research communications
μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)]
of poly[hexa-aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: i6thiam@yahoo.fr
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethylideneamino]ethanol (HL), which is formed by reaction of 2-aminoethanol and 2-acetylpyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}tetracopper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The of the of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated molecules of the ligand, and six bromide anions, which act as bridges. The ligand molecules act in a tridentate fashion through their azomethine nitrogen atoms, their pyridine nitrogen atoms, and their alcoholate O atoms. The shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetrahedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetranuclear polymer compound.
Keywords: crystal structure; acetylpyridine; 2-aminoethanol; 2-(1-((2-hyroxyethyl)imino)acetylpyridine); square pyramidal; tetrahedral.
CCDC reference: 2321970
1. Chemical context
et al., 2012; Thompson & Orvig, 2001), and catalytical properties (Sutradhar et al., 2013). They are used in the preparation of photo- and pH-responsive sensors (Li et al., 2013), fluorescent receptors of metals (Chen et al., 2013), non-linear materials (Massue et al., 2013), nano-particles (Deng et al., 2013), hybrid inorganic–organic materials (Bhaumik et al., 2013), and even uranium complexes (Asadi et al., 2013), and ionic liquids (Ouadi et al., 2006). Many related tridentate Schiff base ligands have been successfully employed to build clusters of copper(II) ions bridged by halogen atoms (Wang et al., 2013; Sall et al., 2019; Sun et al., 2005). The incorporation of an amino alcohol fragment generally leads to the formation of [Cu4O4] cubane-type clusters (Yan et al., 2009; Xie et al., 2002). In our present work, we have synthesized and characterized through X-ray the title tetranuclear complex formulated as [Cu4Br6L2]n, (HL = 2-{1-[(2-hydroxyethyl)imino]acetylpyridine}).
attract a great attention as ligands due to their simplicity of formation from amino and carbonyl derivatives. A rich coordination variability can be thus easily be attained and profited by following the introduction of other functional groups. Schiff base ligands are becoming increasingly important as they have interesting biological activities such as antibacterial, antitumor, insulin-mimetic and antifungi (Patil2. Structural commentary
The reaction of acetylpyridine and 2-aminoethanol in 1:1 ratio in ethanol yields the ligand 2-{1-[(2-hydroxyethyl)imino]acetylpyridine} (HL). The reaction of the ligand HL with copper bromide yields a complex in which the ligand is reacted in its deprotonated form as L−. The coordination complex is formulated as [Cu4L2Br6]n (I) (Fig. 1).
In the crystal of the tetranuclear complex, each of the two deprotonated ligands acts in a tridentate fashion, linking exclusively one copper(II) cation through its imino nitrogen atom, its pyridine nitrogen atom and its alcoholate oxygen atom. The two other Cu cations are only coordinated to bromide anions, which act as bridges. The metal centers present two different environments. According to the Addison index (Addison et al., 1984) τ = (β − α)/60 (β and α are the largest values of the bond angles around the central atom) the coordination geometry around a pentacoordinated metal center can be discussed: τ = 0 describes a perfect square-pyramidal while τ = 1 describes a perfect trigonal–bipyramidal geometry. The geometries around the pentacoordinated Cu1 and Cu2 atoms are best described as distorted square-pyramidal, as shown by the Addison index: τ = 0.0967 (Cu1) and τ = 0.1517 (Cu2). For Cu1, the basal plane is occupied by O1, N1, N2 and Br1, the apical position being occupied by the Br2 atom. For Cu2, the basal plane is occupied by O2, N3, N4 and Br6, the apical position being occupied by the Br5 atom. Additionally, the sums of the angles subtended by the atoms in the basal plane, which are equal to 356.1° (Cu1) and 356.3° (Cu2), deviate severely from the ideal value of 360°. For Cu1 and Cu2, the bond-angle values [92.51 (13)–108.25 (16)°] between the atom occupying the apical position and the atoms in the basal plane also deviate considerably from the ideal value of 90°. Additionally, the cissoid bond-angle values [80.5 (2)–98.12 (13)°] also deviate from the ideal value of 90°. The coordination of the ligand to Cu1 or Cu2 results in the formation of two five-membered CuNCCN rings with bite-angle values of 80.5 (2)° (Cu1) and 80.6 (2)° (Cu2) and CuNCCO rings with bite-angle values of 81.9 (2)° (Cu1) and 81.6 (2)° (Cu2). The geometry around the tetracoordinated atoms Cu3 and Cu4 was determined using the distortion index or the tetragonality parameter (Yang et al., 2007), which is stated as follows: χ = (360 − α − β) / 141 (α and β are the two largest angles around the central atom). χ = 0 designates a perfect square-planar geometry and χ = 1 gives a perfect tetrahedron. The values of χ = 0.88 (Cu3) and χ = 0.86 (Cu4) are indicative of distorted tetrahedral geometries around the metal centers. In fact, the Br—Cu—Br bond-angle values [94.15 (4)–126.29 (6)°] deviate severely from the ideal value of 109.5° for a perfect tetrahedral geometry.
The Cu—Brbasal plane bond lengths (Table 1) [Cu1—Br1 = 2.3739 (10) Å, Cu2—Br6 = 2.3878 (11) Å] are shorter than the Cu—Brapical bond lengths [Cu1i—Br2 = 2.6540 (11) Å, Cu2—Br5 = 2.6357 (11) Å]. These values are in accordance with the Cu—Br bond distances reported in the literature (Jiang et al., 2008; Godlewska et al., 2011). An asymmetric bridge behavior of the bromide anion is observed, as shown by the following bond lengths: Cu3—Br3 = 2.3987 (11) Å/Br3—Cu4ii = 2.6288 (12) Å and Cu3—Br3 = 2.3987 (11) Å/Cu3—Br4 = 2.6469 (12) Å. The Cu—NPy bonds [1.992 (5) Å (Cu1—N1) and 1.993 (5) Å (Cu2—N3)] are slightly longer than the Cu—Nimine distances [1.964 (5) Å (Cu1—N2) and 1.968 (5) Å (Cu2—N4)]. The Cu—O bond lengths represent the longest distances [2.008 (4) Å (Cu1—O1) and 2.011 (4) Å (Cu2—O2)]. The Cu—N and Cu—O distances are comparable to the values reported for similar complexes (Xue et al., 2010; Kébé et al., 2021).
3. Supramolecular features
The . The polymer then develops as a band parallel to the bc plane (Fig. 3). Numerous intermolecular hydrogen bonds of the type C—H⋯Br (Table 2) connect adjacent units, resulting in a three-dimensional network.
shows a three-dimensional polymer complex. The formation of this polymer was facilitated by bromide ions bridging copper(II) ions. The crystal packing of the complex is presented in Fig. 2
|
4. Database survey
A search of the CSD (Version 5.42, November 2021 update; Groom et al., 2016) gave seven hits. One is a mononuclear Mo5+ complex (BOFTOH; Jurowska et al., 2014) and two are coordination dinuclear complexes of Mn2+ (JIKLIY and JIKLOE; Brooker & McKee, 1990). Similar Schiff ligands in which the methyl group is replaced by a phenyl group yielded three mononuclear Ni2+ complexes (FOVBIE, FOVBOK, FOVBUQ; Chatterjee et al., 2019). Another similar ligand in which the alcohol group is replaced by a methoxy group yielded a Pd2+ complex (PUYQUX; Nyamato et al., 2015).
5. Synthesis and crystallization
To a solution of acetylpyridine (0.121 g, 1 mmol) in 10 mL of ethanol, 2-aminoethanol (0.0610 g, 1 mmol) previously dissolved in 5 mL of ethanol was added. The resulting red solution was refluxed for 2 h. After cooling to room temperature, a solution of CuBr2 (1 mmol, 0.2234 g) in 5 mL of ethanol was added. The resulting mixture was stirred for 2 h, and the filtrate was left for slow evaporation. Green crystals suitable for X-ray diffraction were collected after a week. The compound was formulated as [Cu4Br6L2]n, where (HL) is 2-{1-[(2-hyrdoxyethyl)imino]acetylpyridine}; Analysis calculated for C18H22Br6Cu4N4O2: C, 20.37; H, 2.06; N, 5.25. Found: C, 20.40; H, 2.09; N, 5.29%. IR (ν, cm−1): 3075, 1650, 1622, 1597, 1540, 1430, 1265, 1190, 899, 793. UV–Visible [DMSO, λmax (nm)]: 288, 457, 680. Λ (S cm2 mol−1): 15.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in idealized positions and refined using a riding model. The structure was refined considering a positional disorder for the following atoms: Cu1A, Br1A ,Cu3A, Br2A, Br6A, Cu2A, Br5A, Cu4A, with occupancy of ca 0.06–0.08.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2321970
[Cu4Br6(C9H11N2O)2] | F(000) = 2004 |
Mr = 1060 | Dx = 2.551 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.1656 (12) Å | Cell parameters from 8413 reflections |
b = 7.7041 (3) Å | θ = 2.6–28.6° |
c = 16.5664 (8) Å | µ = 11.74 mm−1 |
β = 110.896 (6)° | T = 292 K |
V = 2762.1 (2) Å3 | Block, metallic greenish green |
Z = 4 | 0.2 × 0.2 × 0.1 mm |
XtaLAB AFC12 (RINC): Kappa single diffractometer | 4912 reflections with I > 2σ(I) |
Detector resolution: 5.8140 pixels mm-1 | Rint = 0.056 |
ω scans | θmax = 26.0°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −28→28 |
Tmin = 0.479, Tmax = 1.000 | k = −9→9 |
40718 measured reflections | l = −20→20 |
5446 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0406P)2 + 3.9895P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5446 reflections | Δρmax = 0.95 e Å−3 |
344 parameters | Δρmin = −0.97 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br2 | 0.87911 (3) | −0.06317 (11) | 0.75247 (5) | 0.03317 (18) | 0.942 (2) |
Br1 | 0.88670 (3) | 0.43944 (11) | 0.74718 (4) | 0.03271 (18) | 0.942 (2) |
Br4 | 0.75698 (3) | 0.22558 (9) | 0.56292 (4) | 0.03737 (17) | |
Br3 | 0.74379 (3) | 0.24099 (10) | 0.80563 (5) | 0.03751 (17) | |
Cu1 | 0.88539 (3) | 0.65639 (9) | 0.84828 (4) | 0.02455 (19) | 0.942 (2) |
Br6 | 0.61671 (5) | 1.04176 (13) | 0.36210 (6) | 0.0314 (2) | 0.927 (3) |
Br5 | 0.62288 (6) | 0.54630 (11) | 0.37724 (8) | 0.0332 (3) | 0.927 (3) |
Cu3 | 0.81423 (4) | 0.18899 (12) | 0.73163 (7) | 0.0435 (3) | 0.942 (2) |
Cu2 | 0.61485 (3) | 0.82568 (9) | 0.46447 (5) | 0.0242 (3) | 0.927 (3) |
Cu4 | 0.68932 (4) | 0.29613 (14) | 0.41925 (6) | 0.0428 (2) | 0.94 |
O1 | 0.79475 (19) | 0.6363 (6) | 0.8272 (3) | 0.0420 (10) | |
H1 | 0.779586 | 0.539265 | 0.824191 | 0.063* | |
N4 | 0.6105 (3) | 0.7513 (7) | 0.5758 (3) | 0.0334 (12) | |
C5 | 0.9925 (4) | 0.7463 (9) | 0.9904 (5) | 0.0432 (8) | |
N2 | 0.8871 (3) | 0.7459 (7) | 0.9601 (3) | 0.0313 (11) | |
N1 | 0.9763 (2) | 0.6809 (6) | 0.9083 (3) | 0.0265 (10) | |
O2 | 0.7056 (2) | 0.8353 (6) | 0.5357 (3) | 0.0429 (11) | |
H2 | 0.723439 | 0.928382 | 0.550139 | 0.064* | |
N3 | 0.5234 (2) | 0.8094 (6) | 0.4310 (3) | 0.0276 (10) | |
C14 | 0.5054 (3) | 0.7543 (6) | 0.4956 (4) | 0.0186 (10) | |
C15 | 0.5566 (3) | 0.7292 (7) | 0.5798 (4) | 0.0297 (13) | |
C4 | 1.0527 (3) | 0.7781 (9) | 1.0393 (5) | 0.0428 (9) | |
H4 | 1.063117 | 0.821780 | 1.095059 | 0.051* | |
C3 | 1.0989 (3) | 0.7447 (9) | 1.0053 (5) | 0.0433 (18) | |
H3 | 1.140193 | 0.765954 | 1.038035 | 0.052* | |
C13 | 0.4433 (3) | 0.7302 (9) | 0.4831 (4) | 0.0357 (14) | |
H13 | 0.431362 | 0.697402 | 0.528913 | 0.043* | |
C12 | 0.3997 (3) | 0.7558 (9) | 0.4020 (5) | 0.0370 (16) | |
H12 | 0.358158 | 0.735100 | 0.391713 | 0.044* | |
C1 | 1.0208 (3) | 0.6488 (8) | 0.8764 (4) | 0.0343 (13) | |
H1A | 1.009791 | 0.603748 | 0.820813 | 0.041* | |
C6 | 0.9388 (3) | 0.7732 (8) | 1.0175 (4) | 0.0327 (14) | |
C17 | 0.6690 (3) | 0.7424 (10) | 0.6488 (5) | 0.0432 (8) | |
H17A | 0.669363 | 0.643175 | 0.685041 | 0.052* | |
H17B | 0.675167 | 0.846878 | 0.683591 | 0.052* | |
C8 | 0.8269 (3) | 0.7520 (10) | 0.9717 (5) | 0.0428 (9) | |
H8A | 0.823678 | 0.655889 | 1.007648 | 0.051* | |
H8B | 0.823301 | 0.859334 | 1.000096 | 0.051* | |
C11 | 0.4180 (3) | 0.8116 (8) | 0.3370 (4) | 0.0382 (14) | |
H11 | 0.388755 | 0.832008 | 0.282335 | 0.046* | |
C9 | 0.7776 (4) | 0.7413 (12) | 0.8876 (7) | 0.065 (2) | |
H9 | 0.739468 | 0.795640 | 0.874160 | 0.078* | |
C2 | 1.0825 (3) | 0.6800 (9) | 0.9228 (5) | 0.0428 (9) | |
H2A | 1.112396 | 0.657735 | 0.898744 | 0.051* | |
C18 | 0.7190 (3) | 0.7249 (10) | 0.6106 (5) | 0.0432 (8) | |
H18A | 0.758582 | 0.757213 | 0.653413 | 0.052* | |
H18B | 0.721657 | 0.605151 | 0.594195 | 0.052* | |
C7 | 0.9505 (3) | 0.8288 (9) | 1.1081 (4) | 0.0432 (8) | |
H7A | 0.994219 | 0.840791 | 1.138423 | 0.065* | |
H7B | 0.934353 | 0.743263 | 1.136518 | 0.065* | |
H7C | 0.930618 | 0.938153 | 1.107883 | 0.065* | |
C10 | 0.4802 (3) | 0.8381 (8) | 0.3522 (4) | 0.0339 (13) | |
H10 | 0.492326 | 0.876321 | 0.307443 | 0.041* | |
C16 | 0.5438 (4) | 0.6878 (10) | 0.6593 (4) | 0.0495 (18) | |
H16A | 0.582073 | 0.671873 | 0.706658 | 0.074* | |
H16B | 0.519781 | 0.583169 | 0.650470 | 0.074* | |
H16C | 0.521134 | 0.781528 | 0.672180 | 0.074* | |
Cu1A | 0.8866 (8) | 0.837 (2) | 0.8496 (12) | 0.052 (5) | 0.058 (2) |
Br1A | 0.8769 (7) | 0.549 (3) | 0.7560 (10) | 0.059 (4) | 0.058 (2) |
Cu3A | 0.8077 (7) | 0.305 (2) | 0.7280 (11) | 0.0435 (3) | 0.058 (2) |
Br2A | 0.8834 (8) | 0.043 (3) | 0.7447 (9) | 0.059 (5) | 0.058 (2) |
Br6A | 0.6204 (8) | 0.962 (3) | 0.3729 (11) | 0.056 (4) | 0.073 (3) |
Cu2A | 0.6147 (8) | 0.6632 (17) | 0.4634 (10) | 0.062 (5) | 0.073 (3) |
Br5A | 0.6162 (9) | 0.474 (3) | 0.3627 (10) | 0.063 (5) | 0.073 (3) |
Cu4A | 0.6888 (7) | 0.190 (2) | 0.4192 (10) | 0.0428 (2) | 0.06 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.0374 (4) | 0.0225 (3) | 0.0403 (4) | 0.0038 (3) | 0.0146 (3) | 0.0071 (3) |
Br1 | 0.0417 (4) | 0.0279 (4) | 0.0331 (4) | −0.0146 (3) | 0.0190 (3) | −0.0105 (3) |
Br4 | 0.0293 (3) | 0.0509 (4) | 0.0253 (3) | −0.0027 (2) | 0.0017 (3) | −0.0008 (2) |
Br3 | 0.0309 (3) | 0.0501 (4) | 0.0380 (4) | −0.0067 (3) | 0.0201 (3) | −0.0033 (3) |
Cu1 | 0.0204 (4) | 0.0282 (4) | 0.0253 (4) | −0.0026 (3) | 0.0084 (3) | −0.0037 (3) |
Br6 | 0.0388 (4) | 0.0259 (4) | 0.0267 (4) | −0.0118 (4) | 0.0084 (3) | 0.0015 (4) |
Br5 | 0.0387 (5) | 0.0225 (4) | 0.0389 (5) | 0.0045 (3) | 0.0143 (4) | −0.0040 (3) |
Cu3 | 0.0419 (5) | 0.0373 (5) | 0.0589 (6) | 0.0010 (4) | 0.0271 (5) | −0.0042 (4) |
Cu2 | 0.0202 (4) | 0.0300 (4) | 0.0218 (4) | −0.0027 (3) | 0.0068 (3) | 0.0023 (3) |
Cu4 | 0.0415 (5) | 0.0386 (5) | 0.0389 (5) | 0.0043 (4) | 0.0028 (4) | 0.0039 (4) |
O1 | 0.031 (2) | 0.040 (2) | 0.056 (3) | −0.0086 (19) | 0.018 (2) | −0.003 (2) |
N4 | 0.032 (3) | 0.040 (3) | 0.024 (3) | 0.001 (2) | 0.004 (3) | 0.001 (2) |
C5 | 0.044 (2) | 0.049 (2) | 0.0295 (18) | 0.0005 (15) | 0.0043 (15) | 0.0014 (15) |
N2 | 0.031 (3) | 0.039 (3) | 0.029 (3) | 0.002 (2) | 0.018 (3) | −0.007 (2) |
N1 | 0.025 (2) | 0.029 (2) | 0.026 (2) | −0.0008 (18) | 0.009 (2) | −0.004 (2) |
O2 | 0.032 (2) | 0.049 (3) | 0.044 (3) | −0.0079 (19) | 0.008 (2) | 0.003 (2) |
N3 | 0.028 (2) | 0.033 (2) | 0.023 (2) | −0.0015 (19) | 0.011 (2) | 0.0003 (19) |
C14 | 0.023 (3) | 0.023 (2) | 0.012 (2) | 0.002 (2) | 0.0084 (19) | 0.0002 (19) |
C15 | 0.033 (3) | 0.029 (3) | 0.030 (3) | −0.002 (2) | 0.015 (3) | 0.000 (2) |
C4 | 0.033 (2) | 0.052 (2) | 0.046 (2) | −0.0002 (17) | 0.0177 (18) | −0.0032 (18) |
C3 | 0.029 (4) | 0.047 (4) | 0.045 (5) | −0.003 (3) | 0.003 (3) | 0.003 (3) |
C13 | 0.036 (3) | 0.045 (3) | 0.042 (3) | −0.006 (3) | 0.034 (3) | −0.001 (3) |
C12 | 0.023 (3) | 0.047 (4) | 0.039 (4) | −0.002 (3) | 0.009 (3) | 0.002 (3) |
C1 | 0.028 (3) | 0.050 (4) | 0.029 (3) | −0.003 (3) | 0.015 (2) | −0.006 (3) |
C6 | 0.049 (4) | 0.032 (3) | 0.026 (3) | 0.000 (3) | 0.024 (3) | −0.002 (2) |
C17 | 0.044 (2) | 0.049 (2) | 0.0295 (18) | 0.0005 (15) | 0.0043 (15) | 0.0014 (15) |
C8 | 0.033 (2) | 0.052 (2) | 0.046 (2) | −0.0002 (17) | 0.0177 (18) | −0.0032 (18) |
C11 | 0.027 (3) | 0.045 (4) | 0.037 (3) | 0.004 (3) | 0.004 (2) | 0.000 (3) |
C9 | 0.031 (4) | 0.079 (6) | 0.096 (7) | 0.001 (4) | 0.037 (4) | −0.027 (5) |
C2 | 0.033 (2) | 0.052 (2) | 0.046 (2) | −0.0002 (17) | 0.0177 (18) | −0.0032 (18) |
C18 | 0.044 (2) | 0.049 (2) | 0.0295 (18) | 0.0005 (15) | 0.0043 (15) | 0.0014 (15) |
C7 | 0.044 (2) | 0.049 (2) | 0.0295 (18) | 0.0005 (15) | 0.0043 (15) | 0.0014 (15) |
C10 | 0.034 (3) | 0.041 (3) | 0.030 (3) | 0.002 (3) | 0.014 (3) | 0.005 (3) |
C16 | 0.061 (5) | 0.065 (5) | 0.023 (3) | −0.006 (4) | 0.015 (3) | 0.009 (3) |
Cu1A | 0.058 (11) | 0.046 (9) | 0.068 (12) | −0.003 (8) | 0.039 (10) | −0.004 (8) |
Br1A | 0.069 (10) | 0.064 (12) | 0.054 (9) | 0.000 (8) | 0.034 (8) | −0.002 (7) |
Cu3A | 0.0419 (5) | 0.0373 (5) | 0.0589 (6) | 0.0010 (4) | 0.0271 (5) | −0.0042 (4) |
Br2A | 0.071 (10) | 0.086 (14) | 0.036 (8) | 0.027 (9) | 0.037 (7) | 0.009 (8) |
Br6A | 0.058 (8) | 0.065 (11) | 0.051 (8) | −0.011 (9) | 0.025 (7) | −0.010 (8) |
Cu2A | 0.081 (12) | 0.049 (9) | 0.063 (10) | −0.005 (7) | 0.036 (9) | −0.006 (6) |
Br5A | 0.057 (9) | 0.104 (15) | 0.025 (7) | 0.025 (11) | 0.011 (6) | 0.026 (9) |
Cu4A | 0.0415 (5) | 0.0386 (5) | 0.0389 (5) | 0.0043 (4) | 0.0028 (4) | 0.0039 (4) |
Br2—Cu1i | 2.6540 (11) | C14—C15 | 1.487 (9) |
Br2—Cu3 | 2.4046 (12) | C14—C13 | 1.390 (8) |
Br1—Cu1 | 2.3739 (10) | C15—C16 | 1.485 (9) |
Br1—Cu3 | 2.5098 (11) | C4—H4 | 0.9300 |
Br4—Cu3 | 2.6469 (12) | C4—C3 | 1.400 (10) |
Br4—Cu4 | 2.3990 (12) | C3—H3 | 0.9300 |
Br4—Cu3A | 2.634 (17) | C3—C2 | 1.374 (10) |
Br4—Cu4A | 2.357 (16) | C13—H13 | 0.9300 |
Br3—Cu3 | 2.3987 (11) | C13—C12 | 1.378 (9) |
Br3—Cu4ii | 2.6288 (12) | C12—H12 | 0.9300 |
Br3—Cu3A | 2.336 (16) | C12—C11 | 1.359 (10) |
Br3—Cu4Aii | 2.676 (18) | C1—H1A | 0.9300 |
Cu1—O1 | 2.008 (4) | C1—C2 | 1.381 (9) |
Cu1—N2 | 1.964 (5) | C6—C7 | 1.490 (9) |
Cu1—N1 | 1.992 (5) | C17—H17A | 0.9700 |
Br6—Cu2 | 2.3878 (11) | C17—H17B | 0.9700 |
Br6—Cu4iii | 2.5359 (14) | C17—C18 | 1.512 (11) |
Br5—Cu2 | 2.6357 (11) | C8—H8A | 0.9700 |
Br5—Cu4 | 2.4092 (14) | C8—H8B | 0.9700 |
Cu2—N4 | 1.968 (5) | C8—C9 | 1.455 (12) |
Cu2—O2 | 2.011 (4) | C11—H11 | 0.9300 |
Cu2—N3 | 1.993 (5) | C11—C10 | 1.387 (8) |
O1—H1 | 0.8200 | C9—H9 | 0.9300 |
O1—C9 | 1.448 (10) | C2—H2A | 0.9300 |
N4—C15 | 1.284 (8) | C18—H18A | 0.9700 |
N4—C17 | 1.462 (9) | C18—H18B | 0.9700 |
N4—Cu2A | 2.016 (15) | C7—H7A | 0.9600 |
C5—N1 | 1.372 (9) | C7—H7B | 0.9600 |
C5—C4 | 1.364 (10) | C7—H7C | 0.9600 |
C5—C6 | 1.479 (11) | C10—H10 | 0.9300 |
N2—C6 | 1.255 (8) | C16—H16A | 0.9600 |
N2—C8 | 1.473 (8) | C16—H16B | 0.9600 |
N2—Cu1A | 1.957 (18) | C16—H16C | 0.9600 |
N1—C1 | 1.338 (7) | Cu1A—Br1A | 2.67 (3) |
N1—Cu1A | 2.296 (18) | Cu1A—Br2Aiii | 2.34 (3) |
O2—H2 | 0.8200 | Br1A—Cu3A | 2.40 (2) |
O2—C18 | 1.443 (8) | Cu3A—Br2A | 2.62 (2) |
O2—Cu2A | 2.413 (16) | Br6A—Cu2A | 2.77 (2) |
N3—C14 | 1.348 (7) | Br6A—Cu4Aiii | 2.31 (2) |
N3—C10 | 1.351 (7) | Cu2A—Br5A | 2.23 (3) |
N3—Cu2A | 2.284 (17) | Br5A—Cu4A | 2.71 (3) |
Cu3—Br2—Cu1i | 129.92 (4) | C12—C13—C14 | 119.0 (5) |
Cu1—Br1—Cu3 | 115.93 (4) | C12—C13—H13 | 120.5 |
Cu4—Br4—Cu3 | 167.35 (5) | C13—C12—H12 | 120.3 |
Cu4A—Br4—Cu3A | 164.9 (6) | C11—C12—C13 | 119.5 (6) |
Cu3—Br3—Cu4ii | 159.31 (4) | C11—C12—H12 | 120.3 |
Cu3—Br3—Cu4Aii | 167.0 (3) | N1—C1—H1A | 118.8 |
Cu4ii—Br3—Cu4Aii | 17.7 (4) | N1—C1—C2 | 122.5 (6) |
Cu3A—Br3—Cu4Aii | 154.2 (5) | C2—C1—H1A | 118.8 |
Br1—Cu1—Br2iii | 99.38 (3) | C5—C6—C7 | 118.4 (6) |
O1—Cu1—Br2iii | 97.34 (14) | N2—C6—C5 | 115.2 (6) |
O1—Cu1—Br1 | 95.65 (14) | N2—C6—C7 | 126.4 (6) |
N2—Cu1—Br2iii | 104.87 (16) | N4—C17—H17A | 110.5 |
N2—Cu1—Br1 | 155.74 (16) | N4—C17—H17B | 110.5 |
N2—Cu1—O1 | 81.9 (2) | N4—C17—C18 | 106.3 (6) |
N2—Cu1—N1 | 80.5 (2) | H17A—C17—H17B | 108.7 |
N1—Cu1—Br2iii | 92.51 (13) | C18—C17—H17A | 110.5 |
N1—Cu1—Br1 | 98.12 (13) | C18—C17—H17B | 110.5 |
N1—Cu1—O1 | 161.5 (2) | N2—C8—H8A | 109.8 |
Cu2—Br6—Cu4iii | 116.82 (5) | N2—C8—H8B | 109.8 |
Cu4—Br5—Cu2 | 131.12 (6) | H8A—C8—H8B | 108.3 |
Br2—Cu3—Br1 | 104.21 (4) | C9—C8—N2 | 109.3 (6) |
Br2—Cu3—Br4 | 106.85 (4) | C9—C8—H8A | 109.8 |
Br1—Cu3—Br4 | 95.25 (4) | C9—C8—H8B | 109.8 |
Br3—Cu3—Br2 | 124.47 (5) | C12—C11—H11 | 120.0 |
Br3—Cu3—Br1 | 111.79 (4) | C12—C11—C10 | 119.9 (6) |
Br3—Cu3—Br4 | 110.23 (4) | C10—C11—H11 | 120.0 |
Br6—Cu2—Br5 | 99.05 (4) | O1—C9—C8 | 112.2 (6) |
N4—Cu2—Br6 | 152.70 (16) | O1—C9—H9 | 123.9 |
N4—Cu2—Br5 | 108.25 (16) | C8—C9—H9 | 123.9 |
N4—Cu2—O2 | 81.6 (2) | C3—C2—C1 | 118.8 (6) |
N4—Cu2—N3 | 80.6 (2) | C3—C2—H2A | 120.6 |
O2—Cu2—Br6 | 96.41 (13) | C1—C2—H2A | 120.6 |
O2—Cu2—Br5 | 95.09 (14) | O2—C18—C17 | 110.1 (6) |
N3—Cu2—Br6 | 97.65 (14) | O2—C18—H18A | 109.6 |
N3—Cu2—Br5 | 94.12 (14) | O2—C18—H18B | 109.6 |
N3—Cu2—O2 | 161.8 (2) | C17—C18—H18A | 109.6 |
Br4—Cu4—Br3iv | 112.04 (5) | C17—C18—H18B | 109.6 |
Br4—Cu4—Br6i | 107.88 (5) | H18A—C18—H18B | 108.1 |
Br4—Cu4—Br5 | 126.29 (6) | C6—C7—H7A | 109.5 |
Br6i—Cu4—Br3iv | 94.15 (4) | C6—C7—H7B | 109.5 |
Br5—Cu4—Br3iv | 107.49 (5) | C6—C7—H7C | 109.5 |
Br5—Cu4—Br6i | 103.88 (5) | H7A—C7—H7B | 109.5 |
Cu1—O1—H1 | 118.7 | H7A—C7—H7C | 109.5 |
C9—O1—Cu1 | 111.4 (4) | H7B—C7—H7C | 109.5 |
C9—O1—H1 | 109.5 | N3—C10—C11 | 121.1 (6) |
C15—N4—Cu2 | 117.6 (5) | N3—C10—H10 | 119.5 |
C15—N4—C17 | 125.6 (6) | C11—C10—H10 | 119.5 |
C15—N4—Cu2A | 111.8 (7) | C15—C16—H16A | 109.5 |
C17—N4—Cu2 | 116.5 (5) | C15—C16—H16B | 109.5 |
C17—N4—Cu2A | 114.4 (7) | C15—C16—H16C | 109.5 |
N1—C5—C6 | 113.1 (6) | H16A—C16—H16B | 109.5 |
C4—C5—N1 | 121.0 (7) | H16A—C16—H16C | 109.5 |
C4—C5—C6 | 125.9 (7) | H16B—C16—H16C | 109.5 |
C6—N2—Cu1 | 117.8 (4) | N2—Cu1A—N1 | 73.4 (6) |
C6—N2—C8 | 126.1 (5) | N2—Cu1A—Br1A | 102.5 (8) |
C6—N2—Cu1A | 109.5 (7) | N2—Cu1A—Br2Aiii | 158.1 (10) |
C8—N2—Cu1 | 115.6 (4) | N1—Cu1A—Br1A | 71.7 (6) |
C8—N2—Cu1A | 114.9 (7) | N1—Cu1A—Br2Aiii | 117.1 (8) |
C5—N1—Cu1 | 113.3 (4) | Br2Aiii—Cu1A—Br1A | 99.2 (8) |
C5—N1—Cu1A | 96.5 (6) | Cu3A—Br1A—Cu1A | 132.4 (8) |
C1—N1—Cu1 | 127.7 (4) | Br3—Cu3A—Br4 | 112.7 (6) |
C1—N1—C5 | 118.9 (5) | Br3—Cu3A—Br1A | 124.7 (8) |
C1—N1—Cu1A | 129.7 (6) | Br3—Cu3A—Br2A | 108.1 (7) |
Cu2—O2—H2 | 121.1 | Br1A—Cu3A—Br4 | 113.7 (8) |
C18—O2—Cu2 | 110.1 (4) | Br1A—Cu3A—Br2A | 101.9 (8) |
C18—O2—H2 | 109.5 | Br2A—Cu3A—Br4 | 88.0 (6) |
C18—O2—Cu2A | 89.2 (5) | Cu1Ai—Br2A—Cu3A | 116.4 (7) |
C14—N3—Cu2 | 113.5 (4) | Cu4Aiii—Br6A—Cu2A | 127.7 (9) |
C14—N3—C10 | 119.0 (5) | N4—Cu2A—O2 | 71.2 (5) |
C14—N3—Cu2A | 100.5 (5) | N4—Cu2A—N3 | 72.9 (5) |
C10—N3—Cu2 | 127.4 (4) | N4—Cu2A—Br6A | 104.3 (6) |
C10—N3—Cu2A | 127.8 (5) | N4—Cu2A—Br5A | 158.7 (9) |
N3—C14—C15 | 114.5 (5) | O2—Cu2A—Br6A | 67.2 (5) |
N3—C14—C13 | 121.4 (5) | N3—Cu2A—O2 | 114.6 (6) |
C13—C14—C15 | 124.0 (5) | N3—Cu2A—Br6A | 71.5 (5) |
N4—C15—C14 | 113.6 (6) | Br5A—Cu2A—O2 | 119.2 (9) |
N4—C15—C16 | 125.4 (6) | Br5A—Cu2A—N3 | 114.0 (8) |
C16—C15—C14 | 121.0 (6) | Br5A—Cu2A—Br6A | 97.0 (8) |
C5—C4—H4 | 120.2 | Cu2A—Br5A—Cu4A | 116.3 (8) |
C5—C4—C3 | 119.7 (7) | Br4—Cu4A—Br3iv | 111.8 (6) |
C3—C4—H4 | 120.2 | Br4—Cu4A—Br5A | 111.4 (8) |
C4—C3—H3 | 120.4 | Br3iv—Cu4A—Br5A | 89.4 (6) |
C2—C3—C4 | 119.1 (7) | Br6Ai—Cu4A—Br4 | 123.9 (9) |
C2—C3—H3 | 120.4 | Br6Ai—Cu4A—Br5A | 103.4 (8) |
C14—C13—H13 | 120.5 | ||
Cu1—O1—C9—C8 | −32.9 (9) | C4—C5—C6—N2 | 175.6 (7) |
Cu1—N2—C6—C5 | 4.5 (8) | C4—C5—C6—C7 | −4.4 (11) |
Cu1—N2—C6—C7 | −175.5 (5) | C4—C3—C2—C1 | −0.5 (11) |
Cu1—N2—C8—C9 | −17.9 (8) | C13—C14—C15—N4 | 177.2 (5) |
Cu1—N1—C1—C2 | 176.2 (5) | C13—C14—C15—C16 | −4.4 (9) |
Cu2—N4—C15—C14 | 3.6 (7) | C13—C12—C11—C10 | 1.6 (10) |
Cu2—N4—C15—C16 | −174.7 (5) | C12—C11—C10—N3 | 0.0 (10) |
Cu2—N4—C17—C18 | −22.2 (7) | C6—C5—N1—Cu1 | 3.6 (7) |
Cu2—O2—C18—C17 | −41.0 (6) | C6—C5—N1—C1 | −179.3 (5) |
Cu2—N3—C14—C15 | 4.2 (6) | C6—C5—N1—Cu1A | 38.0 (7) |
Cu2—N3—C14—C13 | −178.1 (4) | C6—C5—C4—C3 | 179.4 (7) |
Cu2—N3—C10—C11 | 176.0 (4) | C6—N2—C8—C9 | 170.8 (7) |
N4—C17—C18—O2 | 40.2 (7) | C17—N4—C15—C14 | 177.2 (6) |
C5—N1—C1—C2 | −0.4 (9) | C17—N4—C15—C16 | −1.0 (10) |
C5—C4—C3—C2 | 0.0 (11) | C8—N2—C6—C5 | 175.7 (6) |
N2—C8—C9—O1 | 32.5 (10) | C8—N2—C6—C7 | −4.3 (11) |
N1—C5—C4—C3 | 0.4 (11) | C10—N3—C14—C15 | −179.1 (5) |
N1—C5—C6—N2 | −5.4 (9) | C10—N3—C14—C13 | −1.4 (8) |
N1—C5—C6—C7 | 174.6 (6) | Cu1A—N2—C6—C5 | −40.2 (8) |
N1—C1—C2—C3 | 0.8 (10) | Cu1A—N2—C6—C7 | 139.8 (8) |
N3—C14—C15—N4 | −5.1 (7) | Cu1A—N2—C8—C9 | 28.3 (9) |
N3—C14—C15—C16 | 173.2 (6) | Cu1A—N1—C1—C2 | 128.3 (8) |
N3—C14—C13—C12 | 3.0 (9) | Cu2A—N4—C15—C14 | −36.4 (7) |
C14—N3—C10—C11 | −0.1 (9) | Cu2A—N4—C15—C16 | 145.4 (7) |
C14—C13—C12—C11 | −3.1 (10) | Cu2A—N4—C17—C18 | 18.5 (8) |
C15—N4—C17—C18 | 164.1 (6) | Cu2A—O2—C18—C17 | −64.7 (6) |
C15—C14—C13—C12 | −179.5 (6) | Cu2A—N3—C14—C15 | 36.2 (6) |
C4—C5—N1—Cu1 | −177.3 (5) | Cu2A—N3—C14—C13 | −146.1 (6) |
C4—C5—N1—C1 | −0.2 (10) | Cu2A—N3—C10—C11 | 133.8 (7) |
C4—C5—N1—Cu1A | −142.9 (7) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Br3 | 0.82 | 2.43 | 3.240 (4) | 172 |
O2—H2···Br4iii | 0.82 | 2.40 | 3.206 (4) | 167 |
C4—H4···Br2v | 0.93 | 3.04 | 3.915 (8) | 158 |
C13—H13···Br5vi | 0.93 | 2.99 | 3.843 (6) | 154 |
C1—H1A···Br1 | 0.93 | 2.96 | 3.477 (6) | 117 |
C11—H11···Br3vi | 0.93 | 2.95 | 3.670 (6) | 136 |
C11—H11···Br5vii | 0.93 | 3.05 | 3.790 (7) | 138 |
C9—H9···Br5viii | 0.93 | 2.98 | 3.888 (8) | 166 |
C2—H2A···Br2ix | 0.93 | 3.09 | 3.818 (7) | 136 |
C2—H2A···Br4ix | 0.93 | 2.91 | 3.658 (7) | 139 |
C18—H18A···Br2iii | 0.97 | 3.02 | 3.965 (7) | 164 |
C18—H18B···Br4 | 0.97 | 3.13 | 4.086 (7) | 169 |
C7—H7C···Br1viii | 0.96 | 2.99 | 3.621 (7) | 125 |
C10—H10···Br6 | 0.93 | 2.98 | 3.482 (6) | 115 |
C16—H16A···Br6viii | 0.96 | 2.92 | 3.636 (7) | 133 |
Symmetry codes: (iii) x, y+1, z; (v) −x+2, −y+1, −z+2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+3/2, z+1/2; (ix) −x+2, y+1/2, −z+3/2. |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Asadi, Z., Golzard, F., Eigner, V. & Dusek, M. (2013). J. Coord. Chem. 66, 3629–3646. Web of Science CSD CrossRef CAS Google Scholar
Bhaumik, P. K., Harms, K. & Chattopadhyay, S. (2013). Inorg. Chim. Acta, 405, 400–409. Web of Science CSD CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brooker, S. & McKee, V. (1990). Inorg. Chim. Acta, 173, 69–83. CSD CrossRef CAS Web of Science Google Scholar
Chatterjee, A., Khan, S. & Ghosh, R. (2019). Polyhedron, 173, 114151. Web of Science CSD CrossRef Google Scholar
Chen, C.-H., Hung, P.-J., Wan, C.-F. & Wu, A.-T. (2013). Inorg. Chem. Commun. 38, 74–77. Web of Science CrossRef CAS Google Scholar
Deng, W.-T., Liu, J.-C. & Cao, J. (2013). J. Coord. Chem. 66, 3782–3790. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Godlewska, S., Baranowska, K., Socha, J. & Dołęga, A. (2011). Acta Cryst. E67, m1906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, Z., Tang, G. & Lu, L. (2008). Acta Cryst. E64, m958–m959. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jurowska, A., Szklarzewicz, J., Kurpiewska, K. & Tomecka, M. (2014). Polyhedron, 75, 127–134. Web of Science CSD CrossRef CAS Google Scholar
Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708–713. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, X., Shao, T., Shi, Q. & Hu, M. (2013). RSC Adv. 3, 22877–22881. Web of Science CrossRef CAS Google Scholar
Massue, J., Olesiak-Banska, J., Jeanneau, E., Aronica, C., Matczyszyn, K., Samoc, M., Monnereau, C. & Andraud, C. (2013). Inorg. Chem. 52, 10705–10707. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nyamato, G. S., Ojwach, S. O. & Akerman, M. P. (2015). Organometallics, 34, 5647–5657. Web of Science CSD CrossRef CAS Google Scholar
Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J. J. E., Billard, I., Gaillard, C., Mekki, S. & Moutiers, G. (2006). Chem. Eur. J. 12, 3074–3081. Web of Science CrossRef PubMed CAS Google Scholar
Patil, S. A., Unki, S. N. & Badami, P. S. (2012). Med. Chem. Res. 21, 4017–4027. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578–16587. Web of Science CSD CrossRef CAS PubMed Google Scholar
Thompson, K. H. & Orvig, C. (2001). Coord. Chem. Rev. 219–221, 1033–1053. Web of Science CrossRef CAS Google Scholar
Wang, P., Wang, Y.-Y., Chi, Y.-H., Wei, W., Zhang, S.-G., Cottrill, E. & Shi, J.-M. (2013). J. Coord. Chem. 66, 3092–3099. Web of Science CSD CrossRef CAS Google Scholar
Xie, Y., Jiang, H., Chan, A. S.-C., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2002). Inorg. Chim. Acta, 333, 138–143. Web of Science CSD CrossRef CAS Google Scholar
Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172–m1173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, X. F., Pan, J., Li, S. R., Zhou, H. & Pan, Z. Q. (2009). Z. Anorg. Allg. Chem. 635, 1481–1484. Web of Science CSD CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.