research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(+)-1-(4-Bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­­idene]ethyl­amine and bis­­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­­idene]ethyl­amine-κN}di­chlorido­palladium(II)

crossmark logo

aLab. Síntesis de Complejos, Fac. Cs. Quím.–BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico, and bInstituto de Química Universidad Autónoma de México UNAM, Circuito Exterior Cd Universitaria, PO Box 04510, Ciudad de México, Mexico
*Correspondence e-mail: guadalupe.hernandez@correo.buap.mx

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 8 December 2023; accepted 18 January 2024; online 26 January 2024)

The (S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine ligand, C16H16BrNO, (I), was synthesized through the reaction of 4-meth­oxy­anisaldehyde with (S)-(−)-1-(4-bromo­phen­yl)ethyl­amine. It crystallizes in the ortho­rhom­bic space group P212121 belonging to the Sohncke group, featuring a single mol­ecule in the asymmetric unit. The refinement converged successfully, achieving an R factor of 0.0508. The PdII com­plex bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­pal­ladium(II), [PdCl2(C16H16BrNO)2], (II), crystallizes in the monoclinic space group P21 belonging to the Sohncke group, with two mol­ecules in the asymmetric unit. The central atom is tetra­coordinated by two N atoms and two Cl atoms, resulting in a square-planar configuration. The imine moieties exhibit a trans configuration around the PdII centre, with average Cl—Pd—N angles of approximately 89.95 and 90°. The average distances within the palladium com­plex for the two mol­ecules are ∼2.031 Å for Pd—N and ∼2.309 Å for Pd—Cl.

1. Chemical context

Schiff base ligands commonly result from the condensation of primary amines and aldehydes. The ease of their synthesis and the flexibility of their chemical structures make Schiff bases widely used in coordination chemistry, with a wide range of coordination com­plexes (Boulechfar et al., 2023[Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.]). The catalytic prowess of Schiff base com­plexes with metal centres is well documented and shows enhanced activity in various chemical reactions (Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420-1450.]). Their catalytic potential extends to processes such as oxidation, hy­droxy­lation, aldol condensation and epoxidation (Brayton et al., 2009[Brayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 694, 3008-3011.]; Hu et al., 2016[Hu, H., Chen, D., Gao, H., Zhong, L. & Wu, Q. (2016). Polym. Chem. 7, 529-537.]; Bowes et al., 2011[Bowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84-90.]). Changes in the substituents of the imine com­pounds affect their reactivity, influenced by electronic and steric factors that affect their structure. In particular, some imine com­pounds present conjugated electron systems and have attracted attention for their optical and materials properties (Kalita et al., 2014[Kalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93-98.]; Anzaldo et al., 2019[Anzaldo Olivares, B., Moreno, O. P., Téllez, G. H., Rosas, E. R., Bustamante, F. J. M., Castro Sánchez, M. E., Sharma, P., Mendoza, A. & Pérez, R. G. (2019). Opt. Mater. 94, 337-347.]; Cîrcu et al., 2006[Cîrcu, V., Gibbs, T. J. K., Omnès, L., Horton, P. N., Hursthouse, M. B. & Bruce, D. W. (2006). J. Mater. Chem. 16, 4316-4325.]). The presence of chirality in the structures enhances a valuable dimension for catalyst design, allowing for fine-tuning and selectivity in a variety of chemical reactions. Here we report the crystal and mol­ecular structure of the chiral Schiff base (S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine, (I)[link], and its palladium(II) com­plex, bis­{(S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine-κN}di­chlorido­pal­la­dium(II), (II)[link], which has not been reported previously.

[Scheme 1]

2. Structural commentary

The ligand crystallizes in the ortho­rhom­bic system with the space group P212121. Within the asymmetric unit, there is a single mol­ecule, as depicted in Fig. 1[link]. The length of the C9=N1 double bond is 1.265 (7) Å. The imine group exhibits a C1—N1—C9 angle of 118.1 (6)°. The bond lengths and angles confirm the sp2 hybridization for the C and N atoms.

[Figure 1]
Figure 1
The mol­ecular structure of (S)-(+)-1-(4-bromo­phen­yl)-N-[(4-methoxyphen­yl)methyl­idene]ethyl­amine ligand, (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

The palladium(II) com­plex crystallizes within the monoclinic system, space group P21. The structure contains two independent mol­ecules (labelled as A and B) within the asymmetric unit, as illustrated in Fig. 2[link]. The length of the C=N bond is com­parable to that observed in the ligand.

[Figure 2]
Figure 2
The mol­ecular structure of the two mol­ecules units in the asymmetric unit of the title palladium(II) com­plex, (II)[link]. Displacement ellipsoids are drawn at the 50% probability level.

The steric effects induced by coordination in the PdII com­plex are evident in the torsion angles for mol­ecule A of C15—C10—C9—N1 = 29.4 (16)° and C31—C26—C25—N2 = −23.0 (16)°, and for mol­ecule B of C47—C42—C41—N3 = 15.9 (16)° and C63—C58—C57—N4 = −3(2)°, as com­pared with the ligand C15—C10—C9—N1 torsion angle of 7.2 (9)°. The average bond angle within the imine group is 117.03°, and the average bond distance at the imine group (C=N) is 1.285 Å. These bond lengths and angles provide confirmation of the sp2 hybridization of the C and N atoms. The crystal structure of the PdII com­plex shows disorder in the two Br atoms in mol­ecule B of the asymmetric unit.

3. Supra­molecular features

The arrangement of the ligand mol­ecule arises from short contacts corresponding to van der Waals inter­actions. Inter­molecular distances are calculated from atomic coordinate translations along the a axis, revealing short C—H⋯C contacts (Nishio 2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]; Enamullah et al., 2007[Enamullah, M., Uddin, A. K. M. R., Chamayou, A.-C. & Janiak, C. (2007). Z. Naturforsch. B, 62, 807-817.]; Brandl et al., 2001[Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357-377.]). Specific inter­actions include H11⋯C13 at 2.855 Å and H8⋯C16 at 2.836 Å, as shown in Fig. 3[link].

[Figure 3]
Figure 3
Growth in the projection on the bc plane (displacement ellipsoids are presented with 50% probability), with dashed lines indicating inter­molecular contacts. All H atoms not involved in these inter­actions have been omitted for clarity.

The self-assembly of the palladium(II) com­plex forms a three-dimensional structure through inter­molecular hydrogen bonds involving C—H⋯O, C—H⋯Cl, C—H⋯Br and C—H⋯C inter­actions (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]; Steiner, 1997[Steiner, T. (1997). Chem. Commun. pp. 727-734.]; Kinzhalov et al., 2019[Kinzhalov, M. A., Baykov, S. V., Novikov, A. S., Haukka, M. & Boyarskiy, V. P. (2019). Z. Kristallogr. Cryst. Mater. 234, 155-164.]). As a result, a packing arrangement of supra­molecular layers is produced, as depicted in Fig. 4[link]. The mol­ecular array is influenced by all the contacts, as detailed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯Cl1i 0.96 2.84 3.354 114
C7—H7⋯Br4i 0.93 2.61 3.269 129
C9—H9⋯Cl4ii 0.93 2.96 3.883 173
C18—H18⋯Cl2iii 0.96 2.92 3.679 137
C21—H21⋯Br3iii 0.93 3.01 3.646 127
C28—H28⋯Cl4iv 0.93 2.79 3.544 139
C32—H32B⋯Br2v 0.96 2.98 3.811 146
C32—H32C⋯Br4v 0.96 2.79 3.607 143
C34—H34A⋯Cl3v 0.96 2.94 3.709 138
C48—H48A⋯Br3ii 0.96 3.04 3.483 110
C48—H48⋯O2v 0.96 2.63 3.426 141
C50—H50A⋯Cl4v 0.96 2.90 3.376 112
C64—H64A⋯O1vi 0.96 2.57 3.284 131
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [x, y+1, z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+2]; (vi) [x, y-1, z+1].
[Figure 4]
Figure 4
The crystal packing diagram of palladium(II) com­plex (II)[link]. The dashed lines indicate inter­molecular hydrogen bonds (displacement ellipsoids are presented with 50% probability). All H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, current as of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded five entries related to ligand (I). BUWBIG (Khalaji et al., 2015[Khalaji, A. D., Gholinejad, M., Rad, S. M., Grivani, G., Fejfarova, K. & Dusek, M. (2015). Res. Chem. Intermed. 41, 1635-1645.]), EDORUL (Enamullah et al., 2007[Enamullah, M., Uddin, A. K. M. R., Chamayou, A.-C. & Janiak, C. (2007). Z. Naturforsch. B, 62, 807-817.]), QEQZUI (Xu et al., 2006[Xu, T.-T., Gao, J., Xu, X.-Y., Niu, S.-R., Yang, X.-J., Lu, lL.-D. & Wang, X. (2006). Jiegou Huaxue, 25, 801.]), UJUFEM (Hernández-Téllez et al., 2016[Hernández-Téllez, G., Moreno, G. E., Bernès, S., Mendoza, A., Portillo, O., Sharma, P. & Gutiérrez, R. (2016). Acta Cryst. E72, 583-589.]) and QEVTIV (Chatziefthimiou et al., 2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701-23709.]). In the crystal structure of BUWBIG (P21), the three-dimensional packing is stabilized by inter­molecular hydrogen bonding of the O—H⋯N and C—H⋯O types. EDORUL (P212121) exhibits influence from a C—H⋯π inter­action, with a C—H⋯π plane angle of 52°, as well as C—Br⋯π contacts to the salicyl ring, with a C—Br⋯centroid angle of 166.0° and a C—Br⋯π angle of 73.4°. The asymmetric unit of QEQZUI (Pbca) com­prises one mol­ecule in an ortho­rhom­bic crystal system. In UJUFEM (P212121), the chiral C atom is in the R configuration, and the benzene ring is para-substituted by a methoxy group. QEVTIV (P212121) mol­ecules are stabilized by inter­molecular hydrogen bonding of the O—H⋯N and C—H⋯O types. Crystal structures for chiral imines derived from 4-meth­oxy­anisaldehyde are relatively scarce com­pared to the extensive chemistry of Schiff bases.

In the case of the com­plex of PdII, some previously reported structures include LATNAV (Rochon et al., 1993[Rochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703-1706.]), in which the structure is stabilized through hydrogen-bonding inter­actions between the hy­droxy groups and the chloride ligands, with the PdII ion exhibiting square-planar coordination geometry around the metal centre in the space group P21/c. FATQAU and FATPUN (Motswainyana et al., 2012b[Motswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012b). Polyhedron, 41, 44-51.]) crystallizes in the space group P21/n. The two mol­ecular structures exhibit square-planar geometry around the Pd atom. In each mol­ecule, the Pd atom is coordinated to two trans-ferrocenyl­imine mol­ecules via their imine N atoms, and either two chlorides or a chloride and a methyl. UQUFIW (Duong et al., 2011[Duong, A., Wuest, J. D. & Maris, T. (2011). Acta Cryst. E67, m518.]) crystallizes in the space group P1. The chloride and (pyridin-4-yl)boronic acid ligands adopt a trans arrangement due to mol­ecular symmetry, and angles are about 90°. YATQAN (Motswainyana et al., 2012a[Motswainyana, W. M., Onani, M. O. & Lalancette, R. A. (2012a). Acta Cryst. E68, m387.]) crystallizes in the space group P21/n. The PdII ion has square-planar coordination geometry around the metal centre, coordinated to two ferrocenyl­imine ligands via the imine N atoms and the chloride ions. The ferrocenyl­imine mol­ecules are trans with respect to each other across the centre of symmetry.

5. Synthesis and crystallization

Under solvent-free conditions, a mixture of (S)-(–)-1-(4-bromo­phen­yl)ethyl­amine (0.279 g, 1.39 mmol) and 4-meth­oxy­anisaldehyde (0.190 g, 1.39 mmol) in a 1:1 molar ratio were mixed at room temperature, giving a white solid. The crude was recrystallized from CH2Cl2 by slow evaporation, affording colourless crystals of the ligand (I) (yield 93%; m.p. 51–53 °C).

FT–IR (cm−1): 1644 cm−1 (C=N); 1H NMR (500 MHz, CDCl3/TMS): δ 8.28 (s, 1H; HC=N), 7.73–7.70 (m, 2H; Ar-H), 7.46–7.43 (m, 2H; Ar-H), 7.32–7.29 (m, 2H; Ar-H), 6.93–6.90 (m, 2H; Ar-H), 4.45 (q, 1H; CHCH3), 3.84 (s, 3H; OCH3), 1.535 (d, 3H; CH3); 13C NMR (500 MHz, CDCl3/TMS): δ 161.69 (HC=N), 159.12, 144.53, 131.44, 129.85, 129.19, 128.42, 120.47, 113.97 (C-Ar), 68.98 (CHCH3), 55.39 (OCH3), 24.97 (CHCH3) ppm. (ESI+): m/z calculated for C16H16BrNO: 318.2140 found 318. [α]20D = +80.13 (c = 1, CHCl3).

To a solution of bis­(benzo­nitrile)­palladium(II) chloride (0.050 g, 0.13 mmol) in CH2Cl2 (5 ml) was added a solution of (S)-(+)-[1-(4-bromo­phenyl)-N-(4-meth­oxy­phen­yl)methyl­idene]ethyl­amine (0.082 g, 0.26 mmol) in CH2Cl2 (10 ml). The solution was stirred for 12 h to give a light-orange precipitate. The precipitate was filtered off to obtain a light-orange solid. Recrystallization from a mixture of CH2Cl2 and hexane afforded single crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and refined as riding [C—H = 0.93–0.93 Å with Uiso(H) = 1.2Ueq(C)].

Table 2
Experimental details

For all structures: Z = 4. Experiments were carried out at 293 K with Mo Kα radiation using a Rigaku Xcalibur Atlas Gemini diffractometer. The absorption correction was analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H-atom parameters were constrained.

  (I) (II)
Crystal data
Chemical formula C16H16BrNO [PdCl2(C16H16BrNO)2]
Mr 318.21 813.71
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21
a, b, c (Å) 5.6599 (11), 7.9243 (10), 34.353 (5) 9.0493 (4), 25.1365 (8), 14.1725 (7)
α, β, γ (°) 90, 90, 90 90, 90.185 (4), 90
V3) 1540.8 (4) 3223.8 (2)
μ (mm−1) 2.66 3.25
Crystal size (mm) 0.4 × 0.25 × 0.08 0.58 × 0.14 × 0.11
 
Data collection
Tmin, Tmax 0.840, 0.953 0.406, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 9633, 2852, 1534 21980, 12072, 8864
Rint 0.050 0.047
(sin θ/λ)max−1) 0.607 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.116, 1.05 0.047, 0.107, 1.02
No. of reflections 2852 12072
No. of parameters 175 767
No. of restraints 0 41
Δρmax, Δρmin (e Å−3) 0.21, −0.21 0.78, −0.64
Absolute structure Flack x determined using 403 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2945 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.026 (9) 0.005 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(S)-(+)-1-(4-Bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine (I) top
Crystal data top
C16H16BrNODx = 1.372 Mg m3
Mr = 318.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2110 reflections
a = 5.6599 (11) Åθ = 3.5–19.9°
b = 7.9243 (10) ŵ = 2.66 mm1
c = 34.353 (5) ÅT = 293 K
V = 1540.8 (4) Å3Plate, clear colourless
Z = 40.4 × 0.25 × 0.08 mm
F(000) = 648
Data collection top
Rigaku Xcalibur Atlas Gemini
diffractometer
1534 reflections with I > 2σ(I)
Detector resolution: 5.2782 pixels mm-1Rint = 0.050
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
h = 66
Tmin = 0.840, Tmax = 0.953k = 99
9633 measured reflectionsl = 4141
2852 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0386P)2 + 0.0945P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.051(Δ/σ)max < 0.001
wR(F2) = 0.116Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.21 e Å3
2852 reflectionsExtinction correction: SHELXL2019 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
175 parametersExtinction coefficient: 0.0040 (14)
0 restraintsAbsolute structure: Flack x determined using 403 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.026 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction was recorded by Rigaku Oxford diffractometer with graphite-monochromated Mo Kα radiation (0.71073 Å). CrysAlis PRO software (Agilent, 2014) was employed for data reduction. The structures were solved through intrinsic phasing and direct methods, employing SHELXS (Sheldrick, 2008) and SHELXT (Sheldrick, 2015a). Non-H atoms were refined anisotropically, while H atoms were geometrically placed and refined with isotropic displacement parameters using the riding model in the SHELXL2019 program (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009). The CIF file containing complete information on the studied structure has been deposited with CCDC under deposition numbers 2293931 and 2293932, and is freely available upon request via the following website: www.ccdc.cam.ac.uk/data_request/cif.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.2389 (2)1.09813 (9)0.52206 (2)0.1427 (6)
O10.3517 (9)0.4597 (6)0.82998 (17)0.0963 (15)
N10.0282 (11)0.4666 (6)0.65137 (19)0.0844 (16)
C10.0099 (12)0.4345 (8)0.6097 (2)0.084 (2)
H10.1261030.3482530.6025700.101*
C20.2363 (13)0.3682 (8)0.6005 (2)0.110 (2)
H2A0.2753970.2788040.6182460.165*
H2B0.2397080.3260650.5743240.165*
H2C0.3491340.4579440.6031690.165*
C30.0642 (11)0.5963 (8)0.5870 (2)0.0720 (17)
C40.2300 (13)0.6028 (7)0.55835 (18)0.0832 (17)
H40.3099990.5045620.5515510.100*
C50.2826 (15)0.7505 (9)0.53913 (19)0.0932 (19)
H50.3985570.7517160.5199440.112*
C60.1649 (13)0.8944 (7)0.5483 (2)0.084 (2)
C70.0019 (15)0.8945 (10)0.5770 (3)0.112 (3)
H70.0848550.9921530.5832720.135*
C80.0434 (15)0.7452 (9)0.5965 (2)0.113 (3)
H80.1498390.7458460.6171200.136*
C90.1914 (11)0.3938 (7)0.6701 (2)0.0779 (18)
H90.2929910.3235490.6562960.093*
C100.2308 (11)0.4124 (6)0.71138 (19)0.0671 (15)
C110.4256 (12)0.3396 (8)0.7274 (3)0.083 (2)
H110.5295510.2808400.7114400.100*
C120.4736 (12)0.3504 (8)0.7669 (3)0.083 (2)
H120.6079530.2991540.7770880.099*
C130.3233 (12)0.4364 (8)0.7909 (2)0.0732 (17)
C140.1213 (12)0.5094 (8)0.7750 (2)0.080 (2)
H140.0156170.5659270.7911600.096*
C150.0768 (11)0.4989 (7)0.7360 (2)0.0722 (19)
H150.0574100.5498860.7257020.087*
C160.5553 (14)0.3902 (13)0.8476 (3)0.137 (3)
H16A0.5492640.4090110.8751880.206*
H16B0.6937200.4431910.8370580.206*
H16C0.5611350.2711220.8425230.206*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.2380 (12)0.0887 (5)0.1013 (7)0.0090 (8)0.0088 (9)0.0093 (4)
O10.098 (4)0.097 (3)0.094 (4)0.004 (3)0.010 (3)0.018 (3)
N10.091 (4)0.079 (3)0.084 (5)0.011 (3)0.020 (4)0.002 (3)
C10.084 (5)0.070 (4)0.099 (6)0.018 (4)0.016 (4)0.001 (4)
C20.101 (5)0.115 (5)0.114 (6)0.007 (6)0.002 (6)0.007 (4)
C30.069 (4)0.070 (4)0.077 (5)0.008 (4)0.004 (4)0.010 (4)
C40.091 (4)0.081 (4)0.078 (4)0.020 (5)0.007 (5)0.004 (3)
C50.109 (5)0.095 (5)0.075 (4)0.002 (5)0.022 (5)0.005 (4)
C60.115 (6)0.065 (4)0.072 (5)0.001 (4)0.013 (4)0.003 (3)
C70.135 (7)0.081 (5)0.121 (7)0.038 (5)0.036 (6)0.003 (5)
C80.119 (6)0.089 (5)0.132 (7)0.025 (5)0.047 (6)0.007 (5)
C90.070 (4)0.056 (3)0.108 (6)0.012 (4)0.016 (4)0.004 (3)
C100.060 (4)0.047 (3)0.094 (5)0.006 (4)0.025 (4)0.007 (3)
C110.075 (5)0.064 (4)0.111 (7)0.022 (3)0.020 (5)0.007 (4)
C120.066 (4)0.066 (4)0.117 (7)0.012 (4)0.009 (5)0.020 (4)
C130.070 (4)0.056 (4)0.094 (6)0.005 (3)0.010 (4)0.016 (4)
C140.077 (5)0.062 (4)0.102 (7)0.000 (4)0.030 (5)0.010 (4)
C150.057 (4)0.060 (4)0.099 (6)0.001 (3)0.013 (4)0.012 (4)
C160.104 (6)0.190 (9)0.117 (8)0.001 (7)0.002 (6)0.047 (7)
Geometric parameters (Å, º) top
Br1—C61.895 (6)C7—H70.9300
O1—C131.363 (8)C7—C81.379 (10)
O1—C161.413 (8)C8—H80.9300
N1—C11.456 (8)C9—H90.9300
N1—C91.265 (7)C9—C101.444 (8)
C1—H10.9800C10—C111.361 (9)
C1—C21.523 (9)C10—C151.393 (8)
C1—C31.532 (9)C11—H110.9300
C2—H2A0.9600C11—C121.387 (9)
C2—H2B0.9600C12—H120.9300
C2—H2C0.9600C12—C131.367 (9)
C3—C41.362 (8)C13—C141.393 (8)
C3—C81.367 (8)C14—H140.9300
C4—H40.9300C14—C151.369 (8)
C4—C51.377 (8)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C5—C61.357 (9)C16—H16B0.9600
C6—C71.367 (9)C16—H16C0.9600
C13—O1—C16117.7 (6)C3—C8—H8118.3
C9—N1—C1118.1 (6)C7—C8—H8118.3
N1—C1—H1108.7N1—C9—H9117.8
N1—C1—C2109.2 (6)N1—C9—C10124.5 (6)
N1—C1—C3109.9 (5)C10—C9—H9117.8
C2—C1—H1108.7C11—C10—C9118.7 (6)
C2—C1—C3111.5 (6)C11—C10—C15118.0 (7)
C3—C1—H1108.7C15—C10—C9123.3 (6)
C1—C2—H2A109.5C10—C11—H11119.0
C1—C2—H2B109.5C10—C11—C12121.9 (6)
C1—C2—H2C109.5C12—C11—H11119.0
H2A—C2—H2B109.5C11—C12—H12120.0
H2A—C2—H2C109.5C13—C12—C11120.0 (7)
H2B—C2—H2C109.5C13—C12—H12120.0
C4—C3—C1122.5 (6)O1—C13—C12126.0 (7)
C4—C3—C8116.5 (6)O1—C13—C14115.2 (7)
C8—C3—C1120.8 (6)C12—C13—C14118.8 (8)
C3—C4—H4119.1C13—C14—H14119.7
C3—C4—C5121.9 (6)C15—C14—C13120.7 (7)
C5—C4—H4119.1C15—C14—H14119.7
C4—C5—H5120.1C10—C15—H15119.7
C6—C5—C4119.8 (7)C14—C15—C10120.6 (6)
C6—C5—H5120.1C14—C15—H15119.7
C5—C6—Br1119.8 (6)O1—C16—H16A109.5
C5—C6—C7120.5 (6)O1—C16—H16B109.5
C7—C6—Br1119.7 (6)O1—C16—H16C109.5
C6—C7—H7121.1H16A—C16—H16B109.5
C6—C7—C8117.9 (7)H16A—C16—H16C109.5
C8—C7—H7121.1H16B—C16—H16C109.5
C3—C8—C7123.3 (7)
Br1—C6—C7—C8177.3 (6)C6—C7—C8—C33.7 (13)
O1—C13—C14—C15178.1 (6)C8—C3—C4—C51.6 (10)
N1—C1—C3—C4126.6 (7)C9—N1—C1—C2123.7 (6)
N1—C1—C3—C849.3 (9)C9—N1—C1—C3113.7 (6)
N1—C9—C10—C11174.0 (6)C9—C10—C11—C12179.2 (6)
N1—C9—C10—C157.2 (9)C9—C10—C15—C14178.7 (5)
C1—N1—C9—C10179.6 (6)C10—C11—C12—C130.1 (10)
C1—C3—C4—C5177.7 (7)C11—C10—C15—C140.1 (8)
C1—C3—C8—C7179.8 (8)C11—C12—C13—O1178.6 (6)
C2—C1—C3—C4112.2 (7)C11—C12—C13—C141.1 (9)
C2—C1—C3—C872.0 (9)C12—C13—C14—C151.6 (8)
C3—C4—C5—C61.1 (11)C13—C14—C15—C101.1 (9)
C4—C3—C8—C74.1 (12)C15—C10—C11—C120.4 (9)
C4—C5—C6—Br1179.6 (5)C16—O1—C13—C120.5 (9)
C4—C5—C6—C71.5 (11)C16—O1—C13—C14179.2 (6)
C5—C6—C7—C80.8 (12)
Dichloridobis{(S)-(+)-1-(4-bromophenyl)-N-[(4-methoxyphenyl)methylidene]ethylamine-κN}palladium(II) (II) top
Crystal data top
[PdCl2(C16H16BrNO)2]F(000) = 1616
Mr = 813.71Dx = 1.677 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.0493 (4) ÅCell parameters from 5092 reflections
b = 25.1365 (8) Åθ = 1.6–25.9°
c = 14.1725 (7) ŵ = 3.25 mm1
β = 90.185 (4)°T = 293 K
V = 3223.8 (2) Å3Prism, clear orange
Z = 40.58 × 0.14 × 0.11 mm
Data collection top
Rigaku Xcalibur Atlas Gemini
diffractometer
8864 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.047
ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
h = 1111
Tmin = 0.406, Tmax = 0.755k = 3131
21980 measured reflectionsl = 1717
12072 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0407P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.78 e Å3
12072 reflectionsΔρmin = 0.64 e Å3
767 parametersAbsolute structure: Flack x determined using 2945 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
41 restraintsAbsolute structure parameter: 0.005 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.21529 (6)0.74835 (4)0.54298 (4)0.04229 (16)
Br10.09895 (17)0.47281 (6)0.41034 (13)0.1115 (5)
Br20.19435 (18)0.97812 (7)0.95910 (13)0.1193 (6)
Cl10.4129 (2)0.79352 (12)0.60901 (19)0.0622 (7)
Cl20.0102 (3)0.70667 (11)0.48069 (19)0.0629 (7)
O10.0318 (10)0.9452 (3)0.2847 (6)0.093 (3)
O20.4183 (10)0.5627 (3)0.8521 (6)0.094 (3)
N10.3261 (7)0.7338 (3)0.4206 (5)0.0471 (19)
N20.0996 (7)0.7663 (3)0.6598 (5)0.0427 (17)
C10.4276 (9)0.6881 (4)0.4111 (6)0.050 (2)
H10.4703340.6902040.3477060.060*
C20.5557 (10)0.6938 (5)0.4812 (8)0.068 (3)
H2A0.6060800.7268010.4701590.103*
H2B0.6233670.6647670.4730540.103*
H2C0.5178130.6933540.5444070.103*
C30.3457 (11)0.6355 (4)0.4169 (7)0.054 (2)
C40.3561 (12)0.6007 (4)0.4896 (8)0.063 (3)
H40.4158640.6095780.5407050.075*
C50.2824 (13)0.5528 (5)0.4914 (9)0.073 (3)
H50.2894880.5302400.5432690.088*
C60.1984 (12)0.5394 (5)0.4147 (9)0.072 (3)
C70.1832 (14)0.5725 (5)0.3393 (9)0.081 (4)
H70.1243210.5630280.2881400.098*
C80.2588 (13)0.6214 (5)0.3407 (8)0.072 (3)
H80.2501070.6444610.2896870.087*
C90.2962 (10)0.7597 (4)0.3434 (7)0.059 (3)
H90.3356590.7455040.2883180.070*
C100.2097 (11)0.8076 (4)0.3320 (7)0.051 (2)
C110.1418 (11)0.8157 (4)0.2428 (7)0.059 (3)
H110.1523940.7901390.1958240.071*
C120.0614 (12)0.8605 (5)0.2249 (8)0.071 (3)
H120.0168910.8653270.1662510.085*
C130.0465 (12)0.8986 (5)0.2946 (9)0.069 (3)
C140.1144 (13)0.8916 (5)0.3833 (8)0.071 (3)
H140.1044450.9172000.4302180.086*
C150.1945 (11)0.8469 (4)0.3988 (7)0.054 (2)
H150.2411410.8426390.4568460.065*
C160.1024 (16)0.9544 (6)0.1980 (11)0.110 (5)
H16A0.0300420.9557830.1486800.165*
H16B0.1545630.9876570.2005580.165*
H16C0.1710690.9261650.1853700.165*
C170.0079 (10)0.8169 (4)0.6530 (7)0.058 (3)
H170.0342500.8336410.5929650.070*
C180.1537 (10)0.8028 (5)0.6457 (8)0.074 (3)
H18A0.1690430.7797690.5926230.110*
H18B0.2106960.8347240.6375700.110*
H18C0.1842200.7850680.7023790.110*
C190.0469 (10)0.8564 (4)0.7287 (7)0.049 (2)
C200.1672 (12)0.8902 (4)0.7152 (9)0.069 (3)
H200.2201250.8877560.6592250.083*
C210.2101 (12)0.9268 (5)0.7808 (11)0.081 (4)
H210.2886620.9497860.7694380.097*
C220.1322 (12)0.9286 (4)0.8657 (10)0.070 (3)
C230.0178 (12)0.8958 (4)0.8815 (8)0.063 (3)
H230.0327260.8974710.9385250.076*
C240.0250 (10)0.8598 (4)0.8136 (7)0.053 (2)
H240.1042330.8372160.8255490.064*
C250.1001 (9)0.7427 (4)0.7395 (7)0.053 (2)
H250.0442260.7585110.7868520.064*
C260.1787 (10)0.6935 (4)0.7656 (7)0.049 (2)
C270.2082 (14)0.6864 (4)0.8601 (7)0.070 (3)
H270.1742500.7116560.9028840.084*
C280.2851 (15)0.6439 (4)0.8932 (8)0.080 (4)
H280.3047170.6403780.9573250.096*
C290.3335 (14)0.6059 (4)0.8303 (9)0.071 (3)
C300.2992 (12)0.6120 (4)0.7360 (8)0.067 (3)
H300.3280080.5858320.6935200.081*
C310.2246 (12)0.6551 (4)0.7034 (7)0.063 (3)
H310.2046900.6586030.6392470.075*
C320.5031 (17)0.5654 (6)0.9352 (11)0.119 (6)
H32A0.5727880.5940580.9303470.178*
H32B0.5552430.5324870.9438980.178*
H32C0.4392840.5714710.9880730.178*
Pd20.36904 (7)0.24913 (4)0.94152 (4)0.04789 (17)
C380.3235 (14)0.0471 (4)0.6439 (9)0.070 (3)
Br30.364 (2)0.0085 (7)0.5546 (13)0.094 (3)0.65 (7)
Br3A0.399 (4)0.0128 (10)0.581 (3)0.091 (5)0.35 (7)
C540.3172 (16)0.4618 (6)1.0946 (14)0.099 (4)
Br40.2073 (11)0.5275 (4)1.0914 (13)0.134 (2)0.69 (5)
Br4A0.203 (2)0.5183 (11)1.130 (3)0.132 (6)0.31 (5)
Cl30.1586 (3)0.29551 (13)0.9790 (2)0.0800 (9)
Cl40.5751 (3)0.20070 (11)0.89587 (18)0.0588 (6)
O30.4512 (10)0.4464 (3)0.6263 (7)0.093 (3)
O40.0781 (9)0.0768 (4)1.2618 (6)0.086 (2)
N30.2690 (8)0.2233 (3)0.8213 (5)0.0495 (19)
N40.4625 (8)0.2695 (3)1.0676 (6)0.058 (2)
C330.1983 (11)0.1700 (4)0.8354 (7)0.054 (2)
H330.2345990.1574920.8967340.065*
C340.0316 (13)0.1763 (5)0.8474 (9)0.090 (4)
H34A0.0121940.2021780.8956830.134*
H34B0.0107510.1427900.8652000.134*
H34C0.0113820.1879870.7889790.134*
C350.2435 (12)0.1276 (4)0.7657 (8)0.057 (3)
C360.3656 (14)0.0969 (5)0.7829 (9)0.077 (4)
H360.4236000.1039150.8357540.093*
C370.4041 (13)0.0560 (5)0.7240 (11)0.083 (4)
H370.4845910.0345020.7385150.100*
C390.2048 (14)0.0783 (5)0.6222 (8)0.072 (3)
H390.1509850.0723290.5672000.086*
C400.1650 (12)0.1194 (4)0.6836 (7)0.059 (3)
H400.0853050.1412480.6689380.071*
C410.2517 (9)0.2467 (5)0.7425 (6)0.050 (2)
H410.1968590.2286640.6969750.060*
C420.3082 (10)0.2979 (4)0.7165 (7)0.051 (2)
C430.2573 (14)0.3213 (5)0.6329 (8)0.075 (3)
H430.1880260.3035560.5958890.090*
C440.3088 (16)0.3701 (5)0.6051 (9)0.090 (4)
H440.2724990.3850590.5497150.109*
C450.4136 (13)0.3978 (4)0.6574 (9)0.069 (3)
C460.4674 (14)0.3742 (5)0.7344 (9)0.073 (3)
H460.5402810.3915320.7691180.088*
C470.4187 (12)0.3247 (4)0.7647 (7)0.062 (3)
H470.4607990.3094210.8181600.074*
C480.5476 (16)0.4773 (5)0.6831 (11)0.108 (5)
H48A0.5673720.5105270.6521200.161*
H48B0.6385600.4584020.6925430.161*
H48C0.5020280.4840050.7429900.161*
C490.5645 (12)0.3178 (5)1.0708 (7)0.068 (3)
H490.6198810.3146891.1301190.082*
C500.6791 (12)0.3173 (5)0.9939 (9)0.077 (3)
H50A0.7321340.2842660.9956450.116*
H50B0.7467320.3462631.0032450.116*
H50C0.6312380.3211100.9336740.116*
C510.4751 (13)0.3688 (5)1.0794 (9)0.071 (3)
C520.4375 (15)0.3966 (5)0.9995 (9)0.081 (4)
H520.4671960.3844420.9405170.097*
C530.3548 (15)0.4430 (5)1.0071 (11)0.098 (4)
H530.3252180.4612070.9531370.118*
C550.3551 (14)0.4339 (6)1.1724 (11)0.092 (4)
H550.3276050.4461871.2317270.111*
C560.4335 (13)0.3877 (6)1.1645 (9)0.080 (4)
H560.4587190.3689641.2187780.096*
C570.4383 (10)0.2452 (5)1.1466 (7)0.062 (2)
H570.4929080.2580461.1974140.074*
C580.3422 (11)0.2022 (4)1.1687 (7)0.057 (3)
C590.3483 (14)0.1851 (5)1.2587 (8)0.079 (3)
H590.4154970.2014361.2991650.094*
C600.2608 (14)0.1445 (5)1.2953 (8)0.079 (4)
H600.2649550.1358151.3590100.095*
C610.1697 (12)0.1182 (5)1.2361 (9)0.067 (3)
C620.1586 (14)0.1357 (6)1.1431 (9)0.090 (4)
H620.0922170.1190691.1024350.108*
C630.2427 (13)0.1765 (5)1.1105 (8)0.082 (4)
H630.2331300.1872321.0479920.098*
C640.0669 (15)0.0636 (5)1.3598 (9)0.093 (4)
H64A0.0041060.0356131.3677010.139*
H64B0.0358580.0943821.3946070.139*
H64C0.1614700.0519831.3827180.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0440 (3)0.0451 (3)0.0377 (3)0.0002 (4)0.0003 (3)0.0001 (4)
Br10.1098 (10)0.0669 (8)0.1580 (16)0.0210 (8)0.0133 (10)0.0088 (9)
Br20.1224 (11)0.0931 (11)0.1420 (15)0.0070 (10)0.0413 (10)0.0405 (11)
Cl10.0490 (12)0.0727 (17)0.0649 (17)0.0041 (13)0.0059 (12)0.0156 (14)
Cl20.0557 (13)0.0712 (17)0.0616 (16)0.0095 (13)0.0043 (12)0.0152 (14)
O10.118 (6)0.071 (5)0.088 (7)0.017 (5)0.018 (5)0.017 (5)
O20.139 (7)0.071 (5)0.070 (6)0.027 (6)0.031 (5)0.003 (5)
N10.041 (3)0.051 (5)0.049 (4)0.003 (3)0.007 (3)0.006 (4)
N20.046 (4)0.051 (4)0.031 (4)0.001 (3)0.008 (3)0.002 (3)
C10.046 (5)0.061 (6)0.043 (5)0.002 (5)0.013 (4)0.007 (5)
C20.053 (5)0.083 (8)0.069 (7)0.000 (6)0.002 (5)0.009 (6)
C30.061 (6)0.050 (6)0.051 (6)0.006 (5)0.001 (5)0.008 (5)
C40.070 (7)0.065 (7)0.053 (7)0.007 (6)0.002 (5)0.006 (6)
C50.088 (8)0.061 (7)0.070 (8)0.005 (6)0.016 (7)0.010 (6)
C60.071 (7)0.061 (7)0.084 (9)0.003 (6)0.009 (6)0.000 (7)
C70.097 (9)0.074 (8)0.073 (9)0.006 (7)0.017 (7)0.011 (7)
C80.090 (8)0.061 (7)0.066 (8)0.011 (7)0.022 (7)0.007 (6)
C90.070 (6)0.065 (8)0.041 (5)0.017 (6)0.003 (4)0.006 (5)
C100.065 (6)0.047 (5)0.042 (5)0.007 (5)0.006 (5)0.003 (5)
C110.085 (7)0.058 (6)0.035 (6)0.009 (6)0.001 (5)0.002 (5)
C120.084 (8)0.063 (7)0.066 (8)0.007 (6)0.022 (6)0.018 (6)
C130.075 (7)0.055 (7)0.077 (9)0.003 (6)0.000 (6)0.015 (6)
C140.103 (9)0.053 (6)0.058 (7)0.007 (7)0.016 (7)0.007 (6)
C150.065 (6)0.055 (6)0.042 (6)0.009 (5)0.005 (5)0.008 (5)
C160.107 (10)0.100 (11)0.123 (13)0.018 (9)0.027 (9)0.031 (10)
C170.061 (6)0.058 (6)0.055 (6)0.010 (5)0.009 (5)0.019 (5)
C180.055 (6)0.084 (8)0.082 (8)0.012 (6)0.016 (6)0.011 (7)
C190.046 (5)0.040 (5)0.062 (7)0.011 (4)0.003 (5)0.005 (5)
C200.066 (7)0.056 (7)0.084 (9)0.005 (6)0.023 (6)0.001 (6)
C210.058 (7)0.052 (7)0.134 (13)0.000 (6)0.001 (8)0.000 (8)
C220.059 (6)0.056 (7)0.094 (10)0.010 (6)0.008 (7)0.021 (6)
C230.068 (6)0.065 (7)0.058 (7)0.005 (6)0.002 (5)0.008 (6)
C240.047 (5)0.051 (6)0.063 (7)0.000 (5)0.018 (5)0.003 (5)
C250.059 (5)0.042 (5)0.060 (6)0.001 (5)0.007 (4)0.002 (5)
C260.062 (5)0.040 (5)0.046 (6)0.002 (5)0.008 (5)0.001 (5)
C270.124 (9)0.049 (6)0.038 (6)0.007 (7)0.012 (6)0.005 (5)
C280.139 (11)0.054 (7)0.048 (7)0.010 (7)0.019 (7)0.000 (6)
C290.103 (9)0.040 (6)0.068 (8)0.003 (6)0.020 (7)0.011 (6)
C300.085 (8)0.057 (6)0.059 (7)0.021 (6)0.002 (6)0.002 (6)
C310.097 (8)0.046 (6)0.045 (6)0.011 (6)0.003 (6)0.002 (5)
C320.128 (12)0.089 (10)0.137 (14)0.009 (10)0.068 (11)0.021 (10)
Pd20.0542 (3)0.0495 (4)0.0399 (3)0.0004 (4)0.0015 (3)0.0035 (4)
C380.085 (7)0.048 (5)0.077 (8)0.022 (6)0.036 (6)0.008 (5)
Br30.108 (5)0.076 (4)0.099 (5)0.023 (3)0.032 (4)0.033 (3)
Br3A0.099 (8)0.064 (3)0.110 (11)0.016 (5)0.048 (7)0.017 (6)
C540.098 (9)0.074 (7)0.127 (11)0.005 (6)0.007 (8)0.024 (8)
Br40.137 (3)0.109 (3)0.156 (6)0.035 (3)0.044 (4)0.000 (4)
Br4A0.138 (6)0.094 (7)0.163 (14)0.006 (6)0.055 (8)0.052 (8)
Cl30.0710 (16)0.086 (2)0.083 (2)0.0181 (16)0.0006 (15)0.0281 (18)
Cl40.0606 (14)0.0630 (15)0.0529 (15)0.0079 (13)0.0024 (12)0.0008 (13)
O30.117 (7)0.064 (5)0.098 (7)0.010 (5)0.005 (5)0.028 (5)
O40.094 (6)0.091 (6)0.073 (6)0.019 (5)0.008 (5)0.012 (5)
N30.057 (4)0.046 (4)0.046 (5)0.001 (4)0.006 (4)0.004 (4)
N40.055 (4)0.063 (5)0.054 (5)0.010 (4)0.010 (4)0.007 (4)
C330.067 (6)0.055 (6)0.040 (5)0.005 (5)0.001 (5)0.002 (5)
C340.098 (9)0.079 (8)0.092 (10)0.032 (8)0.034 (8)0.032 (8)
C350.069 (6)0.042 (5)0.060 (7)0.014 (5)0.009 (5)0.000 (5)
C360.085 (8)0.053 (6)0.093 (10)0.001 (7)0.018 (7)0.009 (7)
C370.060 (7)0.052 (7)0.137 (13)0.007 (6)0.012 (8)0.012 (8)
C390.103 (9)0.059 (7)0.054 (7)0.016 (7)0.005 (6)0.003 (6)
C400.072 (7)0.062 (6)0.043 (6)0.003 (6)0.014 (5)0.004 (5)
C410.054 (4)0.049 (5)0.047 (5)0.006 (6)0.009 (4)0.004 (6)
C420.062 (6)0.047 (5)0.044 (6)0.011 (5)0.000 (5)0.005 (5)
C430.100 (9)0.075 (8)0.050 (7)0.003 (7)0.005 (6)0.011 (6)
C440.129 (11)0.074 (8)0.068 (8)0.011 (8)0.030 (8)0.038 (7)
C450.078 (7)0.050 (6)0.079 (9)0.003 (6)0.010 (6)0.015 (6)
C460.094 (8)0.058 (7)0.068 (8)0.016 (6)0.006 (7)0.000 (6)
C470.080 (7)0.057 (6)0.048 (6)0.007 (6)0.006 (5)0.005 (5)
C480.127 (11)0.054 (7)0.142 (14)0.014 (8)0.026 (10)0.001 (9)
C490.075 (7)0.080 (8)0.049 (6)0.028 (6)0.006 (6)0.002 (6)
C500.065 (6)0.074 (8)0.093 (9)0.013 (6)0.012 (6)0.006 (7)
C510.078 (7)0.065 (7)0.071 (9)0.021 (6)0.003 (7)0.021 (7)
C520.125 (10)0.067 (7)0.052 (7)0.000 (8)0.005 (7)0.017 (6)
C530.111 (10)0.074 (9)0.109 (12)0.007 (8)0.015 (9)0.038 (9)
C550.077 (8)0.096 (11)0.104 (12)0.032 (8)0.040 (8)0.030 (10)
C560.076 (8)0.098 (10)0.065 (8)0.032 (8)0.001 (6)0.014 (8)
C570.070 (6)0.068 (6)0.047 (5)0.007 (7)0.016 (5)0.010 (7)
C580.057 (5)0.063 (6)0.052 (6)0.001 (5)0.008 (5)0.002 (5)
C590.104 (9)0.080 (8)0.052 (7)0.017 (8)0.018 (7)0.009 (7)
C600.117 (10)0.079 (8)0.040 (6)0.010 (8)0.006 (7)0.016 (6)
C610.065 (7)0.071 (7)0.066 (8)0.003 (6)0.006 (6)0.003 (6)
C620.090 (9)0.122 (12)0.057 (8)0.031 (9)0.009 (7)0.010 (8)
C630.098 (9)0.104 (10)0.044 (6)0.032 (8)0.008 (6)0.002 (7)
C640.114 (10)0.084 (9)0.080 (9)0.001 (8)0.006 (8)0.018 (8)
Geometric parameters (Å, º) top
Pd1—Cl12.313 (2)Pd2—Cl42.321 (3)
Pd1—Cl22.305 (2)Pd2—N32.034 (7)
Pd1—N12.040 (7)Pd2—N42.040 (8)
Pd1—N22.013 (7)C38—Br31.921 (17)
Br1—C61.902 (12)C38—Br3A1.88 (3)
Br2—C221.900 (11)C38—C371.367 (17)
O1—C131.376 (13)C38—C391.364 (16)
O1—C161.403 (14)C54—Br41.929 (17)
O2—C291.365 (13)C54—Br4A1.83 (2)
O2—C321.405 (14)C54—C531.37 (2)
N1—C11.477 (11)C54—C551.35 (2)
N1—C91.301 (11)O3—C451.342 (13)
N2—C171.521 (11)O3—C481.417 (15)
N2—C251.276 (11)O4—C611.380 (14)
C1—H10.9800O4—C641.431 (14)
C1—C21.531 (12)N3—C331.498 (12)
C1—C31.519 (13)N3—C411.271 (11)
C2—H2A0.9600N4—C491.526 (12)
C2—H2B0.9600N4—C571.294 (12)
C2—H2C0.9600C33—H330.9800
C3—C41.355 (14)C33—C341.527 (14)
C3—C81.380 (14)C33—C351.510 (14)
C4—H40.9300C34—H34A0.9600
C4—C51.377 (15)C34—H34B0.9600
C5—H50.9300C34—H34C0.9600
C5—C61.367 (16)C35—C361.370 (15)
C6—C71.360 (16)C35—C401.376 (13)
C7—H70.9300C36—H360.9300
C7—C81.406 (16)C36—C371.369 (16)
C8—H80.9300C37—H370.9300
C9—H90.9300C39—H390.9300
C9—C101.445 (13)C39—C401.399 (15)
C10—C111.419 (13)C40—H400.9300
C10—C151.376 (13)C41—H410.9300
C11—H110.9300C41—C421.434 (14)
C11—C121.364 (14)C42—C431.399 (13)
C12—H120.9300C42—C471.385 (13)
C12—C131.383 (16)C43—H430.9300
C13—C141.408 (15)C43—C441.370 (16)
C14—H140.9300C44—H440.9300
C14—C151.355 (14)C44—C451.389 (17)
C15—H150.9300C45—C461.333 (16)
C16—H16A0.9600C46—H460.9300
C16—H16B0.9600C46—C471.388 (15)
C16—H16C0.9600C47—H470.9300
C17—H170.9800C48—H48A0.9600
C17—C181.508 (13)C48—H48B0.9600
C17—C191.502 (14)C48—H48C0.9600
C18—H18A0.9600C49—H490.9800
C18—H18B0.9600C49—C501.507 (15)
C18—H18C0.9600C49—C511.520 (16)
C19—C201.396 (14)C50—H50A0.9600
C19—C241.372 (13)C50—H50B0.9600
C20—H200.9300C50—H50C0.9600
C20—C211.363 (17)C51—C521.374 (16)
C21—H210.9300C51—C561.352 (16)
C21—C221.398 (17)C52—H520.9300
C22—C231.343 (15)C52—C531.390 (17)
C23—H230.9300C53—H530.9300
C23—C241.377 (14)C55—H550.9300
C24—H240.9300C55—C561.364 (18)
C25—H250.9300C56—H560.9300
C25—C261.473 (13)C57—H570.9300
C26—C271.376 (13)C57—C581.424 (15)
C26—C311.374 (13)C58—C591.348 (14)
C27—H270.9300C58—C631.380 (14)
C27—C281.359 (15)C59—H590.9300
C28—H280.9300C59—C601.392 (16)
C28—C291.378 (16)C60—H600.9300
C29—C301.380 (15)C60—C611.348 (15)
C30—H300.9300C61—C621.392 (16)
C30—C311.356 (13)C62—H620.9300
C31—H310.9300C62—C631.359 (16)
C32—H32A0.9600C63—H630.9300
C32—H32B0.9600C64—H64A0.9600
C32—H32C0.9600C64—H64B0.9600
Pd2—Cl32.297 (3)C64—H64C0.9600
Cl2—Pd1—Cl1176.95 (10)N3—Pd2—Cl487.4 (2)
N1—Pd1—Cl192.88 (19)N3—Pd2—N4175.2 (3)
N1—Pd1—Cl289.5 (2)N4—Pd2—Cl390.6 (2)
N2—Pd1—Cl187.7 (2)N4—Pd2—Cl492.6 (2)
N2—Pd1—Cl289.8 (2)C37—C38—Br3124.4 (13)
N2—Pd1—N1176.5 (3)C37—C38—Br3A109.4 (19)
C13—O1—C16117.6 (11)C39—C38—Br3114.9 (13)
C29—O2—C32117.2 (10)C39—C38—Br3A129.9 (19)
C1—N1—Pd1121.7 (6)C39—C38—C37120.7 (11)
C9—N1—Pd1121.6 (7)C53—C54—Br4113.8 (15)
C9—N1—C1116.1 (8)C53—C54—Br4A131 (2)
C17—N2—Pd1114.9 (6)C55—C54—Br4126.4 (15)
C25—N2—Pd1128.6 (6)C55—C54—Br4A109 (2)
C25—N2—C17116.4 (8)C55—C54—C53119.8 (14)
N1—C1—H1106.9C45—O3—C48118.0 (10)
N1—C1—C2109.8 (8)C61—O4—C64118.4 (10)
N1—C1—C3111.6 (7)C33—N3—Pd2111.3 (6)
C2—C1—H1106.9C41—N3—Pd2129.9 (7)
C3—C1—H1106.9C41—N3—C33118.6 (8)
C3—C1—C2114.5 (9)C49—N4—Pd2118.4 (6)
C1—C2—H2A109.5C57—N4—Pd2124.6 (7)
C1—C2—H2B109.5C57—N4—C49117.0 (8)
C1—C2—H2C109.5N3—C33—H33105.3
H2A—C2—H2B109.5N3—C33—C34110.1 (9)
H2A—C2—H2C109.5N3—C33—C35115.3 (8)
H2B—C2—H2C109.5C34—C33—H33105.3
C4—C3—C1124.8 (9)C35—C33—H33105.3
C4—C3—C8117.8 (10)C35—C33—C34114.6 (9)
C8—C3—C1117.3 (10)C33—C34—H34A109.5
C3—C4—H4118.4C33—C34—H34B109.5
C3—C4—C5123.1 (11)C33—C34—H34C109.5
C5—C4—H4118.4H34A—C34—H34B109.5
C4—C5—H5121.0H34A—C34—H34C109.5
C6—C5—C4117.9 (11)H34B—C34—H34C109.5
C6—C5—H5121.0C36—C35—C33120.1 (10)
C5—C6—Br1120.3 (10)C36—C35—C40118.7 (11)
C7—C6—Br1117.8 (10)C40—C35—C33121.3 (10)
C7—C6—C5121.9 (11)C35—C36—H36119.3
C6—C7—H7120.8C37—C36—C35121.4 (12)
C6—C7—C8118.4 (11)C37—C36—H36119.3
C8—C7—H7120.8C38—C37—C36119.6 (12)
C3—C8—C7120.7 (11)C38—C37—H37120.2
C3—C8—H8119.6C36—C37—H37120.2
C7—C8—H8119.6C38—C39—H39120.4
N1—C9—H9115.8C38—C39—C40119.2 (11)
N1—C9—C10128.4 (9)C40—C39—H39120.4
C10—C9—H9115.8C35—C40—C39120.3 (10)
C11—C10—C9116.9 (9)C35—C40—H40119.9
C15—C10—C9125.3 (9)C39—C40—H40119.9
C15—C10—C11117.7 (9)N3—C41—H41116.6
C10—C11—H11119.5N3—C41—C42126.7 (9)
C12—C11—C10120.9 (10)C42—C41—H41116.6
C12—C11—H11119.5C43—C42—C41118.6 (9)
C11—C12—H12120.3C47—C42—C41124.6 (9)
C11—C12—C13119.5 (10)C47—C42—C43116.7 (10)
C13—C12—H12120.3C42—C43—H43119.7
O1—C13—C12124.7 (11)C44—C43—C42120.5 (12)
O1—C13—C14114.7 (11)C44—C43—H43119.7
C12—C13—C14120.6 (11)C43—C44—H44119.1
C13—C14—H14120.7C43—C44—C45121.9 (11)
C15—C14—C13118.6 (11)C45—C44—H44119.1
C15—C14—H14120.7O3—C45—C44117.0 (11)
C10—C15—H15118.7C46—C45—O3125.6 (12)
C14—C15—C10122.6 (9)C46—C45—C44117.4 (11)
C14—C15—H15118.7C45—C46—H46118.8
O1—C16—H16A109.5C45—C46—C47122.5 (12)
O1—C16—H16B109.5C47—C46—H46118.8
O1—C16—H16C109.5C42—C47—C46120.8 (10)
H16A—C16—H16B109.5C42—C47—H47119.6
H16A—C16—H16C109.5C46—C47—H47119.6
H16B—C16—H16C109.5O3—C48—H48A109.5
N2—C17—H17106.2O3—C48—H48B109.5
C18—C17—N2109.7 (8)O3—C48—H48C109.5
C18—C17—H17106.2H48A—C48—H48B109.5
C19—C17—N2112.4 (7)H48A—C48—H48C109.5
C19—C17—H17106.2H48B—C48—H48C109.5
C19—C17—C18115.4 (9)N4—C49—H49105.6
C17—C18—H18A109.5C50—C49—N4112.9 (9)
C17—C18—H18B109.5C50—C49—H49105.6
C17—C18—H18C109.5C50—C49—C51115.6 (10)
H18A—C18—H18B109.5C51—C49—N4110.5 (8)
H18A—C18—H18C109.5C51—C49—H49105.6
H18B—C18—H18C109.5C49—C50—H50A109.5
C20—C19—C17119.1 (10)C49—C50—H50B109.5
C24—C19—C17123.8 (9)C49—C50—H50C109.5
C24—C19—C20117.0 (10)H50A—C50—H50B109.5
C19—C20—H20118.7H50A—C50—H50C109.5
C21—C20—C19122.6 (12)H50B—C50—H50C109.5
C21—C20—H20118.7C52—C51—C49119.5 (11)
C20—C21—H21121.1C56—C51—C49121.3 (13)
C20—C21—C22117.8 (11)C56—C51—C52119.2 (13)
C22—C21—H21121.1C51—C52—H52120.2
C21—C22—Br2118.2 (9)C51—C52—C53119.7 (13)
C23—C22—Br2120.8 (10)C53—C52—H52120.2
C23—C22—C21121.0 (11)C54—C53—C52119.6 (15)
C22—C23—H23119.9C54—C53—H53120.2
C22—C23—C24120.2 (11)C52—C53—H53120.2
C24—C23—H23119.9C54—C55—H55119.8
C19—C24—C23121.4 (10)C54—C55—C56120.3 (15)
C19—C24—H24119.3C56—C55—H55119.8
C23—C24—H24119.3C51—C56—C55121.3 (14)
N2—C25—H25116.1C51—C56—H56119.3
N2—C25—C26127.8 (9)C55—C56—H56119.3
C26—C25—H25116.1N4—C57—H57114.6
C27—C26—C25116.4 (9)N4—C57—C58130.9 (9)
C31—C26—C25125.2 (9)C58—C57—H57114.6
C31—C26—C27118.4 (9)C59—C58—C57115.3 (9)
C26—C27—H27118.8C59—C58—C63116.2 (11)
C28—C27—C26122.3 (10)C63—C58—C57128.5 (10)
C28—C27—H27118.8C58—C59—H59117.8
C27—C28—H28120.5C58—C59—C60124.4 (11)
C27—C28—C29119.1 (10)C60—C59—H59117.8
C29—C28—H28120.5C59—C60—H60120.8
O2—C29—C28125.7 (11)C61—C60—C59118.4 (11)
O2—C29—C30115.7 (11)C61—C60—H60120.8
C28—C29—C30118.6 (10)O4—C61—C62116.5 (11)
C29—C30—H30119.0C60—C61—O4124.9 (11)
C31—C30—C29122.0 (10)C60—C61—C62118.5 (12)
C31—C30—H30119.0C61—C62—H62119.3
C26—C31—H31120.2C63—C62—C61121.4 (11)
C30—C31—C26119.6 (9)C63—C62—H62119.3
C30—C31—H31120.2C58—C63—H63119.5
O2—C32—H32A109.5C62—C63—C58121.0 (11)
O2—C32—H32B109.5C62—C63—H63119.5
O2—C32—H32C109.5O4—C64—H64A109.5
H32A—C32—H32B109.5O4—C64—H64B109.5
H32A—C32—H32C109.5O4—C64—H64C109.5
H32B—C32—H32C109.5H64A—C64—H64B109.5
Cl3—Pd2—Cl4176.77 (10)H64A—C64—H64C109.5
N3—Pd2—Cl389.4 (2)H64B—C64—H64C109.5
Pd1—N1—C1—C262.3 (9)Pd2—N3—C41—C423.9 (15)
Pd1—N1—C1—C365.7 (9)Pd2—N4—C49—C5048.5 (11)
Pd1—N1—C9—C1013.6 (13)Pd2—N4—C49—C5182.8 (10)
Pd1—N2—C17—C18107.5 (8)Pd2—N4—C57—C583.2 (16)
Pd1—N2—C17—C19122.7 (7)C38—C39—C40—C351.0 (17)
Pd1—N2—C25—C264.5 (14)Br3—C38—C37—C36180.0 (10)
Br1—C6—C7—C8178.6 (9)Br3—C38—C39—C40179.0 (9)
Br2—C22—C23—C24179.3 (8)Br3A—C38—C37—C36178.0 (12)
O1—C13—C14—C15179.6 (10)Br3A—C38—C39—C40176.4 (12)
O2—C29—C30—C31175.3 (11)C54—C55—C56—C510.0 (19)
N1—C1—C3—C4110.2 (11)Br4—C54—C53—C52178.4 (11)
N1—C1—C3—C872.4 (11)Br4—C54—C55—C56179.9 (10)
N1—C9—C10—C11154.2 (9)Br4A—C54—C53—C52176.1 (14)
N1—C9—C10—C1529.4 (16)Br4A—C54—C55—C56176.1 (11)
N2—C17—C19—C2083.5 (11)O3—C45—C46—C47177.1 (11)
N2—C17—C19—C2493.4 (10)O4—C61—C62—C63179.4 (12)
N2—C25—C26—C27156.6 (10)N3—C33—C35—C3687.7 (12)
N2—C25—C26—C3123.0 (16)N3—C33—C35—C4091.4 (12)
C1—N1—C9—C10175.5 (8)N3—C41—C42—C43169.2 (10)
C1—C3—C4—C5178.6 (10)N3—C41—C42—C4715.9 (16)
C1—C3—C8—C7177.9 (10)N4—C49—C51—C5294.2 (12)
C2—C1—C3—C415.2 (14)N4—C49—C51—C5686.8 (12)
C2—C1—C3—C8162.2 (9)N4—C57—C58—C59177.6 (12)
C3—C4—C5—C62.0 (17)N4—C57—C58—C633 (2)
C4—C3—C8—C70.3 (17)C33—N3—C41—C42178.8 (9)
C4—C5—C6—Br1177.8 (8)C33—C35—C36—C37176.0 (11)
C4—C5—C6—C71.9 (18)C33—C35—C40—C39177.0 (10)
C5—C6—C7—C81.1 (19)C34—C33—C35—C36142.9 (11)
C6—C7—C8—C30.3 (19)C34—C33—C35—C4038.0 (15)
C8—C3—C4—C51.2 (17)C35—C36—C37—C383.1 (19)
C9—N1—C1—C2126.8 (9)C36—C35—C40—C393.8 (17)
C9—N1—C1—C3105.2 (9)C37—C38—C39—C400.7 (17)
C9—C10—C11—C12178.2 (9)C39—C38—C37—C360.3 (18)
C9—C10—C15—C14178.5 (10)C40—C35—C36—C374.9 (18)
C10—C11—C12—C130.4 (16)C41—N3—C33—C3473.5 (11)
C11—C10—C15—C142.1 (16)C41—N3—C33—C3558.0 (12)
C11—C12—C13—O1180.0 (10)C41—C42—C43—C44179.7 (11)
C11—C12—C13—C140.4 (18)C41—C42—C47—C46179.7 (10)
C12—C13—C14—C150.0 (18)C42—C43—C44—C451 (2)
C13—C14—C15—C101.3 (17)C43—C42—C47—C464.6 (16)
C15—C10—C11—C121.6 (15)C43—C44—C45—O3176.9 (13)
C16—O1—C13—C120.6 (17)C43—C44—C45—C463 (2)
C16—O1—C13—C14179.8 (11)C44—C45—C46—C472 (2)
C17—N2—C25—C26179.9 (8)C45—C46—C47—C421.4 (19)
C17—C19—C20—C21179.5 (10)C47—C42—C43—C444.3 (18)
C17—C19—C24—C23178.3 (9)C48—O3—C45—C44174.3 (11)
C18—C17—C19—C20149.7 (9)C48—O3—C45—C465.1 (19)
C18—C17—C19—C2433.5 (13)C49—N4—C57—C58174.9 (10)
C19—C20—C21—C222.1 (17)C49—C51—C52—C53179.5 (11)
C20—C19—C24—C231.4 (14)C49—C51—C56—C55179.0 (10)
C20—C21—C22—Br2178.3 (8)C50—C49—C51—C5235.7 (15)
C20—C21—C22—C230.8 (17)C50—C49—C51—C56143.4 (11)
C21—C22—C23—C240.2 (17)C51—C52—C53—C543 (2)
C22—C23—C24—C190.2 (16)C52—C51—C56—C550.1 (17)
C24—C19—C20—C212.5 (15)C53—C54—C55—C561 (2)
C25—N2—C17—C1876.5 (11)C55—C54—C53—C523 (2)
C25—N2—C17—C1953.3 (11)C56—C51—C52—C531.4 (18)
C25—C26—C27—C28177.3 (11)C57—N4—C49—C50133.4 (10)
C25—C26—C31—C30178.5 (10)C57—N4—C49—C5195.4 (11)
C26—C27—C28—C291.1 (19)C57—C58—C59—C60178.2 (11)
C27—C26—C31—C301.1 (16)C57—C58—C63—C62180.0 (12)
C27—C28—C29—O2176.3 (11)C58—C59—C60—C614 (2)
C27—C28—C29—C301.4 (19)C59—C58—C63—C621.1 (19)
C28—C29—C30—C312.6 (19)C59—C60—C61—O4179.2 (11)
C29—C30—C31—C261.3 (18)C59—C60—C61—C625.2 (19)
C31—C26—C27—C282.3 (17)C60—C61—C62—C633 (2)
C32—O2—C29—C2822.3 (19)C61—C62—C63—C580 (2)
C32—O2—C29—C30155.4 (12)C63—C58—C59—C600.9 (19)
Pd2—N3—C33—C34102.2 (8)C64—O4—C61—C606.2 (17)
Pd2—N3—C33—C35126.2 (7)C64—O4—C61—C62169.4 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···Cl1i0.962.843.354 (12)114
C7—H7···Br4i0.932.613.27 (4)129
C9—H9···Cl4ii0.932.963.883173
C18—H18···Cl2iii0.962.923.679137
C21—H21···Br3iii0.933.013.64 (4)127
C28—H28···Cl4iv0.932.793.543 (12)139
C32—H32B···Br2v0.962.983.811146
C32—H32C···Br4v0.962.793.61 (2)143
C34—H34A···Cl3v0.962.943.709138
C48—H48A···Br3ii0.963.043.483110
C48—H48···O2v0.962.633.426141
C50—H50A···Cl4v0.962.903.376112
C64—H64A···O1vi0.962.573.284 (15)131
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+1; (iii) x, y+1, z; (iv) x+1, y+1/2, z+2; (v) x+1, y1/2, z+2; (vi) x, y1, z+1.
 

Acknowledgements

We thank Conahcyt for financial support.

Funding information

Funding for this research was provided by: Consejo Nacional de Humanidades, Ciencias y Tecnologías (Fellowship 368610).

References

First citationAnzaldo Olivares, B., Moreno, O. P., Téllez, G. H., Rosas, E. R., Bustamante, F. J. M., Castro Sánchez, M. E., Sharma, P., Mendoza, A. & Pérez, R. G. (2019). Opt. Mater. 94, 337–347.  CrossRef CAS Google Scholar
First citationBoulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R. & Benguerba, Y. (2023). Inorg. Chem. Commun. 150, 110451.  CrossRef Google Scholar
First citationBowes, E. G., Lee, G. M., Vogels, C. M., Decken, A. & Westcott, S. A. (2011). Inorg. Chim. Acta, 377, 84–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357–377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 694, 3008–3011.  CrossRef CAS Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701–23709.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCîrcu, V., Gibbs, T. J. K., Omnès, L., Horton, P. N., Hursthouse, M. B. & Bruce, D. W. (2006). J. Mater. Chem. 16, 4316–4325.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuong, A., Wuest, J. D. & Maris, T. (2011). Acta Cryst. E67, m518.  CSD CrossRef IUCr Journals Google Scholar
First citationEnamullah, M., Uddin, A. K. M. R., Chamayou, A.-C. & Janiak, C. (2007). Z. Naturforsch. B, 62, 807–817.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Chem. Rev. 252, 1420–1450.  CAS Google Scholar
First citationHernández-Téllez, G., Moreno, G. E., Bernès, S., Mendoza, A., Portillo, O., Sharma, P. & Gutiérrez, R. (2016). Acta Cryst. E72, 583–589.  CSD CrossRef IUCr Journals Google Scholar
First citationHu, H., Chen, D., Gao, H., Zhong, L. & Wu, Q. (2016). Polym. Chem. 7, 529–537.  CSD CrossRef CAS Google Scholar
First citationKalita, M., Gogoi, P., Barman, P., Sarma, B., Buragohain, A. K. & Kalita, R. D. (2014). Polyhedron, 74, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationKhalaji, A. D., Gholinejad, M., Rad, S. M., Grivani, G., Fejfarova, K. & Dusek, M. (2015). Res. Chem. Intermed. 41, 1635–1645.  CSD CrossRef CAS Google Scholar
First citationKinzhalov, M. A., Baykov, S. V., Novikov, A. S., Haukka, M. & Boyarskiy, V. P. (2019). Z. Kristallogr. Cryst. Mater. 234, 155–164.  CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O. & Lalancette, R. A. (2012a). Acta Cryst. E68, m387.  CSD CrossRef IUCr Journals Google Scholar
First citationMotswainyana, W. M., Onani, M. O. & Madiehe, A. M. (2012b). Polyhedron, 41, 44–51.  CSD CrossRef CAS Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703–1706.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1997). Chem. Commun. pp. 727–734.  CrossRef Web of Science Google Scholar
First citationXu, T.-T., Gao, J., Xu, X.-Y., Niu, S.-R., Yang, X.-J., Lu, lL.-D. & Wang, X. (2006). Jiegou Huaxue, 25, 801.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds