research communications
E)-2-[2-(2-amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid N,N-dimethylformamide monosolvate
and Hirshfeld surface analysis of (aDepartment of Ecology and Soil Sciences, Baku State University, Z. Xalilov Str. 33, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C10H8N4O3·C3H7NO, the contains two crystallographically independent molecules A and B, each of which has one DMF solvate molecule. Molecules A and B both feature intramolecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the molecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect molecules A and B, forming R22(8) ring motifs. Weak C—H⋯O interactions link the molecules, forming layers parallel to the (12) plane. The DMF solvent molecules are also connected to the main molecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking interactions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the molecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O interactions are the most significant contributors to the crystal packing (27.5% for molecule A and 25.1% for molecule B).
Keywords: crystal structure; hydrogen bonds; ring motifs; π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2322557
1. Chemical context
Arylhydrazones have been used extensively as substrates or ligands in the synthesis of organic or coordination compounds (Gurbanov et al., 2022a,b; Khalilov et al., 2021a,b; Kopylovich et al., 2011). Depending on the position and nature of the substituent at the Ar–NH–N=synthon, and on the metal ion, different types of coordination compounds can be isolated, which have applications in catalysis, molecular recognition, crystal growth and design, etc. (Afkhami et al., 2019; Ma et al., 2017, 2021; Mahmoudi et al., 2017, 2021; Mahmudov et al., 2010, 2023). Not only the hydrogen-bond donor or acceptor ability of the hydrazone moiety, but also the participation of the attached functional groups in various sorts of intermolecular interactions improve their biological activities, catalytic performances, and reactivities (Martins et al., 2017; Gurbanov et al., 2017, 2020; Velásquez et al., 2019). We have found that an arylhydrazone ligand can be produced by the activation of one cyano group on an active methylene fragment of the parent molecule to produce the carboxy amide moiety of the title molecule, (E)-2-[2-(2-amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid N,N-dimethylformamide monosolvate, which participates in intermolecular hydrogen bonding in its crystal structure.
2. Structural commentary
The , contains two crystallographically independent main residue molecules, A and B, and two dimethylformamide (DMF) solvate molecules. As shown in Fig. 2 (r.m.s. deviation = 0.108 Å), molecules A and B and their DMF solvent molecules overlap quite well. The overlay diagram suggests possibly slight differences and PLATON ADDSYM (Spek, 2020) did not find any indication of with a cell of that volume. All attempts with CELL_NOW to find a twinned cell with the volume failed. In both molecules A and B, intramolecular N—H⋯O hydrogen bonds (Table 1) form S(6) ring motifs (Bernstein et al., 1995), consolidating the molecular configuration. The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the Database survey (Section 4).
of the title compound, Fig. 13. Supramolecular features and Hirshfeld surface analysis
In the crystal, N—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 3a,b) connect molecules A and B, forming (8) ring motifs (Bernstein et al., 1995). Weak C—H⋯O interactions link the molecules, forming layers parallel to the (12) plane (Table 1, Fig. 3a,b). The DMF solvent molecules are also connected to the main molecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking interactions [Cg1⋯Cg2(1 − x, 1 − y, 1 − z) = 3.8702 (17) Å; Cg1 and Cg2 are the centroids of the (C1–C6) and (C11-C16) benzene rings of molecules A and B, respectively] between the layers also increase the stability of the molecular structure in the third dimension (Fig. 4).
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021). In the Hirshfeld surface plotted over dnorm (Fig. 5), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii (Venkatesan et al., 2016). The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the Hirshfeld surface is a tool to visualize π–π stacking interactions by the presence of adjacent red and blue triangles (Fig. 7).
The overall two-dimensional fingerprint plots for molecules A and B are shown in (Fig. 8a) and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C and N⋯H/H⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 8b–e, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯O/O⋯H (Table 2), contributing 27.5% (for A) and 25.1% (for B) to the overall crystal packing; this is shown in Fig. 8b where the pairs of spikes have tips at de + di = 1.55 Å (for A and B). The H⋯H contacts contribute 27.3% for A and 24.3% for B to the Hirshfeld surface and are shown in Fig. 8c as widely scattered points of high density due to the large hydrogen content of the molecule with the tips at de = di = 2.50 Å (for A) and 2.25 Å (for B). The high contribution of these interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015). In the absence of C—H⋯π interactions, the pairs of distorted spikes in the fingerprint plots delineated into H⋯C/C⋯H contacts (Fig. 8d; 15.4% for A and 15.3% for B) have the tips at de + di = 2.90 Å for A and 3.00 Å for B. The pair of distorted wings in the fingerprint plot delineated into N⋯H/H⋯N contacts (Fig. 8e; 13.3% contributions for A and 14.0% for B) have the tips at de + di = 2.40 Å for A and 2.70 Å for B. The surroundings of molecules A and B are very similar, as can be observed from a comparison of the supplied data.
|
The nearest neighbour coordination environment of a molecule can be determined from the color patches on the Hirshfeld surface based on how close to other molecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the O⋯H/H⋯O, H⋯H, C⋯H/H⋯C and N⋯H/H⋯N interactions in Fig. 9 a–d, respectively.
The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the molecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the enclosed volume. The volume of the crystal voids (Fig. 10a,b) and the percentage of free space in the are calculated as 178.70 Å3 and 11.93%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.
(Turner4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the (2E)-2-cyano-2-hydrazinylideneacetamide unit yielded five compounds related to the title compound, viz. (E,E)-1-(2-hydroxyimino-1-phenylethylidene)semicarbazide monohydrate (CSD refcode VORMEV; Öztürk et al., 2009), 2-[(4,7-dimethylquinolin-2-yl)methylidene]hydrazine-1-carboxamide dihydrate (MIQPIO; Aydemir et al., 2018), 2-(but-2-en-1-ylidene)hydrazinecarboxamide (WOTRII; Arfan & Rukiah, 2015), 2-(pyridin-4-ylmethylene)hydrazinecarboxamide hemihydrate (GUHXOY; Inoue et al., 2015) and (E)-1-(4-methoxybenzylidene)semicarbazide (YIFTOX; Liang et al., 2007).
In the crystal of VORMEV, intermolecular O—H⋯O and N—H⋯O hydrogen bonds link the molecules, and (8) ring motifs are apparent. In the crystal of MIQPIO, the molecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (101). In the crystal of WOTRII, intermolecular N—H⋯O hydrogen bonds link the molecules into layers parallel to the bc plane. In the crystal of GUHXOY, molecules are linked into an infinite three-dimensional network by classical N—H⋯Os (s = semicarbazone) and Ow—H⋯N (w = water) hydrogen bonds. In the crystal of YIFTOX, the almost planar molecules interact by way of N—H⋯O hydrogen bonds.
5. Synthesis and crystallization
214 mg (1 mmol) of 2-[2-(dicyanomethylene)hydrazinyl]benzoic acid was dissolved in 15 mL of acetone and 0.1 mL of water were added, then stirred at 353 K for 1 h. Then, the solvent was evacuated by a rotary evaporator, and the obtained yellow powder was crystallized in a mixture of acetone and dimethylformamide (20/1; v/v). Yield, 83%, yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C13H15N5O4 (Mr = 305.29): C 51.15, H 4.95, N 22.94; found: C 51.13, H 4.91, N 22.92%. IR (KBr): 3211 ν(OH), 2948 and 2876 ν(NH), 2216 ν(CN), 1667 ν(C=O) and 1610 ν(C=N) cm−1. 1H NMR (300.130 MHz) in DMSO-d6, internal TMS, δ (ppm): 2.66 and 2.83 (6H, 2CH3), 4.31 (1H, OH), 7.86 (2H, NH2), 8.18-8.56 (4H, Ar), 8.70 (1H, CH of DMF) and 14.46 (1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d6). δ: 35.0 and 36.9 (2CH3), 109.8 (CN), 112.2 C—COOH, 115.5 (CH, Ar), 123.9 (CH, Ar), 128.5 (CH, Ar), 132.0 (CH, Ar), 133.4 (C=O), 143.5 (C—NH), 161.2 (COOH), 163.9 (C=O of DMF), 165.0 (C=O).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in geometrically calculated positions (C—H = 0.93 and 0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5Ueq(C) for methyl groups. N- and O-bound hydrogen atoms were located in difference-Fourier maps, but their positional parameters were fixed and their isotropic displacement parameters were refined with Uiso(H) =1.2 or 1.5Ueq(N,O). Two reflections, (010) and (202), affected by the beam stop, were omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2322557
https://doi.org/10.1107/S2056989023011118/ej2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023011118/ej2001Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023011118/ej2001Isup3.cml
C10H8N4O3·C3H7NO | Z = 4 |
Mr = 305.30 | F(000) = 640 |
Triclinic, P1 | Dx = 1.354 Mg m−3 |
a = 7.9481 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.8523 (13) Å | Cell parameters from 9961 reflections |
c = 14.8737 (15) Å | θ = 2.2–26.3° |
α = 96.651 (4)° | µ = 0.10 mm−1 |
β = 96.960 (3)° | T = 296 K |
γ = 90.548 (3)° | Plate, yellow |
V = 1497.6 (3) Å3 | 0.35 × 0.23 × 0.15 mm |
Bruker D8 Quest PHOTON 100 detector diffractometer | 4113 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.083 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.5°, θmin = 2.6° |
Tmin = 0.956, Tmax = 0.975 | h = −9→9 |
51380 measured reflections | k = −16→16 |
6106 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: mixed |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0525P)2 + 1.4706P] where P = (Fo2 + 2Fc2)/3 |
6106 reflections | (Δ/σ)max < 0.001 |
401 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5077 (3) | 0.83808 (16) | 0.46961 (15) | 0.0606 (6) | |
H1A | 0.461271 | 0.798067 | 0.501619 | 0.091* | |
O2 | 0.5136 (3) | 0.69907 (15) | 0.36569 (14) | 0.0526 (5) | |
O3 | 0.7061 (3) | 0.44678 (15) | −0.00144 (14) | 0.0566 (6) | |
O4 | −0.2192 (3) | 0.33799 (16) | 0.85161 (15) | 0.0617 (6) | |
H4B | −0.240599 | 0.379454 | 0.897420 | 0.093* | |
O5 | −0.0804 (3) | 0.47622 (16) | 0.81769 (15) | 0.0609 (6) | |
O6 | 0.3548 (3) | 0.72532 (15) | 0.56897 (14) | 0.0541 (5) | |
O7 | −0.0481 (4) | 0.8179 (2) | 0.0095 (2) | 0.0812 (8) | |
O8 | 0.2197 (4) | 0.35888 (19) | 0.40513 (18) | 0.0809 (8) | |
N1 | 0.6435 (3) | 0.72330 (17) | 0.21577 (15) | 0.0425 (5) | |
H1N | 0.599503 | 0.681439 | 0.251926 | 0.051* | |
N2 | 0.6978 (3) | 0.68585 (17) | 0.13792 (15) | 0.0413 (5) | |
N3 | 0.5278 (4) | 0.4699 (2) | 0.2074 (2) | 0.0715 (8) | |
N4 | 0.8120 (4) | 0.6045 (2) | −0.02242 (18) | 0.0626 (8) | |
H4C | 0.834937 | 0.673399 | −0.006946 | 0.075* | |
H4D | 0.847177 | 0.579809 | −0.075956 | 0.075* | |
N5 | 0.0657 (3) | 0.45672 (17) | 0.66661 (16) | 0.0452 (5) | |
H5N | 0.039820 | 0.498241 | 0.715773 | 0.054* | |
N6 | 0.1512 (3) | 0.49363 (17) | 0.60548 (15) | 0.0415 (5) | |
N7 | 0.1432 (4) | 0.7136 (2) | 0.7607 (2) | 0.0749 (9) | |
N8 | 0.3283 (3) | 0.57007 (18) | 0.47862 (17) | 0.0509 (6) | |
H8A | 0.292853 | 0.502581 | 0.467258 | 0.061* | |
H8B | 0.393353 | 0.591571 | 0.438508 | 0.061* | |
N9 | 0.2321 (4) | 0.8553 (2) | 0.0099 (2) | 0.0683 (8) | |
N10 | 0.2728 (3) | 0.2365 (2) | 0.29056 (19) | 0.0576 (7) | |
C1 | 0.6661 (3) | 0.82926 (19) | 0.24815 (18) | 0.0397 (6) | |
C2 | 0.7397 (4) | 0.8984 (2) | 0.1980 (2) | 0.0491 (7) | |
H2A | 0.775447 | 0.874291 | 0.142162 | 0.059* | |
C3 | 0.7590 (4) | 1.0028 (2) | 0.2316 (2) | 0.0579 (8) | |
H3A | 0.806985 | 1.049024 | 0.197694 | 0.069* | |
C4 | 0.7085 (5) | 1.0401 (2) | 0.3146 (2) | 0.0636 (9) | |
H4A | 0.722721 | 1.110754 | 0.336468 | 0.076* | |
C5 | 0.6365 (4) | 0.9715 (2) | 0.3652 (2) | 0.0536 (7) | |
H5A | 0.602677 | 0.996593 | 0.421230 | 0.064* | |
C6 | 0.6139 (3) | 0.8654 (2) | 0.33319 (19) | 0.0420 (6) | |
C7 | 0.6755 (3) | 0.5866 (2) | 0.10982 (18) | 0.0397 (6) | |
C8 | 0.7337 (4) | 0.5420 (2) | 0.02367 (19) | 0.0461 (6) | |
C9 | 0.5411 (4) | 0.7930 (2) | 0.38984 (19) | 0.0453 (6) | |
C10 | 0.5941 (4) | 0.5167 (2) | 0.1609 (2) | 0.0485 (7) | |
C11 | 0.0087 (3) | 0.3522 (2) | 0.65460 (18) | 0.0398 (6) | |
C12 | 0.0409 (4) | 0.2854 (2) | 0.5782 (2) | 0.0478 (7) | |
H12A | 0.100522 | 0.310240 | 0.534674 | 0.057* | |
C13 | −0.0153 (4) | 0.1830 (2) | 0.5672 (2) | 0.0577 (8) | |
H13A | 0.005908 | 0.138834 | 0.515929 | 0.069* | |
C14 | −0.1030 (5) | 0.1447 (2) | 0.6314 (2) | 0.0624 (9) | |
H14A | −0.138944 | 0.074782 | 0.623994 | 0.075* | |
C15 | −0.1371 (4) | 0.2102 (2) | 0.7063 (2) | 0.0528 (7) | |
H15A | −0.197101 | 0.183987 | 0.749065 | 0.063* | |
C16 | −0.0837 (3) | 0.3151 (2) | 0.71983 (19) | 0.0419 (6) | |
C17 | 0.2032 (3) | 0.5910 (2) | 0.61849 (18) | 0.0395 (6) | |
C18 | 0.3021 (3) | 0.6324 (2) | 0.55211 (18) | 0.0409 (6) | |
C19 | −0.1254 (4) | 0.3835 (2) | 0.8002 (2) | 0.0465 (6) | |
C20 | 0.1723 (4) | 0.6620 (2) | 0.6966 (2) | 0.0484 (7) | |
C21 | 0.0905 (5) | 0.7971 (3) | −0.0140 (2) | 0.0663 (9) | |
H21A | 0.098251 | 0.735057 | −0.052137 | 0.080* | |
C23 | 0.2309 (7) | 0.9502 (4) | 0.0710 (4) | 0.1176 (19) | |
H23A | 0.126554 | 0.953456 | 0.097600 | 0.176* | |
H23B | 0.240655 | 1.009384 | 0.037917 | 0.176* | |
H23C | 0.324543 | 0.951311 | 0.118398 | 0.176* | |
C22 | 0.3904 (6) | 0.8209 (4) | −0.0208 (4) | 0.1016 (15) | |
H22A | 0.371200 | 0.756777 | −0.061050 | 0.152* | |
H22B | 0.470003 | 0.809503 | 0.030799 | 0.152* | |
H22C | 0.435242 | 0.873648 | −0.052721 | 0.152* | |
C24 | 0.2762 (4) | 0.3327 (2) | 0.3335 (2) | 0.0605 (8) | |
H24A | 0.326115 | 0.384986 | 0.306639 | 0.073* | |
C25 | 0.3442 (7) | 0.2137 (3) | 0.2058 (3) | 0.0922 (13) | |
H25A | 0.389979 | 0.277101 | 0.189053 | 0.138* | |
H25B | 0.257282 | 0.184864 | 0.158807 | 0.138* | |
H25C | 0.432807 | 0.164055 | 0.213278 | 0.138* | |
C26 | 0.2027 (6) | 0.1503 (3) | 0.3292 (3) | 0.0849 (12) | |
H26A | 0.160269 | 0.176165 | 0.385159 | 0.127* | |
H26B | 0.289377 | 0.100539 | 0.341305 | 0.127* | |
H26C | 0.111800 | 0.117008 | 0.287035 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0856 (16) | 0.0436 (11) | 0.0549 (13) | −0.0106 (10) | 0.0279 (11) | −0.0039 (9) |
O2 | 0.0690 (13) | 0.0373 (10) | 0.0534 (12) | −0.0072 (9) | 0.0216 (10) | −0.0006 (9) |
O3 | 0.0758 (15) | 0.0416 (11) | 0.0537 (12) | −0.0098 (10) | 0.0228 (11) | −0.0031 (9) |
O4 | 0.0814 (16) | 0.0479 (12) | 0.0592 (13) | −0.0111 (11) | 0.0265 (11) | 0.0033 (10) |
O5 | 0.0795 (15) | 0.0445 (12) | 0.0611 (13) | −0.0106 (10) | 0.0271 (11) | −0.0018 (10) |
O6 | 0.0711 (14) | 0.0408 (11) | 0.0515 (12) | −0.0104 (9) | 0.0188 (10) | −0.0006 (9) |
O7 | 0.0848 (19) | 0.0619 (15) | 0.099 (2) | −0.0123 (13) | 0.0337 (16) | −0.0017 (14) |
O8 | 0.108 (2) | 0.0609 (15) | 0.0751 (17) | −0.0173 (14) | 0.0416 (15) | −0.0157 (13) |
N1 | 0.0473 (13) | 0.0356 (12) | 0.0453 (13) | −0.0052 (9) | 0.0113 (10) | 0.0018 (9) |
N2 | 0.0433 (12) | 0.0364 (11) | 0.0439 (12) | −0.0036 (9) | 0.0074 (10) | 0.0017 (9) |
N3 | 0.086 (2) | 0.0595 (17) | 0.073 (2) | −0.0141 (15) | 0.0230 (17) | 0.0118 (15) |
N4 | 0.087 (2) | 0.0456 (14) | 0.0581 (16) | −0.0191 (13) | 0.0296 (14) | −0.0031 (12) |
N5 | 0.0528 (14) | 0.0381 (12) | 0.0449 (13) | −0.0049 (10) | 0.0123 (11) | 0.0003 (10) |
N6 | 0.0450 (12) | 0.0378 (12) | 0.0419 (12) | −0.0002 (9) | 0.0071 (10) | 0.0042 (9) |
N7 | 0.097 (2) | 0.0653 (19) | 0.0621 (18) | −0.0025 (16) | 0.0248 (17) | −0.0080 (15) |
N8 | 0.0624 (16) | 0.0403 (13) | 0.0517 (14) | −0.0032 (11) | 0.0197 (12) | −0.0004 (11) |
N9 | 0.081 (2) | 0.0551 (16) | 0.0695 (19) | −0.0144 (15) | 0.0131 (15) | 0.0069 (14) |
N10 | 0.0616 (16) | 0.0492 (15) | 0.0596 (16) | −0.0057 (12) | 0.0086 (13) | −0.0047 (12) |
C1 | 0.0392 (14) | 0.0327 (13) | 0.0453 (15) | 0.0004 (10) | 0.0019 (11) | 0.0004 (11) |
C2 | 0.0531 (17) | 0.0408 (15) | 0.0537 (17) | −0.0052 (12) | 0.0101 (13) | 0.0035 (13) |
C3 | 0.068 (2) | 0.0406 (16) | 0.067 (2) | −0.0084 (14) | 0.0140 (16) | 0.0105 (14) |
C4 | 0.082 (2) | 0.0319 (15) | 0.077 (2) | −0.0048 (15) | 0.0198 (19) | −0.0015 (14) |
C5 | 0.0617 (19) | 0.0377 (15) | 0.0612 (19) | −0.0010 (13) | 0.0153 (15) | −0.0027 (13) |
C6 | 0.0412 (14) | 0.0347 (13) | 0.0498 (16) | −0.0020 (11) | 0.0063 (12) | 0.0035 (11) |
C7 | 0.0430 (14) | 0.0354 (13) | 0.0399 (14) | −0.0037 (11) | 0.0056 (11) | 0.0014 (11) |
C8 | 0.0507 (16) | 0.0415 (15) | 0.0453 (15) | −0.0067 (12) | 0.0077 (12) | 0.0003 (12) |
C9 | 0.0445 (15) | 0.0421 (15) | 0.0491 (16) | −0.0018 (12) | 0.0105 (12) | −0.0010 (12) |
C10 | 0.0520 (17) | 0.0412 (15) | 0.0508 (17) | −0.0084 (12) | 0.0083 (13) | −0.0018 (13) |
C11 | 0.0387 (14) | 0.0357 (13) | 0.0440 (15) | 0.0014 (10) | 0.0010 (11) | 0.0053 (11) |
C12 | 0.0528 (17) | 0.0397 (15) | 0.0516 (17) | 0.0020 (12) | 0.0085 (13) | 0.0060 (12) |
C13 | 0.070 (2) | 0.0430 (16) | 0.0576 (19) | 0.0028 (14) | 0.0082 (16) | −0.0044 (14) |
C14 | 0.074 (2) | 0.0357 (15) | 0.076 (2) | −0.0067 (14) | 0.0094 (18) | 0.0021 (15) |
C15 | 0.0549 (18) | 0.0445 (16) | 0.0602 (19) | −0.0029 (13) | 0.0079 (14) | 0.0108 (14) |
C16 | 0.0411 (14) | 0.0380 (14) | 0.0462 (15) | 0.0003 (11) | 0.0016 (12) | 0.0071 (11) |
C17 | 0.0446 (15) | 0.0344 (13) | 0.0395 (14) | −0.0009 (11) | 0.0058 (11) | 0.0033 (11) |
C18 | 0.0446 (15) | 0.0363 (14) | 0.0415 (14) | 0.0028 (11) | 0.0057 (11) | 0.0027 (11) |
C19 | 0.0475 (16) | 0.0448 (16) | 0.0484 (16) | −0.0010 (12) | 0.0086 (12) | 0.0080 (12) |
C20 | 0.0548 (17) | 0.0411 (15) | 0.0496 (17) | −0.0029 (12) | 0.0114 (13) | 0.0021 (13) |
C21 | 0.086 (3) | 0.0492 (18) | 0.065 (2) | −0.0128 (17) | 0.0207 (19) | 0.0022 (15) |
C23 | 0.133 (4) | 0.073 (3) | 0.137 (5) | −0.029 (3) | 0.019 (4) | −0.029 (3) |
C22 | 0.079 (3) | 0.109 (4) | 0.116 (4) | −0.011 (3) | 0.015 (3) | 0.011 (3) |
C24 | 0.066 (2) | 0.0469 (17) | 0.068 (2) | −0.0111 (15) | 0.0156 (17) | −0.0022 (15) |
C25 | 0.127 (4) | 0.075 (3) | 0.074 (3) | 0.001 (2) | 0.031 (3) | −0.013 (2) |
C26 | 0.109 (3) | 0.051 (2) | 0.094 (3) | −0.014 (2) | 0.018 (2) | −0.0004 (19) |
O1—C9 | 1.317 (3) | C3—C4 | 1.379 (5) |
O1—H1A | 0.8502 | C3—H3A | 0.9300 |
O2—C9 | 1.228 (3) | C4—C5 | 1.385 (4) |
O3—C8 | 1.247 (3) | C4—H4A | 0.9300 |
O4—C19 | 1.311 (3) | C5—C6 | 1.394 (4) |
O4—H4B | 0.8501 | C5—H5A | 0.9300 |
O5—C19 | 1.230 (3) | C6—C9 | 1.483 (4) |
O6—C18 | 1.249 (3) | C7—C10 | 1.438 (4) |
O7—C21 | 1.219 (4) | C7—C8 | 1.471 (4) |
O8—C24 | 1.219 (4) | C11—C12 | 1.394 (4) |
N1—N2 | 1.325 (3) | C11—C16 | 1.407 (4) |
N1—C1 | 1.393 (3) | C12—C13 | 1.371 (4) |
N1—H1N | 0.8999 | C12—H12A | 0.9300 |
N2—C7 | 1.299 (3) | C13—C14 | 1.380 (5) |
N3—C10 | 1.138 (4) | C13—H13A | 0.9300 |
N4—C8 | 1.313 (4) | C14—C15 | 1.372 (4) |
N4—H4C | 0.8999 | C14—H14A | 0.9300 |
N4—H4D | 0.9000 | C15—C16 | 1.395 (4) |
N5—N6 | 1.325 (3) | C15—H15A | 0.9300 |
N5—C11 | 1.398 (3) | C16—C19 | 1.473 (4) |
N5—H5N | 0.9000 | C17—C20 | 1.439 (4) |
N6—C17 | 1.300 (3) | C17—C18 | 1.476 (4) |
N7—C20 | 1.145 (4) | C21—H21A | 0.9300 |
N8—C18 | 1.318 (3) | C23—H23A | 0.9600 |
N8—H8A | 0.9000 | C23—H23B | 0.9600 |
N8—H8B | 0.9000 | C23—H23C | 0.9600 |
N9—C21 | 1.333 (5) | C22—H22A | 0.9600 |
N9—C23 | 1.435 (5) | C22—H22B | 0.9600 |
N9—C22 | 1.446 (5) | C22—H22C | 0.9600 |
N10—C24 | 1.323 (4) | C24—H24A | 0.9300 |
N10—C26 | 1.442 (5) | C25—H25A | 0.9600 |
N10—C25 | 1.445 (5) | C25—H25B | 0.9600 |
C1—C2 | 1.392 (4) | C25—H25C | 0.9600 |
C1—C6 | 1.408 (4) | C26—H26A | 0.9600 |
C2—C3 | 1.377 (4) | C26—H26B | 0.9600 |
C2—H2A | 0.9300 | C26—H26C | 0.9600 |
C9—O1—H1A | 115.0 | C13—C12—H12A | 120.0 |
C19—O4—H4B | 111.9 | C11—C12—H12A | 120.0 |
N2—N1—C1 | 120.3 (2) | C12—C13—C14 | 120.7 (3) |
N2—N1—H1N | 122.1 | C12—C13—H13A | 119.6 |
C1—N1—H1N | 117.4 | C14—C13—H13A | 119.6 |
C7—N2—N1 | 118.8 (2) | C15—C14—C13 | 119.7 (3) |
C8—N4—H4C | 126.8 | C15—C14—H14A | 120.1 |
C8—N4—H4D | 120.3 | C13—C14—H14A | 120.1 |
H4C—N4—H4D | 112.9 | C14—C15—C16 | 121.5 (3) |
N6—N5—C11 | 120.4 (2) | C14—C15—H15A | 119.2 |
N6—N5—H5N | 121.4 | C16—C15—H15A | 119.2 |
C11—N5—H5N | 118.1 | C15—C16—C11 | 118.0 (3) |
C17—N6—N5 | 119.1 (2) | C15—C16—C19 | 119.9 (3) |
C18—N8—H8A | 124.0 | C11—C16—C19 | 122.1 (2) |
C18—N8—H8B | 120.7 | N6—C17—C20 | 123.2 (2) |
H8A—N8—H8B | 115.1 | N6—C17—C18 | 119.7 (2) |
C21—N9—C23 | 120.1 (4) | C20—C17—C18 | 117.1 (2) |
C21—N9—C22 | 120.7 (3) | O6—C18—N8 | 124.0 (3) |
C23—N9—C22 | 119.1 (4) | O6—C18—C17 | 117.6 (2) |
C24—N10—C26 | 120.5 (3) | N8—C18—C17 | 118.4 (2) |
C24—N10—C25 | 121.4 (3) | O5—C19—O4 | 121.9 (3) |
C26—N10—C25 | 118.1 (3) | O5—C19—C16 | 123.8 (3) |
C2—C1—N1 | 120.9 (2) | O4—C19—C16 | 114.3 (2) |
C2—C1—C6 | 120.4 (2) | N7—C20—C17 | 175.9 (3) |
N1—C1—C6 | 118.7 (2) | O7—C21—N9 | 125.8 (3) |
C3—C2—C1 | 119.4 (3) | O7—C21—H21A | 117.1 |
C3—C2—H2A | 120.3 | N9—C21—H21A | 117.1 |
C1—C2—H2A | 120.3 | N9—C23—H23A | 109.5 |
C2—C3—C4 | 121.3 (3) | N9—C23—H23B | 109.5 |
C2—C3—H3A | 119.4 | H23A—C23—H23B | 109.5 |
C4—C3—H3A | 119.4 | N9—C23—H23C | 109.5 |
C3—C4—C5 | 119.6 (3) | H23A—C23—H23C | 109.5 |
C3—C4—H4A | 120.2 | H23B—C23—H23C | 109.5 |
C5—C4—H4A | 120.2 | N9—C22—H22A | 109.5 |
C4—C5—C6 | 120.9 (3) | N9—C22—H22B | 109.5 |
C4—C5—H5A | 119.6 | H22A—C22—H22B | 109.5 |
C6—C5—H5A | 119.6 | N9—C22—H22C | 109.5 |
C5—C6—C1 | 118.5 (3) | H22A—C22—H22C | 109.5 |
C5—C6—C9 | 119.9 (3) | H22B—C22—H22C | 109.5 |
C1—C6—C9 | 121.6 (2) | O8—C24—N10 | 125.8 (3) |
N2—C7—C10 | 121.8 (2) | O8—C24—H24A | 117.1 |
N2—C7—C8 | 120.5 (2) | N10—C24—H24A | 117.1 |
C10—C7—C8 | 117.7 (2) | N10—C25—H25A | 109.5 |
O3—C8—N4 | 123.7 (3) | N10—C25—H25B | 109.5 |
O3—C8—C7 | 118.1 (2) | H25A—C25—H25B | 109.5 |
N4—C8—C7 | 118.3 (2) | N10—C25—H25C | 109.5 |
O2—C9—O1 | 122.1 (3) | H25A—C25—H25C | 109.5 |
O2—C9—C6 | 123.8 (2) | H25B—C25—H25C | 109.5 |
O1—C9—C6 | 114.1 (2) | N10—C26—H26A | 109.5 |
N3—C10—C7 | 173.2 (3) | N10—C26—H26B | 109.5 |
C12—C11—N5 | 120.5 (2) | H26A—C26—H26B | 109.5 |
C12—C11—C16 | 120.1 (2) | N10—C26—H26C | 109.5 |
N5—C11—C16 | 119.4 (2) | H26A—C26—H26C | 109.5 |
C13—C12—C11 | 120.0 (3) | H26B—C26—H26C | 109.5 |
C1—N1—N2—C7 | 179.7 (2) | N6—N5—C11—C16 | −179.2 (2) |
C11—N5—N6—C17 | −179.8 (2) | N5—C11—C12—C13 | 179.8 (3) |
N2—N1—C1—C2 | 2.6 (4) | C16—C11—C12—C13 | −0.9 (4) |
N2—N1—C1—C6 | −177.1 (2) | C11—C12—C13—C14 | −0.4 (5) |
N1—C1—C2—C3 | 179.5 (3) | C12—C13—C14—C15 | 1.2 (5) |
C6—C1—C2—C3 | −0.9 (4) | C13—C14—C15—C16 | −0.6 (5) |
C1—C2—C3—C4 | 0.7 (5) | C14—C15—C16—C11 | −0.7 (4) |
C2—C3—C4—C5 | −0.2 (5) | C14—C15—C16—C19 | 178.9 (3) |
C3—C4—C5—C6 | −0.2 (5) | C12—C11—C16—C15 | 1.5 (4) |
C4—C5—C6—C1 | 0.0 (5) | N5—C11—C16—C15 | −179.3 (2) |
C4—C5—C6—C9 | 178.2 (3) | C12—C11—C16—C19 | −178.1 (3) |
C2—C1—C6—C5 | 0.5 (4) | N5—C11—C16—C19 | 1.1 (4) |
N1—C1—C6—C5 | −179.8 (3) | N5—N6—C17—C20 | −0.1 (4) |
C2—C1—C6—C9 | −177.7 (3) | N5—N6—C17—C18 | 178.5 (2) |
N1—C1—C6—C9 | 2.0 (4) | N6—C17—C18—O6 | −177.4 (3) |
N1—N2—C7—C10 | −0.1 (4) | C20—C17—C18—O6 | 1.3 (4) |
N1—N2—C7—C8 | 179.9 (2) | N6—C17—C18—N8 | 3.1 (4) |
N2—C7—C8—O3 | −178.4 (3) | C20—C17—C18—N8 | −178.1 (3) |
C10—C7—C8—O3 | 1.6 (4) | C15—C16—C19—O5 | 178.7 (3) |
N2—C7—C8—N4 | 1.6 (4) | C11—C16—C19—O5 | −1.7 (4) |
C10—C7—C8—N4 | −178.3 (3) | C15—C16—C19—O4 | −2.9 (4) |
C5—C6—C9—O2 | 178.2 (3) | C11—C16—C19—O4 | 176.7 (3) |
C1—C6—C9—O2 | −3.6 (4) | C23—N9—C21—O7 | 2.1 (6) |
C5—C6—C9—O1 | −1.8 (4) | C22—N9—C21—O7 | 178.5 (4) |
C1—C6—C9—O1 | 176.4 (3) | C26—N10—C24—O8 | −2.1 (6) |
N6—N5—C11—C12 | 0.0 (4) | C25—N10—C24—O8 | −179.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O6 | 0.85 | 1.73 | 2.580 (3) | 175 |
O4—H4B···O3i | 0.85 | 1.75 | 2.590 (3) | 171 |
N1—H1N···O2 | 0.90 | 1.89 | 2.617 (3) | 136 |
N4—H4C···O7ii | 0.90 | 2.04 | 2.915 (3) | 162 |
N4—H4D···O5iii | 0.90 | 2.09 | 2.952 (3) | 161 |
N5—H5N···O5 | 0.90 | 1.93 | 2.640 (3) | 134 |
N8—H8A···O8 | 0.90 | 2.01 | 2.889 (3) | 164 |
N8—H8B···O2 | 0.90 | 2.14 | 2.990 (3) | 158 |
C2—H2A···O7ii | 0.93 | 2.60 | 3.505 (4) | 165 |
C4—H4A···O6iv | 0.93 | 2.52 | 3.372 (3) | 153 |
C12—H12A···O8 | 0.93 | 2.39 | 3.311 (4) | 171 |
C24—H24A···N3 | 0.93 | 2.62 | 3.498 (4) | 158 |
Symmetry codes: (i) x−1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z−1; (iv) −x+1, −y+2, −z+1. |
Contact | Distance | Symmetry operation |
H1A···O6 | 1.73 | x, y, z |
H5A···O1 | 2.74 | 1 - x, 2 - y, 1 - z |
O3···H4B | 1.75 | 1 + x, y, -1 + z |
N3···C20 | 3.23 | 1 - x, 1 - y, 1 - z+ |
N3···H24A | 2.62 | x, y, z |
H4C···O7 | 2.04 | 1 + x, y, z |
H4A···O6 | 2.52 | 1 - x, 2 - y, 1 - z |
O4···C21 | 3.21 | -x, 1 - y, 1 - z |
C20···N3 | 3.23 | 1 - x, 1 - y, 1 - z |
H8A···O8 | 2.01 | x, y, z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, SRH, MA and AB; synthesis, FEH; X-ray analysis, ZA and MA; writing (review and editing of the manuscript) FEH, MA and AB; funding acquisition, SRH and FEH; supervision, SRH, MA and AB.
Funding information
Funding for this research was provided by: Baku State University.
References
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270. Web of Science CSD CrossRef CAS Google Scholar
Arfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168–172. CSD CrossRef IUCr Journals Google Scholar
Aydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674–1677. CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Inoue, M. H., Back, D. F., Burrow, R. A. & Nunes, F. S. (2015). Acta Cryst. E71, o317–o318. CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO–A System for Computational Chemistry. Available at:http://hirshfeldsurface.net/. Google Scholar
Khalilov, A. N. (2021a). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021b). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861. Web of Science CrossRef Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Öztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059–o1060. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm,10, 377–388. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.