter­molecular inter­actions within the crystal structure were examined by analysing Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The associated 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were drawn using CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Measuring and inter­preting the inter­molecular inter­actions within the crystal packing is visualized through normalized contact distance (dnorm). In this context, white denotes contacts with distances equal to the van der Waals (vdW) radii. Connections that are short of the vdW radii are represented in red, while those that exceed the vdW radii are shown in blue. In Fig. 4[link]a, dark-red spots represent strong inter­molecular C—H⋯O hydrogen bonds and light-red spots represent C⋯C close inter­actions. In addition, the shape-index is used to identify complementary hollows (red) and bumps (blue) where two mol­ecular surfaces touch one another (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). As depicted in Fig. 4[link]b, the two sides of the mol­ecule inter­act differently with adjacent mol­ecules. This includes ππ stacking, represented by adjacent red and blue triangles (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). Curvedness is a tool for pinpointing planar stacking configurations and how neighbouring mol­ecules inter­act (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Fig. 5[link]a shows relatively large green planes in the benzene and naphthalene rings separated by blue edges. These green planes give us an idea of the flatness of complexes, and the fragment patch (Fig. 5[link]b) is designed to indicate the nearest neighbouring mol­ecule (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The electrostatic potential was mapped using TONTO (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), integrated into CrystalExplorer, with the STO-3G basis/Hartree–Fock functio. The contacts are discernible as areas of electropositivity (blue) and electronegativity (red) that exhibit a complementary relationship (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377-388.]). These short contacts correspond to C—H⋯O. Blue and red areas around the atoms denote hydrogen-bond donors and acceptors, respectively. These colours indicate the positive and negative electrostatic potentials in Fig. 6[link].

[Figure 4]
Figure 4
Hirshfeld surface mapped over (a) dnorm and (b) shape-index.
[Figure 5]
Figure 5
(a) Curvedness and (b) fragment patch along [001].
[Figure 6]
Figure 6
Electrostatic potential mapped on the Hirshfeld surface along [001].

The proportional contribution of the contacts over the surface is visualized in the fingerprint plots with the Hirshfeld surface of the contribution (Table 2[link]). The fingerprint plots of the H⋯H contacts, which represent the most significant contribution to the Hirshfeld surfaces at 41.7%, show a distinct pattern with a minimum value of de = di ≃1.2 Å (Fig. 7[link]a). The contribution of the C⋯H/H⋯C contacts appears as the second largest region of the fingerprint plot, heavily concentrated on the edges with de + di ≃2.8 Å and an overall Hirshfeld surface contribution of 18.8% (Fig. 7[link]b). The C⋯C contacts occupy 10.9% of the Hirshfeld surface with de + di ≃ 1.7 Å. Bonds are observed around light-red spots among these contacts (Fig. 7[link]c). The H⋯F/F⋯H contacts contribute 10.2% of the Hirshfeld surface with de + di ≃ 2.6 Å (Fig. 7[link]d). The O⋯H/H⋯O contacts, with a contribution of 8.5% and de + di ≃ 2.5 Å, appear as dark-red spots on the Hirshfeld surfaces mapped over dnorm (Fig. 7[link]e). The percentage contribution of the C⋯N/N⋯C contacts is 5.9% with de + di ≃ 3.3 Å (Fig. 7[link]f) while the O⋯C/C⋯O inter­action, with a contribution of 1.4% is in the form of symmetrical claws with the two ends pointing towards pairs at de + di ≃ 3.5 Å and de + di ≃ 3.6 Å (Fig. 7[link]g). The N⋯H/H⋯N (Fig. 7[link]h), F⋯F (Fig. 7[link]i) and F⋯C/C⋯F (Fig. 7[link]j) inter­actions are the weakest with contributions of 1.3%, 1.1% and 0.2% and de + di ≃ 3.6 Å, 3.8 Å and 3.5 Å, respectively.

Table 2
Percentage contributions of various inter­molecular inter­actions to the Hirshfeld surface of the title compound

Contact Contribution Contact Contribution
F⋯F 1.1 N⋯C/C⋯N 5.9
F⋯H/H⋯F 10.2 N⋯H/H⋯N 1.3
F⋯C/C⋯F 0.2 H⋯H 41.7
O⋯H/H⋯O 8.5 H⋯C/C⋯H 18.8
O⋯C/C⋯O 1.4 C⋯C 10.9
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions: (a) H⋯H, (b) C⋯H/H⋯C, (c) C⋯C, (d) H⋯F/F⋯H, (e) O⋯H/H⋯O, (f) C⋯N/N⋯C, (g) N⋯H/H⋯N, (h) F⋯F, (i) F⋯C/C⋯F, (j) F⋯C/C⋯F.

The total inter­molecular energy Etot (kJ mol−1) is the sum of four main energy components: electrostatic, polarisation, dispersion and exchange repulsion (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The calculation was performed for a cluster of mol­ecules within a 3.8 Å radius surrounding the selected mol­ecule (Fig. 8[link]a) using the HF/3-21G energy model in conjunction with adjustment coefficients for energy models that have been benchmarked to determine Etot (kJ mol−1): Kele=1.019, Kdis= 0.651, Krep= 0.901. The inter­action energies, as determined by the energy model, suggest that inter­actions in the crystal are significantly influenced by dispersion components (Table 3[link]). The inter­action between the selected mol­ecule and the symmetry-related mol­ecule at −x + [{1\over 2}], y, z + [{1\over 2}] (coloured yellow) is the most important inter­action between neighbouring mol­ecules, with energy: Eele = −10.3, Epol = −2.7, Edis = −75.0, Erep = 37.4 and Etot = −49.5 kJ mol−1. Using energy frameworks (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) built for Eele (red cylinders) Fig. 8[link]b, Edis (green cylinders) Fig. 8[link]c, and Etot (blue cylinders) Fig. 8[link]d, the energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules. The diameter of these cylinders is adjusted to reflect the degree of change in the inter­action.

Table 3
Inter­action energies (kJ mol−1) between a reference mol­ecule and its neighbours.

N is the number of equivalent neighbours, and R is the distance between mol­ecular centroids (mean atomic position) in Å. The colours identify mol­ecules in Fig. 8[link]a, with the reference mol­ecule shown in grey.

Colour N Symmetry R Electron density Eele Epol Edis Erep Etot
Red 2 x + [{1\over 2}], −y, z 11.92 HF/3–21G −5.2 −1.1 −10.7 4.7 −11.8
Yellow 2 x + [{1\over 2}], y, z + [{1\over 2}] 5.00 HF/3–21G −10.3 −2.7 −75.0 37.4 −49.5
Green 2 x + [{1\over 2}], −y, z 13.06 HF/3–21G 2.3 −0.5 −7.2 0.0 −4.5
Lime 2 x, −y, z + [{1\over 2}] 10..67 HF/3–21G −3.4 −1.0 −17.8 10.8 −11.5
Aqua 2 x, y, z 7.24 HF/3–21G −7.4 −3.7 −24.0 11.4 −22.3
Indigo 2 x + [{1\over 2}], y, z + [{1\over 2}] 8.80 HF/3–21G −1.2 −1.8 −15.2 5.3 −11.8
Magenta 2 x, −y, z + [{1\over 2}] 9.23 HF/3–21G −6.2 −2.1 −9.9 2.9 −14.3
[Figure 8]
Figure 8
(a) Inter­actions between the reference mol­ecule and the mol­ecules present in a 3.8 Å cluster around energy frameworks built for (b) Eele (red cylinders), (c) Edis (green cylinders) and Etot (blue cylinders) along [001].

5. Database survey

A search of the Cambridge Structural Database (CSD; Version 2023.2.0, last update September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1-phenyl­azo-2-naphthol derivatives revealed that numerous azo-2-naphthol compounds with similar structures have been synthesized using various aromatic primary amines. Examples include (E)-1-(3-chloro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (AFOJUC; Benosmane et al., 2013[Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. (2013). Acta Cryst. E69, o1021.]), 1-[(E)-2-(5-chloro-2 hy­droxy­phen­yl) hydrazin-1-yl­idene]naphthalen-2(1H)-one (UVIDOV; Bougueria et al., 2021[Bougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672-676.]), (E)-1-(4-fluoro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazenium (RAHHIU; Bougueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. & Merazig, H. (2017). IUCrData, 2, x170039.]), (1Z)-naphthalene-1,2-dione 1-[(2-fluoro­phen­yl)hydrazone] (OGUXAP, OGUXAP01, OGUXAP02 and OGUXAP03; Gilli et al., 2002[Gilli, P., Bertolasi, V., Pretto, L., Lyčka, A. & Gilli, G. (2002). J. Am. Chem. Soc. 124, 13554-13567.]), (E)-1-[2-(3-nitro­phen­yl)hydrazinyl­idene]naphthalen-2(1H)-one (FIFCEG; Benaouida et al., 2023[Benaouida, M. A., Benosmane, A., Boutebdja, M. & Merazig, H. (2023). Acta Cryst. E79, 142-145.]), 1-(phenyl­azo)-2-naphthol (JARPEX; Olivieri et al., 2002[Olivieri, A. C., Wilson, R. B., Paul, I. C., & Curtin, D. Y. (2002). J. Am. Chem. Soc. 111, 5525-5532.]), (Z)-1-(2-phenyl­diazen-2-ium-1-yl)naphthalen-2-olate (TIFTEJ01; Benosmane et al., 2015[Benosmane, A., Benaouida, M. A., Mili, A., Bouchoul, A. & Merazig, H. (2015). Acta Cryst. E71, o303.]). All these compounds belong to the azo dyes family and share a common base structure – a benzene ring and a naphthalene ring system linked with an oxygen in the ortho position relative to the azo group. This shared structure has almost the same properties. For instance, the azo group contributes to the vivid colors of these dyes, while the specific arrangement of the rings can influence their stability and reactivity.

6. Synthesis and crystallization

The title compound was synthesised by two successive reactions, diazo­tization and coupling. 3-Amino­benzaldehyde (0.02 mol) was treated in 6 ml of 12M HCl and NaNO2 (0.0214 mol) in 8 ml of water for 30 min. To the solution obtained, a solution of naphthalene-2-ol was added dropwise as a coupler where the structural nature of the coupler determined the colour and mol­ecular structure of the C18H16N2O3 monomer. The orange–red powder obtained was recrystallized from pentane, leading to prismatic air-stable crystals.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms were included in calculated positions and refined as riding: N—H = 0.88 Å, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(N,C).

Table 4
Experimental details

Crystal data
Chemical formula C16H11FN2O
Mr 266.27
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 150
a, b, c (Å) 23.612 (3), 7.2392 (8), 7.2122 (7)
V3) 1232.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.18 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE
No. of measured, independent and observed [I > 2σ(I)] reflections 5289, 2803, 2700
Rint 0.021
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 1.08
No. of reflections 2803
No. of parameters 181
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Absolute structure Flack x determined using 1169 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1-[(E)-2-(2-Fluorophenyl)diazan-1-ylidene]naphthalen-2(1H)-one top
Crystal data top
C16H11FN2OF(000) = 552
Mr = 266.27Dx = 1.435 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9942 reflections
a = 23.612 (3) Åθ = 2.9–27.5°
b = 7.2392 (8) ŵ = 0.10 mm1
c = 7.2122 (7) ÅT = 150 K
V = 1232.8 (2) Å3Prism, orange-red
Z = 40.18 × 0.16 × 0.06 mm
Data collection top
Bruker D8 VENTURE
diffractometer
2700 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.021
Multilayer monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 7.39 pixels mm-1h = 030
CCD rotation images, thick slices scansk = 99
5289 measured reflectionsl = 99
2803 independent reflections
Refinement top
Refinement on F2Secondary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.187P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2803 reflectionsΔρmax = 0.32 e Å3
181 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack x determined using 1169 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.0 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F180.48474 (6)0.5004 (2)0.4401 (3)0.0471 (5)
O170.35348 (8)0.7103 (2)0.6361 (3)0.0358 (4)
N200.32550 (7)0.3449 (2)0.5164 (3)0.0229 (4)
N190.37924 (7)0.3898 (3)0.5197 (3)0.0254 (4)
H210.3901310.499630.5579970.03*
C10.41885 (9)0.2586 (3)0.4609 (3)0.0250 (5)
C20.40634 (9)0.0731 (3)0.4374 (3)0.0283 (5)
H220.3696040.0280340.4664350.034*
C70.28796 (9)0.4712 (3)0.5655 (3)0.0226 (4)
C40.50093 (12)0.0177 (4)0.3267 (4)0.0345 (5)
H240.5284840.065430.2791970.041*
C90.25667 (12)0.7806 (3)0.6729 (3)0.0314 (5)
H270.2650590.9015170.716130.038*
C140.15584 (10)0.1955 (3)0.4718 (4)0.0334 (5)
H260.1454610.0756160.4304080.04*
C130.21242 (9)0.2415 (3)0.4897 (3)0.0269 (5)
H280.2406450.1526880.4601490.032*
C100.20214 (11)0.7276 (3)0.6565 (4)0.0326 (5)
H290.1731670.8132580.6875560.039*
C30.44734 (11)0.0462 (3)0.3718 (4)0.0328 (5)
H230.4387080.1735430.3574520.039*
C80.30254 (10)0.6573 (3)0.6261 (3)0.0273 (5)
C110.18627 (10)0.5474 (3)0.5941 (3)0.0273 (5)
C60.47345 (10)0.3187 (3)0.4186 (4)0.0304 (5)
C120.22854 (9)0.4166 (3)0.5506 (3)0.0238 (5)
C150.11400 (10)0.3244 (4)0.5144 (4)0.0364 (6)
H300.075180.2925420.5013610.044*
C160.12878 (10)0.4969 (4)0.5748 (4)0.0342 (6)
H310.1000140.58390.6041860.041*
C50.51440 (10)0.2024 (4)0.3506 (4)0.0354 (6)
H250.5510650.2474450.3206090.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F180.0293 (7)0.0333 (7)0.0787 (14)0.0085 (6)0.0016 (8)0.0001 (8)
O170.0368 (9)0.0295 (8)0.0412 (10)0.0081 (7)0.0010 (8)0.0006 (8)
N200.0227 (8)0.0246 (8)0.0213 (9)0.0011 (7)0.0005 (7)0.0043 (7)
N190.0219 (8)0.0250 (8)0.0293 (10)0.0030 (7)0.0011 (7)0.0023 (8)
C10.0235 (9)0.0278 (10)0.0236 (10)0.0007 (8)0.0017 (8)0.0047 (8)
C20.0270 (10)0.0285 (10)0.0294 (12)0.0016 (8)0.0028 (9)0.0031 (10)
C70.0278 (10)0.0228 (10)0.0173 (9)0.0007 (8)0.0001 (8)0.0046 (8)
C40.0323 (11)0.0434 (14)0.0277 (12)0.0092 (10)0.0011 (10)0.0002 (10)
C90.0452 (14)0.0251 (9)0.0239 (12)0.0024 (10)0.0028 (10)0.0007 (9)
C140.0314 (11)0.0358 (12)0.0332 (14)0.0046 (9)0.0002 (10)0.0053 (10)
C130.0249 (9)0.0284 (11)0.0276 (13)0.0024 (8)0.0011 (9)0.0033 (9)
C100.0412 (13)0.0333 (12)0.0233 (12)0.0114 (10)0.0048 (10)0.0022 (10)
C30.0360 (12)0.0292 (11)0.0334 (13)0.0009 (9)0.0015 (11)0.0003 (10)
C80.0345 (11)0.0271 (10)0.0204 (11)0.0010 (9)0.0003 (9)0.0042 (9)
C110.0297 (11)0.0323 (11)0.0200 (11)0.0077 (9)0.0030 (8)0.0066 (9)
C60.0253 (10)0.0307 (11)0.0352 (13)0.0034 (9)0.0027 (10)0.0042 (10)
C120.0262 (10)0.0289 (11)0.0161 (10)0.0023 (8)0.0013 (8)0.0059 (8)
C150.0242 (10)0.0528 (14)0.0322 (14)0.0008 (10)0.0003 (10)0.0070 (12)
C160.0266 (11)0.0464 (14)0.0296 (13)0.0115 (10)0.0040 (10)0.0066 (11)
C50.0240 (10)0.0462 (14)0.0358 (14)0.0008 (10)0.0017 (10)0.0064 (12)
Geometric parameters (Å, º) top
F18—C61.351 (3)C9—H270.95
O17—C81.264 (3)C14—C131.383 (3)
N20—N191.310 (2)C14—C151.393 (4)
N20—C71.322 (3)C14—H260.95
N19—C11.399 (3)C13—C121.395 (3)
N19—H210.88C13—H280.95
C1—C21.386 (3)C10—C111.430 (4)
C1—C61.394 (3)C10—H290.95
C2—C31.381 (3)C3—H230.95
C2—H220.95C11—C121.411 (3)
C7—C81.457 (3)C11—C161.413 (3)
C7—C121.462 (3)C6—C51.373 (4)
C4—C51.385 (4)C15—C161.368 (4)
C4—C31.386 (4)C15—H300.95
C4—H240.95C16—H310.95
C9—C101.349 (4)C5—H250.95
C9—C81.444 (3)
N19—N20—C7118.22 (18)C9—C10—H29118.7
N20—N19—C1118.27 (18)C11—C10—H29118.7
N20—N19—H21120.9C2—C3—C4120.8 (2)
C1—N19—H21120.9C2—C3—H23119.6
C2—C1—C6118.2 (2)C4—C3—H23119.6
C2—C1—N19123.5 (2)O17—C8—C9120.8 (2)
C6—C1—N19118.2 (2)O17—C8—C7121.5 (2)
C3—C2—C1119.9 (2)C9—C8—C7117.7 (2)
C3—C2—H22120.1C12—C11—C16119.0 (2)
C1—C2—H22120.1C12—C11—C10119.8 (2)
N20—C7—C8124.1 (2)C16—C11—C10121.2 (2)
N20—C7—C12115.91 (19)F18—C6—C5120.0 (2)
C8—C7—C12119.92 (19)F18—C6—C1117.4 (2)
C5—C4—C3120.2 (2)C5—C6—C1122.6 (2)
C5—C4—H24119.9C13—C12—C11119.1 (2)
C3—C4—H24119.9C13—C12—C7122.07 (19)
C10—C9—C8121.3 (2)C11—C12—C7118.8 (2)
C10—C9—H27119.3C16—C15—C14120.1 (2)
C8—C9—H27119.3C16—C15—H30120
C13—C14—C15120.2 (2)C14—C15—H30120
C13—C14—H26119.9C15—C16—C11120.8 (2)
C15—C14—H26119.9C15—C16—H31119.6
C14—C13—C12120.8 (2)C11—C16—H31119.6
C14—C13—H28119.6C6—C5—C4118.3 (2)
C12—C13—H28119.6C6—C5—H25120.8
C9—C10—C11122.5 (2)C4—C5—H25120.8
C7—N20—N19—C1177.5 (2)N19—C1—C6—F181.0 (3)
N20—N19—C1—C214.4 (3)C2—C1—C6—C51.8 (4)
N20—N19—C1—C6163.7 (2)N19—C1—C6—C5176.5 (2)
C6—C1—C2—C30.7 (4)C14—C13—C12—C110.0 (3)
N19—C1—C2—C3177.4 (2)C14—C13—C12—C7178.1 (2)
N19—N20—C7—C81.0 (3)C16—C11—C12—C130.0 (3)
N19—N20—C7—C12177.15 (19)C10—C11—C12—C13179.9 (2)
C15—C14—C13—C120.1 (4)C16—C11—C12—C7178.2 (2)
C8—C9—C10—C110.6 (4)C10—C11—C12—C71.7 (3)
C1—C2—C3—C40.8 (4)N20—C7—C12—C130.5 (3)
C5—C4—C3—C21.3 (4)C8—C7—C12—C13178.7 (2)
C10—C9—C8—O17177.6 (2)N20—C7—C12—C11177.6 (2)
C10—C9—C8—C71.7 (3)C8—C7—C12—C110.6 (3)
N20—C7—C8—O170.2 (4)C13—C14—C15—C160.3 (4)
C12—C7—C8—O17178.3 (2)C14—C15—C16—C110.3 (4)
N20—C7—C8—C9179.2 (2)C12—C11—C16—C150.2 (4)
C12—C7—C8—C91.1 (3)C10—C11—C16—C15179.7 (2)
C9—C10—C11—C121.2 (4)F18—C6—C5—C4178.6 (3)
C9—C10—C11—C16178.7 (2)C1—C6—C5—C41.3 (4)
C2—C1—C6—F18179.2 (2)C3—C4—C5—C60.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H21···O170.881.842.541 (3)135
C2—H22···O17i0.952.633.242 (3)122
C5—H25···O17ii0.952.643.539 (3)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2.
Percentage contributions of various intermolecular interactions to the Hirshfeld surface of the title compound top
ContactContributionContactContribution
F···F1.1N···C/C···N5.9
F···H/H···F10.2N···H/H···N1.3
F···C/C···F0.2H···H41.7
O···H/H···O8.5H···C/C···H18.8
O···C/C···O1.4C···C10.9
Interaction energies (kJ mol-1) between a reference molecule and its neighbours. top
N is the number of equivalent neighbours, and R is the distance between molecular centroids (mean atomic position) in Å. The colours identify molecules in Fig. 8a, with the reference molecule shown in grey.
ColourNSymmetryRElectron densityEeleEpolEdisErepEtot
Red2x + 1/2, -y, z11.92HF/3-21G-5.2-1.1-10.74.7-11.8
Yellow2-x + 1/2, y, z + 1/25.00HF/3-21G-10.3-2.7-75.037.4-49.5
Green2x + 1/2, -y, z13.06HF/3-21G2.3-0.5-7.20.0-4.5
Lime2-x, -y, z + 1/210..67HF/3-21G-3.4-1.0-17.810.8-11.5
Aqua2x, y, z7.24HF/3-21G-7.4-3.7-24.011.4-22.3
Indigo2-x + 1/2, y, z + 1/28.80HF/3-21G-1.2-1.8-15.25.3-11.8
Magenta2-x, -y, z + 1/29.23HF/3-21G-6.2-2.1-9.92.9-14.3
 

Acknowledgements

We would like to thank the diffractometer Center of Rennes 1 University for the opportunity to collect the X-ray diffraction data.

References

First citationAyati, A., Shahrak, M. N., Tanhaei, B. & Sillanpää, M. (2016). Emerging adsorptive removal of azo dye by metal–organic frameworks. In Chemosphere, Vol. 160, pp. 30–44. Amsterdam: Elsevier. https://doi.org/10.1016/j.chemosphere.2016.06.065  Google Scholar
First citationBenaouida, M. A., Benosmane, A., Boutebdja, M. & Merazig, H. (2023). Acta Cryst. E79, 142–145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271. https://doi.org/10.1016/j.heliyon.2020.e03271  Google Scholar
First citationBenosmane, A., Benaouida, M. A., Mili, A., Bouchoul, A. & Merazig, H. (2015). Acta Cryst. E71, o303.  CSD CrossRef IUCr Journals Google Scholar
First citationBenosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. (2013). Acta Cryst. E69, o1021.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672–676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Mili, A., Bouaoud, S. & Merazig, H. (2017). IUCrData, 2, x170039.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirçalı, A. & Topal, T. (2023). J. Mol. Struct. 1288, 135782.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Pretto, L., Lyčka, A. & Gilli, G. (2002). J. Am. Chem. Soc. 124, 13554–13567.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGolka, K., Kopps, S. & Myslak, Z. W. (2004). Toxicol. Lett. 151, 203–210.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKato, M., Hirayama, T., Matsuda, H., Minami, N., Okada, S. & Nakanishi, H. (1994). Macromol. Rapid Commun. 15, 741–750.  CrossRef CAS Web of Science Google Scholar
First citationKavitha, G., Vinoth kumar, J., Arulmozhi, R., Kamath, S. M., Priya, A. K., Rao, K. S. & Abirami, N. (2022). J. Mater. Sci. Mater. Electron. 33, 9498–9511.  Web of Science CrossRef CAS Google Scholar
First citationLeulescu, M., Rotaru, A., Moanţă, A., Iacobescu, G., Pălărie, I., Cioateră, N., Popescu, M., Criveanu, M. C., Morîntale, E., Bojan, M. & Rotaru, P. (2021). J. Therm. Anal. Calorim. 143, 3945–3967.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X., Liang, M., Liu, M., Su, R., Wang, M., Qi, W. & He, Z. (2016). Nanoscale Res. Lett. 11, 440. https://doi. org/10.1186/s11671-016-1647-7  Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadkour, L. H., Kaya, S., Guo, L. & Kaya, C. (2018). J. Mol. Struct. 1163, 397–417.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeng, T., Wong, S. M. & Chua, K. B. (2021). J. Virol. 95, e0105521.  Web of Science CrossRef PubMed Google Scholar
First citationMohammadi, A., Golshahi, F. & Ghafoori, H. (2015). Prog. Color Colorants Coat. 8, 317-327. https://doi.org/10.30509/pccc.2015.75869  Google Scholar
First citationNawwar, G. A. M., Zaher, K. S. A., Shaban, E. & El-Ebiary, N. M. A. (2020). Fibers Polymers, 21, 1293–1299.  Web of Science CrossRef CAS Google Scholar
First citationOlivieri, A. C., Wilson, R. B., Paul, I. C., & Curtin, D. Y. (2002). J. Am. Chem. Soc. 111, 5525–5532.  CSD CrossRef Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQamar, S., Akhter, Z., Yousuf, S., Bano, H. & Perveen, F. (2019). J. Mol. Struct. 1197, 345–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamugade, S. H., Warde, U. S. & Sekar, N. (2019). Dyes Pigments, 170, 107626.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVafaei, F., Khataee, A. R., Movafeghi, A., Salehi Lisar, S. Y. & Zarei, M. (2012). Int. Biodeterior. Biodegradation, 75, 194–200.  Web of Science CrossRef CAS Google Scholar
First citationXue, H., Xiong, S., Mi, K. & Wang, Y. (2023). Energy Environ. 8, 194–199.  CAS Google Scholar
First citationYamjala, K., Nainar, M. S. & Ramisetti, N. R. (2016). Food Chem. 192, 813–824.   Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds