research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[hexa-μ-bro­mido-bis­{2-[1-(py­ri­din-2-yl)ethyl­­idene­amino]ethanol­ato}tetracopper(II)]

crossmark logo

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 25 September 2023; accepted 22 December 2023; online 12 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethanol (HL), which is formed by reaction of 2-amino­ethanol and 2-acetyl­pyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis­{2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethano­lato}tetra­copper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated mol­ecules of the ligand, and six bromide anions, which act as bridges. The ligand mol­ecules act in a tridentate fashion through their azomethine nitro­gen atoms, their pyridine nitro­gen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetra­hedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetra­nuclear polymer compound.

1. Chemical context

Schiff bases attract a great attention as ligands due to their simplicity of formation from amino and carbonyl derivatives. A rich coordination variability can be thus easily be attained and profited by following the introduction of other functional groups. Schiff base ligands are becoming increasingly important as they have inter­esting biological activities such as anti­bacterial, anti­tumor, insulin-mimetic and anti­fungi (Patil et al., 2012[Patil, S. A., Unki, S. N. & Badami, P. S. (2012). Med. Chem. Res. 21, 4017-4027.]; Thompson & Orvig, 2001[Thompson, K. H. & Orvig, C. (2001). Coord. Chem. Rev. 219-221, 1033-1053.]), and catalytical properties (Sutradhar et al., 2013[Sutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578-16587.]). They are used in the preparation of photo- and pH-responsive sensors (Li et al., 2013[Li, X., Shao, T., Shi, Q. & Hu, M. (2013). RSC Adv. 3, 22877-22881.]), fluorescent receptors of metals (Chen et al., 2013[Chen, C.-H., Hung, P.-J., Wan, C.-F. & Wu, A.-T. (2013). Inorg. Chem. Commun. 38, 74-77.]), non-linear materials (Massue et al., 2013[Massue, J., Olesiak-Banska, J., Jeanneau, E., Aronica, C., Matczyszyn, K., Samoc, M., Monnereau, C. & Andraud, C. (2013). Inorg. Chem. 52, 10705-10707.]), nano-particles (Deng et al., 2013[Deng, W.-T., Liu, J.-C. & Cao, J. (2013). J. Coord. Chem. 66, 3782-3790.]), hybrid inorganic–organic materials (Bhaumik et al., 2013[Bhaumik, P. K., Harms, K. & Chattopadhyay, S. (2013). Inorg. Chim. Acta, 405, 400-409.]), and even uranium complexes (Asadi et al., 2013[Asadi, Z., Golzard, F., Eigner, V. & Dusek, M. (2013). J. Coord. Chem. 66, 3629-3646.]), and ionic liquids (Ouadi et al., 2006[Ouadi, A., Gadenne, B., Hesemann, P., Moreau, J. J. E., Billard, I., Gaillard, C., Mekki, S. & Moutiers, G. (2006). Chem. Eur. J. 12, 3074-3081.]). Many related tridentate Schiff base ligands have been successfully employed to build clusters of copper(II) ions bridged by halogen atoms (Wang et al., 2013[Wang, P., Wang, Y.-Y., Chi, Y.-H., Wei, W., Zhang, S.-G., Cottrill, E. & Shi, J.-M. (2013). J. Coord. Chem. 66, 3092-3099.]; Sall et al., 2019[Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069-1075.]; Sun et al., 2005[Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055-m1057.]). The incorporation of an amino alcohol fragment generally leads to the formation of [Cu4O4] cubane-type clusters (Yan et al., 2009[Yan, X. F., Pan, J., Li, S. R., Zhou, H. & Pan, Z. Q. (2009). Z. Anorg. Allg. Chem. 635, 1481-1484.]; Xie et al., 2002[Xie, Y., Jiang, H., Chan, A. S.-C., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2002). Inorg. Chim. Acta, 333, 138-143.]). In our present work, we have synthesized and characterized through X-ray diffraction analysis the title tetra­nuclear complex formulated as [Cu4Br6L2]n, (HL = 2-{1-[(2-hydroxy­eth­yl)imino]­acetyl­pyridine}).

[Scheme 1]

2. Structural commentary

The reaction of acetyl­pyridine and 2-amino­ethanol in 1:1 ratio in ethanol yields the ligand 2-{1-[(2-hydroxyeth­yl)imino]­acetyl­pyridine} (HL). The reaction of the ligand HL with copper bromide yields a complex in which the ligand is reacted in its deprotonated form as L. The coordination complex is formulated as [Cu4L2Br6]n (I)[link] (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are plotted at the 30% probability level.

In the crystal of the tetra­nuclear complex, each of the two deprotonated ligands acts in a tridentate fashion, linking exclusively one copper(II) cation through its imino nitro­gen atom, its pyridine nitro­gen atom and its alcoholate oxygen atom. The two other Cu cations are only coordinated to bromide anions, which act as bridges. The metal centers present two different environments. According to the Addison index (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) τ = (β − α)/60 (β and α are the largest values of the bond angles around the central atom) the coordination geometry around a penta­coordinated metal center can be discussed: τ = 0 describes a perfect square-pyramidal while τ = 1 describes a perfect trigonal–bipyramidal geometry. The geometries around the penta­coordinated Cu1 and Cu2 atoms are best described as distorted square-pyramidal, as shown by the Addison index: τ = 0.0967 (Cu1) and τ = 0.1517 (Cu2). For Cu1, the basal plane is occupied by O1, N1, N2 and Br1, the apical position being occupied by the Br2 atom. For Cu2, the basal plane is occupied by O2, N3, N4 and Br6, the apical position being occupied by the Br5 atom. Additionally, the sums of the angles subtended by the atoms in the basal plane, which are equal to 356.1° (Cu1) and 356.3° (Cu2), deviate severely from the ideal value of 360°. For Cu1 and Cu2, the bond-angle values [92.51 (13)–108.25 (16)°] between the atom occupying the apical position and the atoms in the basal plane also deviate considerably from the ideal value of 90°. Additionally, the cissoid bond-angle values [80.5 (2)–98.12 (13)°] also deviate from the ideal value of 90°. The coordination of the ligand to Cu1 or Cu2 results in the formation of two five-membered CuNCCN rings with bite-angle values of 80.5 (2)° (Cu1) and 80.6 (2)° (Cu2) and CuNCCO rings with bite-angle values of 81.9 (2)° (Cu1) and 81.6 (2)° (Cu2). The geometry around the tetra­coordinated atoms Cu3 and Cu4 was determined using the distortion index or the tetra­gonality parameter (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), which is stated as follows: χ = (360 − α − β) / 141 (α and β are the two largest angles around the central atom). χ = 0 designates a perfect square-planar geometry and χ = 1 gives a perfect tetra­hedron. The values of χ = 0.88 (Cu3) and χ = 0.86 (Cu4) are indicative of distorted tetra­hedral geometries around the metal centers. In fact, the Br—Cu—Br bond-angle values [94.15 (4)–126.29 (6)°] deviate severely from the ideal value of 109.5° for a perfect tetra­hedral geometry.

The Cu—Brbasal plane bond lengths (Table 1[link]) [Cu1—Br1 = 2.3739 (10) Å, Cu2—Br6 = 2.3878 (11) Å] are shorter than the Cu—Brapical bond lengths [Cu1i—Br2 = 2.6540 (11) Å, Cu2—Br5 = 2.6357 (11) Å]. These values are in accordance with the Cu—Br bond distances reported in the literature (Jiang et al., 2008[Jiang, Z., Tang, G. & Lu, L. (2008). Acta Cryst. E64, m958-m959.]; Godlewska et al., 2011[Godlewska, S., Baranowska, K., Socha, J. & Dołęga, A. (2011). Acta Cryst. E67, m1906.]). An asymmetric bridge behavior of the bromide anion is observed, as shown by the following bond lengths: Cu3—Br3 = 2.3987 (11) Å/Br3—Cu4ii = 2.6288 (12) Å and Cu3—Br3 = 2.3987 (11) Å/Cu3—Br4 = 2.6469 (12) Å. The Cu—NPy bonds [1.992 (5) Å (Cu1—N1) and 1.993 (5) Å (Cu2—N3)] are slightly longer than the Cu—Nimine distances [1.964 (5) Å (Cu1—N2) and 1.968 (5) Å (Cu2—N4)]. The Cu—O bond lengths represent the longest distances [2.008 (4) Å (Cu1—O1) and 2.011 (4) Å (Cu2—O2)]. The Cu—N and Cu—O distances are comparable to the values reported for similar complexes (Xue et al., 2010[Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172-m1173.]; Kébé et al., 2021[Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708-713.]).

Table 1
Selected geometric parameters (Å, °)

Br2—Cu1i 2.6540 (11) Cu1—N2 1.964 (5)
Br2—Cu3 2.4046 (12) Cu1—N1 1.992 (5)
Br1—Cu1 2.3739 (10) Br6—Cu2 2.3878 (11)
Br1—Cu3 2.5098 (11) Br6—Cu4iii 2.5359 (14)
Br4—Cu3 2.6469 (12) Br5—Cu2 2.6357 (11)
Br4—Cu4 2.3990 (12) Br5—Cu4 2.4092 (14)
Br3—Cu3 2.3987 (11) Cu2—N4 1.968 (5)
Br3—Cu4ii 2.6288 (12) Cu2—O2 2.011 (4)
Cu1—O1 2.008 (4) Cu2—N3 1.993 (5)
       
Br1—Cu1—Br2iii 99.38 (3) N2—Cu1—Br1 155.74 (16)
O1—Cu1—Br2iii 97.34 (14) N2—Cu1—O1 81.9 (2)
O1—Cu1—Br1 95.65 (14) N1—Cu1—O1 161.5 (2)
N2—Cu1—Br2iii 104.87 (16) N4—Cu2—Br6 152.70 (16)
Symmetry codes: (i) [x, y-1, z]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, y+1, z].

3. Supra­molecular features

The crystal structure shows a three-dimensional polymer complex. The formation of this polymer was facilitated by bromide ions bridging copper(II) ions. The crystal packing of the complex is presented in Fig. 2[link]. The polymer then develops as a band parallel to the bc plane (Fig. 3[link]). Numerous inter­molecular hydrogen bonds of the type C—H⋯Br (Table 2[link]) connect adjacent units, resulting in a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br3 0.82 2.43 3.240 (4) 172
O2—H2⋯Br4iii 0.82 2.40 3.206 (4) 167
C4—H4⋯Br2iv 0.93 3.04 3.915 (8) 158
C13—H13⋯Br5v 0.93 2.99 3.843 (6) 154
C1—H1A⋯Br1 0.93 2.96 3.477 (6) 117
C11—H11⋯Br3v 0.93 2.95 3.670 (6) 136
C11—H11⋯Br5vi 0.93 3.05 3.790 (7) 138
C9—H9⋯Br5vii 0.93 2.98 3.888 (8) 166
C2—H2A⋯Br2viii 0.93 3.09 3.818 (7) 136
C2—H2A⋯Br4viii 0.93 2.91 3.658 (7) 139
C18—H18A⋯Br2iii 0.97 3.02 3.965 (7) 164
C18—H18B⋯Br4 0.97 3.13 4.086 (7) 169
C7—H7C⋯Br1vii 0.96 2.99 3.621 (7) 125
C10—H10⋯Br6 0.93 2.98 3.482 (6) 115
C16—H16A⋯Br6vii 0.96 2.92 3.636 (7) 133
Symmetry codes: (iii) [x, y+1, z]; (iv) [-x+2, -y+1, -z+2]; (v) [-x+1, -y+1, -z+1]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (viii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Fragment of a [010] polymeric chain in the crystal structure of the title compound.
[Figure 3]
Figure 3
The packing in the crystal of the title complex, viewed along the c axis.

4. Database survey

A search of the CSD (Version 5.42, November 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave seven hits. One is a mononuclear Mo5+ complex (BOFTOH; Jurowska et al., 2014[Jurowska, A., Szklarzewicz, J., Kurpiewska, K. & Tomecka, M. (2014). Polyhedron, 75, 127-134.]) and two are coordination dinuclear complexes of Mn2+ (JIKLIY and JIKLOE; Brooker & McKee, 1990[Brooker, S. & McKee, V. (1990). Inorg. Chim. Acta, 173, 69-83.]). Similar Schiff ligands in which the methyl group is replaced by a phenyl group yielded three mononuclear Ni2+ complexes (FOVBIE, FOVBOK, FOVBUQ; Chatterjee et al., 2019[Chatterjee, A., Khan, S. & Ghosh, R. (2019). Polyhedron, 173, 114151.]). Another similar ligand in which the alcohol group is replaced by a meth­oxy group yielded a Pd2+ complex (PUYQUX; Nyamato et al., 2015[Nyamato, G. S., Ojwach, S. O. & Akerman, M. P. (2015). Organometallics, 34, 5647-5657.]).

5. Synthesis and crystallization

To a solution of acetyl­pyridine (0.121 g, 1 mmol) in 10 mL of ethanol, 2-amino­ethanol (0.0610 g, 1 mmol) previously dissolved in 5 mL of ethanol was added. The resulting red solution was refluxed for 2 h. After cooling to room temperature, a solution of CuBr2 (1 mmol, 0.2234 g) in 5 mL of ethanol was added. The resulting mixture was stirred for 2 h, and the filtrate was left for slow evaporation. Green crystals suitable for X-ray diffraction were collected after a week. The compound was formulated as [Cu4Br6L2]n, where (HL) is 2-{1-[(2-hyrdoxyeth­yl)imino]­acetyl­pyridine}; Analysis calculated for C18H22Br6Cu4N4O2: C, 20.37; H, 2.06; N, 5.25. Found: C, 20.40; H, 2.09; N, 5.29%. IR (ν, cm−1): 3075, 1650, 1622, 1597, 1540, 1430, 1265, 1190, 899, 793. UV–Visible [DMSO, λmax (nm)]: 288, 457, 680. Λ (S cm2 mol−1): 15.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in idealized positions and refined using a riding model. The structure was refined considering a positional disorder for the following atoms: Cu1A, Br1A ,Cu3A, Br2A, Br6A, Cu2A, Br5A, Cu4A, with occupancy of ca 0.06–0.08.

Table 3
Experimental details

Crystal data
Chemical formula [Cu4Br6(C9H11N2O)2]
Mr 1060
Crystal system, space group Monoclinic, P21/c
Temperature (K) 292
a, b, c (Å) 23.1656 (12), 7.7041 (3), 16.5664 (8)
β (°) 110.896 (6)
V3) 2762.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.74
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.479, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 40718, 5446, 4912
Rint 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.02
No. of reflections 5446
No. of parameters 344
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.97
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[hexa-µ-bromido-bis{2-[1-(pyridin-2-yl)ethylideneamino]ethanolato}\ tetracopper(II)] top
Crystal data top
[Cu4Br6(C9H11N2O)2]F(000) = 2004
Mr = 1060Dx = 2.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.1656 (12) ÅCell parameters from 8413 reflections
b = 7.7041 (3) Åθ = 2.6–28.6°
c = 16.5664 (8) ŵ = 11.74 mm1
β = 110.896 (6)°T = 292 K
V = 2762.1 (2) Å3Block, metallic greenish green
Z = 40.2 × 0.2 × 0.1 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
4912 reflections with I > 2σ(I)
Detector resolution: 5.8140 pixels mm-1Rint = 0.056
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2828
Tmin = 0.479, Tmax = 1.000k = 99
40718 measured reflectionsl = 2020
5446 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0406P)2 + 3.9895P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5446 reflectionsΔρmax = 0.95 e Å3
344 parametersΔρmin = 0.97 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br20.87911 (3)0.06317 (11)0.75247 (5)0.03317 (18)0.942 (2)
Br10.88670 (3)0.43944 (11)0.74718 (4)0.03271 (18)0.942 (2)
Br40.75698 (3)0.22558 (9)0.56292 (4)0.03737 (17)
Br30.74379 (3)0.24099 (10)0.80563 (5)0.03751 (17)
Cu10.88539 (3)0.65639 (9)0.84828 (4)0.02455 (19)0.942 (2)
Br60.61671 (5)1.04176 (13)0.36210 (6)0.0314 (2)0.927 (3)
Br50.62288 (6)0.54630 (11)0.37724 (8)0.0332 (3)0.927 (3)
Cu30.81423 (4)0.18899 (12)0.73163 (7)0.0435 (3)0.942 (2)
Cu20.61485 (3)0.82568 (9)0.46447 (5)0.0242 (3)0.927 (3)
Cu40.68932 (4)0.29613 (14)0.41925 (6)0.0428 (2)0.94
O10.79475 (19)0.6363 (6)0.8272 (3)0.0420 (10)
H10.7795860.5392650.8241910.063*
N40.6105 (3)0.7513 (7)0.5758 (3)0.0334 (12)
C50.9925 (4)0.7463 (9)0.9904 (5)0.0432 (8)
N20.8871 (3)0.7459 (7)0.9601 (3)0.0313 (11)
N10.9763 (2)0.6809 (6)0.9083 (3)0.0265 (10)
O20.7056 (2)0.8353 (6)0.5357 (3)0.0429 (11)
H20.7234390.9283820.5501390.064*
N30.5234 (2)0.8094 (6)0.4310 (3)0.0276 (10)
C140.5054 (3)0.7543 (6)0.4956 (4)0.0186 (10)
C150.5566 (3)0.7292 (7)0.5798 (4)0.0297 (13)
C41.0527 (3)0.7781 (9)1.0393 (5)0.0428 (9)
H41.0631170.8217801.0950590.051*
C31.0989 (3)0.7447 (9)1.0053 (5)0.0433 (18)
H31.1401930.7659541.0380350.052*
C130.4433 (3)0.7302 (9)0.4831 (4)0.0357 (14)
H130.4313620.6974020.5289130.043*
C120.3997 (3)0.7558 (9)0.4020 (5)0.0370 (16)
H120.3581580.7351000.3917130.044*
C11.0208 (3)0.6488 (8)0.8764 (4)0.0343 (13)
H1A1.0097910.6037480.8208130.041*
C60.9388 (3)0.7732 (8)1.0175 (4)0.0327 (14)
C170.6690 (3)0.7424 (10)0.6488 (5)0.0432 (8)
H17A0.6693630.6431750.6850410.052*
H17B0.6751670.8468780.6835910.052*
C80.8269 (3)0.7520 (10)0.9717 (5)0.0428 (9)
H8A0.8236780.6558891.0076480.051*
H8B0.8233010.8593341.0000960.051*
C110.4180 (3)0.8116 (8)0.3370 (4)0.0382 (14)
H110.3887550.8320080.2823350.046*
C90.7776 (4)0.7413 (12)0.8876 (7)0.065 (2)
H90.7394680.7956400.8741600.078*
C21.0825 (3)0.6800 (9)0.9228 (5)0.0428 (9)
H2A1.1123960.6577350.8987440.051*
C180.7190 (3)0.7249 (10)0.6106 (5)0.0432 (8)
H18A0.7585820.7572130.6534130.052*
H18B0.7216570.6051510.5941950.052*
C70.9505 (3)0.8288 (9)1.1081 (4)0.0432 (8)
H7A0.9942190.8407911.1384230.065*
H7B0.9343530.7432631.1365180.065*
H7C0.9306180.9381531.1078830.065*
C100.4802 (3)0.8381 (8)0.3522 (4)0.0339 (13)
H100.4923260.8763210.3074430.041*
C160.5438 (4)0.6878 (10)0.6593 (4)0.0495 (18)
H16A0.5820730.6718730.7066580.074*
H16B0.5197810.5831690.6504700.074*
H16C0.5211340.7815280.6721800.074*
Cu1A0.8866 (8)0.837 (2)0.8496 (12)0.052 (5)0.058 (2)
Br1A0.8769 (7)0.549 (3)0.7560 (10)0.059 (4)0.058 (2)
Cu3A0.8077 (7)0.305 (2)0.7280 (11)0.0435 (3)0.058 (2)
Br2A0.8834 (8)0.043 (3)0.7447 (9)0.059 (5)0.058 (2)
Br6A0.6204 (8)0.962 (3)0.3729 (11)0.056 (4)0.073 (3)
Cu2A0.6147 (8)0.6632 (17)0.4634 (10)0.062 (5)0.073 (3)
Br5A0.6162 (9)0.474 (3)0.3627 (10)0.063 (5)0.073 (3)
Cu4A0.6888 (7)0.190 (2)0.4192 (10)0.0428 (2)0.06
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0374 (4)0.0225 (3)0.0403 (4)0.0038 (3)0.0146 (3)0.0071 (3)
Br10.0417 (4)0.0279 (4)0.0331 (4)0.0146 (3)0.0190 (3)0.0105 (3)
Br40.0293 (3)0.0509 (4)0.0253 (3)0.0027 (2)0.0017 (3)0.0008 (2)
Br30.0309 (3)0.0501 (4)0.0380 (4)0.0067 (3)0.0201 (3)0.0033 (3)
Cu10.0204 (4)0.0282 (4)0.0253 (4)0.0026 (3)0.0084 (3)0.0037 (3)
Br60.0388 (4)0.0259 (4)0.0267 (4)0.0118 (4)0.0084 (3)0.0015 (4)
Br50.0387 (5)0.0225 (4)0.0389 (5)0.0045 (3)0.0143 (4)0.0040 (3)
Cu30.0419 (5)0.0373 (5)0.0589 (6)0.0010 (4)0.0271 (5)0.0042 (4)
Cu20.0202 (4)0.0300 (4)0.0218 (4)0.0027 (3)0.0068 (3)0.0023 (3)
Cu40.0415 (5)0.0386 (5)0.0389 (5)0.0043 (4)0.0028 (4)0.0039 (4)
O10.031 (2)0.040 (2)0.056 (3)0.0086 (19)0.018 (2)0.003 (2)
N40.032 (3)0.040 (3)0.024 (3)0.001 (2)0.004 (3)0.001 (2)
C50.044 (2)0.049 (2)0.0295 (18)0.0005 (15)0.0043 (15)0.0014 (15)
N20.031 (3)0.039 (3)0.029 (3)0.002 (2)0.018 (3)0.007 (2)
N10.025 (2)0.029 (2)0.026 (2)0.0008 (18)0.009 (2)0.004 (2)
O20.032 (2)0.049 (3)0.044 (3)0.0079 (19)0.008 (2)0.003 (2)
N30.028 (2)0.033 (2)0.023 (2)0.0015 (19)0.011 (2)0.0003 (19)
C140.023 (3)0.023 (2)0.012 (2)0.002 (2)0.0084 (19)0.0002 (19)
C150.033 (3)0.029 (3)0.030 (3)0.002 (2)0.015 (3)0.000 (2)
C40.033 (2)0.052 (2)0.046 (2)0.0002 (17)0.0177 (18)0.0032 (18)
C30.029 (4)0.047 (4)0.045 (5)0.003 (3)0.003 (3)0.003 (3)
C130.036 (3)0.045 (3)0.042 (3)0.006 (3)0.034 (3)0.001 (3)
C120.023 (3)0.047 (4)0.039 (4)0.002 (3)0.009 (3)0.002 (3)
C10.028 (3)0.050 (4)0.029 (3)0.003 (3)0.015 (2)0.006 (3)
C60.049 (4)0.032 (3)0.026 (3)0.000 (3)0.024 (3)0.002 (2)
C170.044 (2)0.049 (2)0.0295 (18)0.0005 (15)0.0043 (15)0.0014 (15)
C80.033 (2)0.052 (2)0.046 (2)0.0002 (17)0.0177 (18)0.0032 (18)
C110.027 (3)0.045 (4)0.037 (3)0.004 (3)0.004 (2)0.000 (3)
C90.031 (4)0.079 (6)0.096 (7)0.001 (4)0.037 (4)0.027 (5)
C20.033 (2)0.052 (2)0.046 (2)0.0002 (17)0.0177 (18)0.0032 (18)
C180.044 (2)0.049 (2)0.0295 (18)0.0005 (15)0.0043 (15)0.0014 (15)
C70.044 (2)0.049 (2)0.0295 (18)0.0005 (15)0.0043 (15)0.0014 (15)
C100.034 (3)0.041 (3)0.030 (3)0.002 (3)0.014 (3)0.005 (3)
C160.061 (5)0.065 (5)0.023 (3)0.006 (4)0.015 (3)0.009 (3)
Cu1A0.058 (11)0.046 (9)0.068 (12)0.003 (8)0.039 (10)0.004 (8)
Br1A0.069 (10)0.064 (12)0.054 (9)0.000 (8)0.034 (8)0.002 (7)
Cu3A0.0419 (5)0.0373 (5)0.0589 (6)0.0010 (4)0.0271 (5)0.0042 (4)
Br2A0.071 (10)0.086 (14)0.036 (8)0.027 (9)0.037 (7)0.009 (8)
Br6A0.058 (8)0.065 (11)0.051 (8)0.011 (9)0.025 (7)0.010 (8)
Cu2A0.081 (12)0.049 (9)0.063 (10)0.005 (7)0.036 (9)0.006 (6)
Br5A0.057 (9)0.104 (15)0.025 (7)0.025 (11)0.011 (6)0.026 (9)
Cu4A0.0415 (5)0.0386 (5)0.0389 (5)0.0043 (4)0.0028 (4)0.0039 (4)
Geometric parameters (Å, º) top
Br2—Cu1i2.6540 (11)C14—C151.487 (9)
Br2—Cu32.4046 (12)C14—C131.390 (8)
Br1—Cu12.3739 (10)C15—C161.485 (9)
Br1—Cu32.5098 (11)C4—H40.9300
Br4—Cu32.6469 (12)C4—C31.400 (10)
Br4—Cu42.3990 (12)C3—H30.9300
Br4—Cu3A2.634 (17)C3—C21.374 (10)
Br4—Cu4A2.357 (16)C13—H130.9300
Br3—Cu32.3987 (11)C13—C121.378 (9)
Br3—Cu4ii2.6288 (12)C12—H120.9300
Br3—Cu3A2.336 (16)C12—C111.359 (10)
Br3—Cu4Aii2.676 (18)C1—H1A0.9300
Cu1—O12.008 (4)C1—C21.381 (9)
Cu1—N21.964 (5)C6—C71.490 (9)
Cu1—N11.992 (5)C17—H17A0.9700
Br6—Cu22.3878 (11)C17—H17B0.9700
Br6—Cu4iii2.5359 (14)C17—C181.512 (11)
Br5—Cu22.6357 (11)C8—H8A0.9700
Br5—Cu42.4092 (14)C8—H8B0.9700
Cu2—N41.968 (5)C8—C91.455 (12)
Cu2—O22.011 (4)C11—H110.9300
Cu2—N31.993 (5)C11—C101.387 (8)
O1—H10.8200C9—H90.9300
O1—C91.448 (10)C2—H2A0.9300
N4—C151.284 (8)C18—H18A0.9700
N4—C171.462 (9)C18—H18B0.9700
N4—Cu2A2.016 (15)C7—H7A0.9600
C5—N11.372 (9)C7—H7B0.9600
C5—C41.364 (10)C7—H7C0.9600
C5—C61.479 (11)C10—H100.9300
N2—C61.255 (8)C16—H16A0.9600
N2—C81.473 (8)C16—H16B0.9600
N2—Cu1A1.957 (18)C16—H16C0.9600
N1—C11.338 (7)Cu1A—Br1A2.67 (3)
N1—Cu1A2.296 (18)Cu1A—Br2Aiii2.34 (3)
O2—H20.8200Br1A—Cu3A2.40 (2)
O2—C181.443 (8)Cu3A—Br2A2.62 (2)
O2—Cu2A2.413 (16)Br6A—Cu2A2.77 (2)
N3—C141.348 (7)Br6A—Cu4Aiii2.31 (2)
N3—C101.351 (7)Cu2A—Br5A2.23 (3)
N3—Cu2A2.284 (17)Br5A—Cu4A2.71 (3)
Cu3—Br2—Cu1i129.92 (4)C12—C13—C14119.0 (5)
Cu1—Br1—Cu3115.93 (4)C12—C13—H13120.5
Cu4—Br4—Cu3167.35 (5)C13—C12—H12120.3
Cu4A—Br4—Cu3A164.9 (6)C11—C12—C13119.5 (6)
Cu3—Br3—Cu4ii159.31 (4)C11—C12—H12120.3
Cu3—Br3—Cu4Aii167.0 (3)N1—C1—H1A118.8
Cu4ii—Br3—Cu4Aii17.7 (4)N1—C1—C2122.5 (6)
Cu3A—Br3—Cu4Aii154.2 (5)C2—C1—H1A118.8
Br1—Cu1—Br2iii99.38 (3)C5—C6—C7118.4 (6)
O1—Cu1—Br2iii97.34 (14)N2—C6—C5115.2 (6)
O1—Cu1—Br195.65 (14)N2—C6—C7126.4 (6)
N2—Cu1—Br2iii104.87 (16)N4—C17—H17A110.5
N2—Cu1—Br1155.74 (16)N4—C17—H17B110.5
N2—Cu1—O181.9 (2)N4—C17—C18106.3 (6)
N2—Cu1—N180.5 (2)H17A—C17—H17B108.7
N1—Cu1—Br2iii92.51 (13)C18—C17—H17A110.5
N1—Cu1—Br198.12 (13)C18—C17—H17B110.5
N1—Cu1—O1161.5 (2)N2—C8—H8A109.8
Cu2—Br6—Cu4iii116.82 (5)N2—C8—H8B109.8
Cu4—Br5—Cu2131.12 (6)H8A—C8—H8B108.3
Br2—Cu3—Br1104.21 (4)C9—C8—N2109.3 (6)
Br2—Cu3—Br4106.85 (4)C9—C8—H8A109.8
Br1—Cu3—Br495.25 (4)C9—C8—H8B109.8
Br3—Cu3—Br2124.47 (5)C12—C11—H11120.0
Br3—Cu3—Br1111.79 (4)C12—C11—C10119.9 (6)
Br3—Cu3—Br4110.23 (4)C10—C11—H11120.0
Br6—Cu2—Br599.05 (4)O1—C9—C8112.2 (6)
N4—Cu2—Br6152.70 (16)O1—C9—H9123.9
N4—Cu2—Br5108.25 (16)C8—C9—H9123.9
N4—Cu2—O281.6 (2)C3—C2—C1118.8 (6)
N4—Cu2—N380.6 (2)C3—C2—H2A120.6
O2—Cu2—Br696.41 (13)C1—C2—H2A120.6
O2—Cu2—Br595.09 (14)O2—C18—C17110.1 (6)
N3—Cu2—Br697.65 (14)O2—C18—H18A109.6
N3—Cu2—Br594.12 (14)O2—C18—H18B109.6
N3—Cu2—O2161.8 (2)C17—C18—H18A109.6
Br4—Cu4—Br3iv112.04 (5)C17—C18—H18B109.6
Br4—Cu4—Br6i107.88 (5)H18A—C18—H18B108.1
Br4—Cu4—Br5126.29 (6)C6—C7—H7A109.5
Br6i—Cu4—Br3iv94.15 (4)C6—C7—H7B109.5
Br5—Cu4—Br3iv107.49 (5)C6—C7—H7C109.5
Br5—Cu4—Br6i103.88 (5)H7A—C7—H7B109.5
Cu1—O1—H1118.7H7A—C7—H7C109.5
C9—O1—Cu1111.4 (4)H7B—C7—H7C109.5
C9—O1—H1109.5N3—C10—C11121.1 (6)
C15—N4—Cu2117.6 (5)N3—C10—H10119.5
C15—N4—C17125.6 (6)C11—C10—H10119.5
C15—N4—Cu2A111.8 (7)C15—C16—H16A109.5
C17—N4—Cu2116.5 (5)C15—C16—H16B109.5
C17—N4—Cu2A114.4 (7)C15—C16—H16C109.5
N1—C5—C6113.1 (6)H16A—C16—H16B109.5
C4—C5—N1121.0 (7)H16A—C16—H16C109.5
C4—C5—C6125.9 (7)H16B—C16—H16C109.5
C6—N2—Cu1117.8 (4)N2—Cu1A—N173.4 (6)
C6—N2—C8126.1 (5)N2—Cu1A—Br1A102.5 (8)
C6—N2—Cu1A109.5 (7)N2—Cu1A—Br2Aiii158.1 (10)
C8—N2—Cu1115.6 (4)N1—Cu1A—Br1A71.7 (6)
C8—N2—Cu1A114.9 (7)N1—Cu1A—Br2Aiii117.1 (8)
C5—N1—Cu1113.3 (4)Br2Aiii—Cu1A—Br1A99.2 (8)
C5—N1—Cu1A96.5 (6)Cu3A—Br1A—Cu1A132.4 (8)
C1—N1—Cu1127.7 (4)Br3—Cu3A—Br4112.7 (6)
C1—N1—C5118.9 (5)Br3—Cu3A—Br1A124.7 (8)
C1—N1—Cu1A129.7 (6)Br3—Cu3A—Br2A108.1 (7)
Cu2—O2—H2121.1Br1A—Cu3A—Br4113.7 (8)
C18—O2—Cu2110.1 (4)Br1A—Cu3A—Br2A101.9 (8)
C18—O2—H2109.5Br2A—Cu3A—Br488.0 (6)
C18—O2—Cu2A89.2 (5)Cu1Ai—Br2A—Cu3A116.4 (7)
C14—N3—Cu2113.5 (4)Cu4Aiii—Br6A—Cu2A127.7 (9)
C14—N3—C10119.0 (5)N4—Cu2A—O271.2 (5)
C14—N3—Cu2A100.5 (5)N4—Cu2A—N372.9 (5)
C10—N3—Cu2127.4 (4)N4—Cu2A—Br6A104.3 (6)
C10—N3—Cu2A127.8 (5)N4—Cu2A—Br5A158.7 (9)
N3—C14—C15114.5 (5)O2—Cu2A—Br6A67.2 (5)
N3—C14—C13121.4 (5)N3—Cu2A—O2114.6 (6)
C13—C14—C15124.0 (5)N3—Cu2A—Br6A71.5 (5)
N4—C15—C14113.6 (6)Br5A—Cu2A—O2119.2 (9)
N4—C15—C16125.4 (6)Br5A—Cu2A—N3114.0 (8)
C16—C15—C14121.0 (6)Br5A—Cu2A—Br6A97.0 (8)
C5—C4—H4120.2Cu2A—Br5A—Cu4A116.3 (8)
C5—C4—C3119.7 (7)Br4—Cu4A—Br3iv111.8 (6)
C3—C4—H4120.2Br4—Cu4A—Br5A111.4 (8)
C4—C3—H3120.4Br3iv—Cu4A—Br5A89.4 (6)
C2—C3—C4119.1 (7)Br6Ai—Cu4A—Br4123.9 (9)
C2—C3—H3120.4Br6Ai—Cu4A—Br5A103.4 (8)
C14—C13—H13120.5
Cu1—O1—C9—C832.9 (9)C4—C5—C6—N2175.6 (7)
Cu1—N2—C6—C54.5 (8)C4—C5—C6—C74.4 (11)
Cu1—N2—C6—C7175.5 (5)C4—C3—C2—C10.5 (11)
Cu1—N2—C8—C917.9 (8)C13—C14—C15—N4177.2 (5)
Cu1—N1—C1—C2176.2 (5)C13—C14—C15—C164.4 (9)
Cu2—N4—C15—C143.6 (7)C13—C12—C11—C101.6 (10)
Cu2—N4—C15—C16174.7 (5)C12—C11—C10—N30.0 (10)
Cu2—N4—C17—C1822.2 (7)C6—C5—N1—Cu13.6 (7)
Cu2—O2—C18—C1741.0 (6)C6—C5—N1—C1179.3 (5)
Cu2—N3—C14—C154.2 (6)C6—C5—N1—Cu1A38.0 (7)
Cu2—N3—C14—C13178.1 (4)C6—C5—C4—C3179.4 (7)
Cu2—N3—C10—C11176.0 (4)C6—N2—C8—C9170.8 (7)
N4—C17—C18—O240.2 (7)C17—N4—C15—C14177.2 (6)
C5—N1—C1—C20.4 (9)C17—N4—C15—C161.0 (10)
C5—C4—C3—C20.0 (11)C8—N2—C6—C5175.7 (6)
N2—C8—C9—O132.5 (10)C8—N2—C6—C74.3 (11)
N1—C5—C4—C30.4 (11)C10—N3—C14—C15179.1 (5)
N1—C5—C6—N25.4 (9)C10—N3—C14—C131.4 (8)
N1—C5—C6—C7174.6 (6)Cu1A—N2—C6—C540.2 (8)
N1—C1—C2—C30.8 (10)Cu1A—N2—C6—C7139.8 (8)
N3—C14—C15—N45.1 (7)Cu1A—N2—C8—C928.3 (9)
N3—C14—C15—C16173.2 (6)Cu1A—N1—C1—C2128.3 (8)
N3—C14—C13—C123.0 (9)Cu2A—N4—C15—C1436.4 (7)
C14—N3—C10—C110.1 (9)Cu2A—N4—C15—C16145.4 (7)
C14—C13—C12—C113.1 (10)Cu2A—N4—C17—C1818.5 (8)
C15—N4—C17—C18164.1 (6)Cu2A—O2—C18—C1764.7 (6)
C15—C14—C13—C12179.5 (6)Cu2A—N3—C14—C1536.2 (6)
C4—C5—N1—Cu1177.3 (5)Cu2A—N3—C14—C13146.1 (6)
C4—C5—N1—C10.2 (10)Cu2A—N3—C10—C11133.8 (7)
C4—C5—N1—Cu1A142.9 (7)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br30.822.433.240 (4)172
O2—H2···Br4iii0.822.403.206 (4)167
C4—H4···Br2v0.933.043.915 (8)158
C13—H13···Br5vi0.932.993.843 (6)154
C1—H1A···Br10.932.963.477 (6)117
C11—H11···Br3vi0.932.953.670 (6)136
C11—H11···Br5vii0.933.053.790 (7)138
C9—H9···Br5viii0.932.983.888 (8)166
C2—H2A···Br2ix0.933.093.818 (7)136
C2—H2A···Br4ix0.932.913.658 (7)139
C18—H18A···Br2iii0.973.023.965 (7)164
C18—H18B···Br40.973.134.086 (7)169
C7—H7C···Br1viii0.962.993.621 (7)125
C10—H10···Br60.932.983.482 (6)115
C16—H16A···Br6viii0.962.923.636 (7)133
Symmetry codes: (iii) x, y+1, z; (v) x+2, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x, y+3/2, z+1/2; (ix) x+2, y+1/2, z+3/2.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAsadi, Z., Golzard, F., Eigner, V. & Dusek, M. (2013). J. Coord. Chem. 66, 3629–3646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhaumik, P. K., Harms, K. & Chattopadhyay, S. (2013). Inorg. Chim. Acta, 405, 400–409.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrooker, S. & McKee, V. (1990). Inorg. Chim. Acta, 173, 69–83.  CSD CrossRef CAS Web of Science Google Scholar
First citationChatterjee, A., Khan, S. & Ghosh, R. (2019). Polyhedron, 173, 114151.  Web of Science CSD CrossRef Google Scholar
First citationChen, C.-H., Hung, P.-J., Wan, C.-F. & Wu, A.-T. (2013). Inorg. Chem. Commun. 38, 74–77.  Web of Science CrossRef CAS Google Scholar
First citationDeng, W.-T., Liu, J.-C. & Cao, J. (2013). J. Coord. Chem. 66, 3782–3790.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGodlewska, S., Baranowska, K., Socha, J. & Dołęga, A. (2011). Acta Cryst. E67, m1906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, Z., Tang, G. & Lu, L. (2008). Acta Cryst. E64, m958–m959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJurowska, A., Szklarzewicz, J., Kurpiewska, K. & Tomecka, M. (2014). Polyhedron, 75, 127–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708–713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Shao, T., Shi, Q. & Hu, M. (2013). RSC Adv. 3, 22877–22881.  Web of Science CrossRef CAS Google Scholar
First citationMassue, J., Olesiak-Banska, J., Jeanneau, E., Aronica, C., Matczyszyn, K., Samoc, M., Monnereau, C. & Andraud, C. (2013). Inorg. Chem. 52, 10705–10707.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNyamato, G. S., Ojwach, S. O. & Akerman, M. P. (2015). Organometallics, 34, 5647–5657.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuadi, A., Gadenne, B., Hesemann, P., Moreau, J. J. E., Billard, I., Gaillard, C., Mekki, S. & Moutiers, G. (2006). Chem. Eur. J. 12, 3074–3081.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, S. A., Unki, S. N. & Badami, P. S. (2012). Med. Chem. Res. 21, 4017–4027.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578–16587.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationThompson, K. H. & Orvig, C. (2001). Coord. Chem. Rev. 219–221, 1033–1053.  Web of Science CrossRef CAS Google Scholar
First citationWang, P., Wang, Y.-Y., Chi, Y.-H., Wei, W., Zhang, S.-G., Cottrill, E. & Shi, J.-M. (2013). J. Coord. Chem. 66, 3092–3099.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y., Jiang, H., Chan, A. S.-C., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2002). Inorg. Chim. Acta, 333, 138–143.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172–m1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X. F., Pan, J., Li, S. R., Zhou, H. & Pan, Z. Q. (2009). Z. Anorg. Allg. Chem. 635, 1481–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds