research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis­­(malonato)borate monohydrate

crossmark logo

aDepartment of Physics, Government College for Women (Autonomous), (affiliated to Bharathidasan University), Kumbakonam 612 001, Tamilnadu, India, bPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and cDepartment of Physics, Government Arts College (Autonomous), (affiliated to Bharathidasan University), Kumbakonam 612 002, Tamilnadu, India
*Correspondence e-mail: gokilaphy1981@gmail.com, thiruvalluvar.a@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 November 2023; accepted 14 January 2024; online 26 January 2024)

In the title salt, poly[aqua­[μ4-bis­(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis­(malonato)borate anions and a water O atom. The tetra­hedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%).

1. Chemical context

The review by Vaalma et al. (2018[Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. (2018). Nat. Rev. Mater. 3, 18013.]) provides a com­prehensive overview of the cost and resource implications of sodium-ion batteries, which are a promising alternative to lithium-ion batteries for energy storage applications. The authors con­clude that sodium-ion batteries have the potential to be significantly less expensive than lithium-ion batteries, due to the abundance of sodium and the lower cost of sodium-based materials. Allen et al. (2012[Allen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.]) described the structure of lithium bis­(2-methyl­lactato)borate monohydrate and there is a growing inter­est, as highlighted in various recent studies (Vaalma et al., 2018[Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. (2018). Nat. Rev. Mater. 3, 18013.]; Abraham, 2020[Abraham, K. M. (2020). ACS Energy Lett. 5, 3544-3547.]; Li et al., 2019[Li, K., Zhang, J., Lin, D., Wang, D.-W., Li, B., Lv, W., Sun, S., He, Y.-B., Kang, F., Yang, Q.-H., Zhou, L. & Zhang, T.-Y. (2019). Nat. Commun. 10, 725.]; Wang et al., 2018[Wang, T., Su, D., Shanmukaraj, D., Rojo, T., Armand, M. & Wang, G. (2018). Electrochem. Energy Rev. 1, 200-237.]), in lithium bis­(malonato)borate polymers as robust electrolytes.

[Scheme 1]

The present study explores the substitution of 2-methyl­lactic acid and lithium carbonate with malonic acid and sodium carbonate, respectively, and presents the synthesis, crystal structure and Hirshfeld surface analysis of the title com­pound, Na+·[B(C3H2O4)2]·H2O, (I).

2. Structural commentary

The asymmetric unit of (I) com­prises a sodium cation, a bis­(malonato)borate anion and a coordinated water mol­ecule (Fig. 1[link]). The tetra­hedral B atom is bonded to two malonate (C3H2O4) ligands coordinated in an O,O′-bidentate mode.

[Figure 1]
Figure 1
View of the mol­ecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).

In the boron–oxygen tetra­hedron, the mean B—O bond length of 1.4641 Å is in good agreement with the expected B(sp3)—O bond length of 1.468 Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The largest O—B—O bond angles are the intra­cyclic angles: O1—B1—O3 = 112.92 (9)° and O5—B1—O7 = 112.21 (9)°. The six-membered boro–malonate rings O1/C1/C2/C3/O3/B1 and O5/C4/C5/C6/O7/B1 both adopt boat conformations [puckering parameters Q = 0.4082 (13) Å, θ = 87.85 (18)° and φ = 309.10 (18)° for the first ring, and Q = 0.4267 (13) Å, θ = 84.32 (16)° and φ = 317.00 (17)° for the second ring]. The `prow and stern' atoms in the first ring, B1 and C2, are displaced by 0.3680 (18) and 0.330 (2) Å, respectively, from C1/C3/O1/O3 (r.m.s. deviation = 0.0323 Å). In the second ring, the equivalent data are a B1 displacement of 0.4048 (17), a C5 displacement of 0.298 (2) Å and an r.m.s. deviation of 0.0621 Å. The dihedral angle between the O1/C1/C3/O3 and O5/C4/C6/O7 least-squares planes is 73.34 (4)°.

Na1 is surrounded by five O atoms [carbonyl O2 and O6 at (x − 1, y, z), water O9, carbonyl O8 at (x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]) and O6 at (−x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}])], forming a square-based pyramidal coordination polyhedron (Table 1[link]). A possible sixth bond [Na1—O5 at (x − 1, y, z)], which would generate a distorted octa­hedron, is much longer at 3.0195 (10) Å and presumably only represents a marginal inter­action in the structure.

Table 1
Selected geometric parameters (Å, °)

Na1—O9 2.3264 (12) B1—O3 1.4508 (15)
Na1—O2 2.3402 (11) B1—O7 1.4581 (16)
Na1—O6i 2.4032 (10) B1—O1 1.4697 (15)
Na1—O8ii 2.4213 (12) B1—O5 1.4779 (15)
Na1—O6iii 2.4455 (11)    
       
O9—Na1—O2 171.38 (5) O6i—Na1—O8ii 80.15 (4)
O9—Na1—O6i 102.48 (4) O9—Na1—O6iii 84.03 (4)
O2—Na1—O6i 85.61 (4) O2—Na1—O6iii 88.60 (4)
O9—Na1—O8ii 88.27 (5) O6i—Na1—O6iii 167.40 (3)
O2—Na1—O8ii 90.22 (5) O8ii—Na1—O6iii 111.10 (5)
Symmetry codes: (i) [x-1, y, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features and Hirshfeld surface analysis

The crystal structure of (I) is consolidated by two C—H⋯O links with the acceptors being one water O9 atom and one carbonyl O4 atom, and three O—H⋯O links, one of which is bifurcated, with the acceptors being one borate O1 atom and carbonyl atoms O4 and O2 (Table 2[link]). The packing of the structure is shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O9iv 0.97 2.54 3.4247 (18) 151
C5—H5B⋯O4v 0.97 2.46 3.2830 (18) 143
O9—H9A⋯O4vi 0.85 (1) 2.23 (2) 2.9932 (17) 151 (3)
O9—H9B⋯O1vii 0.84 (1) 2.46 (2) 3.1520 (14) 140 (3)
O9—H9B⋯O2vii 0.84 (1) 2.39 (2) 3.1166 (17) 146 (3)
Symmetry codes: (iv) [x+1, y, z]; (v) [x, y+1, z]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A packing diagram of (I), viewed along the a-axis direction (projection onto the bc plane), showing the C—H⋯O and O—H⋯O hydrogen bonds as black dashed lines.

The Hirshfeld surface analysis of (I) was performed with CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the dnorm surface for the bis­(malonato)borate anion plotted over the limits from −0.66 to +0.93 a.u. The intense red spots represent the shortest inter­molecular contacts (attractive inter­actions like hydrogen bonds) and the blue regions denotes the longest (indicating possible repulsive inter­actions or regions with weak van der Waals inter­actions). Fig. 4[link] presents the two-dimensional fingerprint plots involving all the inter­molecular inter­actions [Fig. 4[link](a)] and delineated into Na⋯O/O⋯Na = 16.1% [Fig. 4[link](b)], C⋯O/O⋯C = 7.3% [Fig. 4[link](c)], H⋯H = 10.7% [Fig. 4[link](d)], H⋯O/O⋯H = 49.7% [Fig. 4[link](e)] and O⋯O = 12.6% [Fig. 4[link](f)] inter­actions. The remaining inter­actions contribute less than 2.0%. The hydrogen bonds are indicated by pairs of characteristic wings in the fingerprint plot [Fig. 4[link](e)] representing H⋯O/O⋯H contacts. Pairs of scattered points of spikes are seen in the fingerprint plot delineated into H⋯O/O⋯H contacts (49.7% the maximum contribution to the Hirshfeld surface) [Fig. 4[link](e)].

[Figure 3]
Figure 3
The Hirshfeld surface for (I). The surface is drawn with transparency and simplified for clarity, and the regions with the strongest inter­molecular inter­actions are shown in red. (dnorm range: −0.66 to +0.93 a.u.)
[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for title com­pound (I), showing (a) all inter­actions, and those delineated into (b) Na⋯O/O⋯Na, (c) C⋯O/O⋯C, (d) H⋯H, (e) H⋯O/O⋯H and (f) O⋯O inter­actions. The di (x axis) and de (y axis) values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search using CCDC ConQuest of the Cambridge Structural Database (CSD, Version 5.44, updated to June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the bis­(malonato)borate anion gave one hit (CSD refcode PITQUF; Zviedre & Belyakov, 2007[Zviedre, I. I. & Belyakov, S. V. (2007). Russ. J. Inorg. Chem. 52, 686-690.]), in which the bis­(malonato)borate unit is similar to that in (I) and is charge balanced by potassium cations. The K+ coordination geometry in PITQUF is an irregular nine-vertex polyhedron formed by the O atoms of seven com­plex anions.

5. Synthesis and crystallization

The title com­pound was synthesized by mixing malonic acid (C3H4O4), boric acid (H3BO3) and sodium carbonate (Na2CO3) in a 4:2:1 molar ratio, using deionized water as the solvent. Initially, malonic acid (4.1264 g) was dissolved in deionized water. This was followed by the addition of a boric acid solution (1.236 g) and then a sodium carbonate solution (1.382 g) was added. The mixture was stirred thoroughly to ensure a uniform solution. The beaker containing the solution was then covered with a perforated sheet and left undisturbed. Over three months, due to slow evaporation of the solvent, small clear crystals of (I) formed at the bottom of the container [yield: 2.744 g, 40.6%; m.p. 527–529 K (decom­position)]. FT–IR (cm−1): 3928, 3856, 3419, 3014, 2908, 2542, 2016, 1711, 1635, 1400, 1334, 1271, 1069, 1019, 958, 914, 859, 833, 657, 634, 561, 478, 457, 423.

6. Refinement

Crystal data and structure refinement details are summarized in Table 3[link]. The H atoms attached to C atoms were placed in calculated positions (C—H = 0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference maps and refined with restraints (O—H = 0.84 ± 0.02 Å and H⋯H = 1.36 ± 0.02 Å) to ensure a realistic geometry.

Table 3
Experimental details

Crystal data
Chemical formula [Na(C6H4BO8)(H2O)]
Mr 255.91
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 7.9058 (4), 8.2979 (5), 14.6473 (9)
β (°) 101.565 (2)
V3) 941.38 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.35 × 0.27 × 0.27
 
Data collection
Diffractometer Bruker D8 VENTURE diffrac­tometer with a PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.917, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 32209, 2864, 2494
Rint 0.030
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.08
No. of reflections 2864
No. of parameters 162
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.60
Computer programs: APEX4, SAINT and XPREP (Bruker, 2021[Bruker (2021). APEX3, SAINT/XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Poly[aqua[µ4-bis(malonato)borato]sodium] top
Crystal data top
[Na(C6H4BO8)(H2O)]F(000) = 520
Mr = 255.91Dx = 1.806 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9058 (4) ÅCell parameters from 9951 reflections
b = 8.2979 (5) Åθ = 2.8–30.5°
c = 14.6473 (9) ŵ = 0.21 mm1
β = 101.565 (2)°T = 298 K
V = 941.38 (9) Å3Block, colourless
Z = 40.35 × 0.27 × 0.27 mm
Data collection top
Bruker D8 VENTURE
diffractometer with a PHOTON II detector
2494 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
ω and φ scanθmax = 30.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1011
Tmin = 0.917, Tmax = 0.958k = 1111
32209 measured reflectionsl = 2020
2864 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.3262P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.53 e Å3
4 restraintsΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.24488 (7)0.47538 (7)0.76584 (4)0.03728 (15)
B10.76757 (17)0.52073 (15)0.55156 (9)0.0271 (2)
C10.59169 (15)0.47853 (15)0.66789 (9)0.0294 (2)
C20.64385 (17)0.30481 (15)0.66658 (9)0.0331 (3)
H2A0.5519660.2391280.6819400.040*
H2B0.7455900.2882680.7150540.040*
C30.68228 (16)0.24605 (14)0.57587 (9)0.0309 (2)
C41.01449 (13)0.68524 (13)0.61701 (7)0.0235 (2)
C50.93606 (17)0.81205 (14)0.54883 (9)0.0340 (3)
H5A1.0285480.8758230.5326010.041*
H5B0.8674480.8832290.5794010.041*
C60.82428 (16)0.75128 (16)0.46059 (9)0.0331 (3)
O10.64336 (12)0.57513 (11)0.60743 (7)0.0337 (2)
O20.50736 (14)0.53111 (13)0.72169 (8)0.0451 (3)
O30.74511 (13)0.35276 (11)0.52435 (7)0.0358 (2)
O40.66050 (17)0.10738 (13)0.55087 (9)0.0518 (3)
O50.94362 (11)0.54098 (10)0.60778 (6)0.02768 (18)
O61.13921 (12)0.71217 (11)0.67822 (6)0.0329 (2)
O70.74022 (12)0.61563 (12)0.46608 (6)0.0366 (2)
O80.80823 (17)0.82359 (17)0.38773 (8)0.0577 (3)
O90.00848 (15)0.39690 (13)0.82757 (8)0.0448 (3)
H9A0.008 (4)0.443 (3)0.8765 (14)0.088 (9)*
H9B0.019 (4)0.2983 (16)0.8397 (19)0.100 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0334 (3)0.0373 (3)0.0430 (3)0.0070 (2)0.0124 (2)0.0112 (2)
B10.0289 (6)0.0257 (6)0.0283 (6)0.0034 (4)0.0090 (5)0.0002 (4)
C10.0242 (5)0.0316 (6)0.0337 (6)0.0052 (4)0.0089 (4)0.0065 (4)
C20.0401 (6)0.0291 (6)0.0316 (6)0.0021 (5)0.0107 (5)0.0008 (4)
C30.0322 (5)0.0252 (5)0.0360 (6)0.0037 (4)0.0086 (4)0.0039 (4)
C40.0255 (4)0.0238 (5)0.0219 (4)0.0022 (4)0.0062 (4)0.0025 (4)
C50.0391 (6)0.0234 (5)0.0355 (6)0.0004 (4)0.0022 (5)0.0087 (5)
C60.0310 (5)0.0382 (6)0.0286 (6)0.0004 (5)0.0025 (4)0.0120 (5)
O10.0349 (4)0.0249 (4)0.0456 (5)0.0004 (3)0.0180 (4)0.0013 (4)
O20.0423 (5)0.0478 (6)0.0527 (6)0.0066 (4)0.0272 (5)0.0150 (5)
O30.0458 (5)0.0288 (4)0.0375 (5)0.0077 (4)0.0198 (4)0.0079 (4)
O40.0722 (8)0.0270 (5)0.0611 (7)0.0110 (5)0.0249 (6)0.0122 (5)
O50.0295 (4)0.0236 (4)0.0292 (4)0.0007 (3)0.0042 (3)0.0075 (3)
O60.0332 (4)0.0349 (4)0.0274 (4)0.0009 (3)0.0016 (3)0.0013 (3)
O70.0369 (4)0.0411 (5)0.0282 (4)0.0087 (4)0.0017 (3)0.0066 (4)
O80.0601 (7)0.0713 (8)0.0370 (6)0.0081 (6)0.0020 (5)0.0315 (6)
O90.0525 (6)0.0366 (5)0.0487 (6)0.0035 (4)0.0181 (5)0.0039 (5)
Geometric parameters (Å, º) top
Na1—O92.3264 (12)C2—H2A0.9700
Na1—O22.3402 (11)C2—H2B0.9700
Na1—O6i2.4032 (10)C3—O41.2094 (16)
Na1—O8ii2.4213 (12)C3—O31.3231 (15)
Na1—O6iii2.4455 (11)C4—O61.2130 (14)
Na1—O5i3.0195 (10)C4—O51.3171 (13)
B1—O31.4508 (15)C4—C51.4969 (15)
B1—O71.4581 (16)C5—C61.4993 (18)
B1—O11.4697 (15)C5—H5A0.9700
B1—O51.4779 (15)C5—H5B0.9700
C1—O21.2109 (15)C6—O81.2086 (15)
C1—O11.3186 (15)C6—O71.3177 (16)
C1—C21.5005 (17)O9—H9A0.846 (13)
C2—C31.5024 (17)O9—H9B0.838 (13)
O9—Na1—O2171.38 (5)O4—C3—C2122.33 (12)
O9—Na1—O6i102.48 (4)O3—C3—C2116.93 (10)
O2—Na1—O6i85.61 (4)O6—C4—O5120.62 (10)
O9—Na1—O8ii88.27 (5)O6—C4—C5122.02 (10)
O2—Na1—O8ii90.22 (5)O5—C4—C5117.36 (10)
O6i—Na1—O8ii80.15 (4)O6—C4—Na1iv45.91 (6)
O9—Na1—O6iii84.03 (4)O5—C4—Na1iv74.82 (6)
O2—Na1—O6iii88.60 (4)C5—C4—Na1iv167.29 (8)
O6i—Na1—O6iii167.40 (3)C4—C5—C6115.62 (10)
O8ii—Na1—O6iii111.10 (5)C4—C5—H5A108.4
O9—Na1—O5i77.10 (4)C6—C5—H5A108.4
O2—Na1—O5i111.06 (4)C4—C5—H5B108.4
O6i—Na1—O5i46.12 (3)C6—C5—H5B108.4
O8ii—Na1—O5i117.12 (4)H5A—C5—H5B107.4
O6iii—Na1—O5i127.08 (4)O8—C6—O7120.86 (13)
O3—B1—O7107.10 (10)O8—C6—C5122.25 (13)
O3—B1—O1112.92 (9)O7—C6—C5116.88 (10)
O7—B1—O1108.16 (10)C1—O1—B1121.25 (10)
O3—B1—O5108.18 (10)C1—O2—Na1137.99 (9)
O7—B1—O5112.21 (9)C3—O3—B1121.70 (10)
O1—B1—O5108.33 (10)C4—O5—B1119.62 (9)
O2—C1—O1120.21 (12)C4—O5—Na1iv80.28 (6)
O2—C1—C2122.89 (12)B1—O5—Na1iv156.45 (7)
O1—C1—C2116.90 (10)C4—O6—Na1iv112.84 (8)
C1—C2—C3115.33 (11)C4—O6—Na1v127.34 (8)
C1—C2—H2A108.4Na1iv—O6—Na1v118.98 (3)
C3—C2—H2A108.4C6—O7—B1121.60 (10)
C1—C2—H2B108.4C6—O8—Na1vi164.30 (13)
C3—C2—H2B108.4Na1—O9—H9A118 (2)
H2A—C2—H2B107.5Na1—O9—H9B108 (2)
O4—C3—O3120.73 (12)H9A—O9—H9B107 (2)
O2—C1—C2—C3156.38 (13)C5—C4—O5—B117.36 (15)
O1—C1—C2—C324.22 (16)Na1iv—C4—O5—B1166.54 (9)
C1—C2—C3—O4150.74 (13)O6—C4—O5—Na1iv3.33 (10)
C1—C2—C3—O330.58 (17)C5—C4—O5—Na1iv176.10 (10)
O6—C4—C5—C6160.61 (11)O3—B1—O5—C4159.43 (9)
O5—C4—C5—C618.81 (16)O7—B1—O5—C441.49 (14)
Na1iv—C4—C5—C6143.8 (3)O1—B1—O5—C477.85 (12)
C4—C5—C6—O8150.46 (14)O3—B1—O5—Na1iv55.6 (2)
C4—C5—C6—O730.90 (17)O7—B1—O5—Na1iv173.55 (12)
O2—C1—O1—B1170.39 (12)O1—B1—O5—Na1iv67.1 (2)
C2—C1—O1—B19.02 (16)O5—C4—O6—Na1iv4.47 (13)
O3—B1—O1—C135.76 (16)C5—C4—O6—Na1iv174.93 (9)
O7—B1—O1—C1154.11 (10)O5—C4—O6—Na1v164.81 (7)
O5—B1—O1—C184.03 (13)C5—C4—O6—Na1v15.79 (16)
O1—C1—O2—Na1126.39 (13)Na1iv—C4—O6—Na1v169.29 (12)
C2—C1—O2—Na154.2 (2)O8—C6—O7—B1175.44 (14)
O4—C3—O3—B1178.15 (13)C5—C6—O7—B15.90 (18)
C2—C3—O3—B13.14 (18)O3—B1—O7—C6147.33 (11)
O7—B1—O3—C3147.88 (11)O1—B1—O7—C690.69 (14)
O1—B1—O3—C328.92 (17)O5—B1—O7—C628.75 (16)
O5—B1—O3—C390.96 (13)O7—C6—O8—Na1vi117.5 (4)
O6—C4—O5—B1163.22 (10)C5—C6—O8—Na1vi61.0 (5)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z+3/2; (vi) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O9iv0.972.543.4247 (18)151
C5—H5B···O4vii0.972.463.2830 (18)143
O9—H9A···O4viii0.85 (1)2.23 (2)2.9932 (17)151 (3)
O9—H9B···O1ix0.84 (1)2.46 (2)3.1520 (14)140 (3)
O9—H9B···O2ix0.84 (1)2.39 (2)3.1166 (17)146 (3)
Symmetry codes: (iv) x+1, y, z; (vii) x, y+1, z; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Madras (IITM), Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationAbraham, K. M. (2020). ACS Energy Lett. 5, 3544–3547.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAllen, J. L., Paillard, E., Boyle, P. D. & Henderson, W. A. (2012). Acta Cryst. E68, m749.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2021). APEX3, SAINT/XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, K., Zhang, J., Lin, D., Wang, D.-W., Li, B., Lv, W., Sun, S., He, Y.-B., Kang, F., Yang, Q.-H., Zhou, L. & Zhang, T.-Y. (2019). Nat. Commun. 10, 725.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaalma, C., Buchholz, D., Weil, M. & Passerini, S. (2018). Nat. Rev. Mater. 3, 18013.  CrossRef Google Scholar
First citationWang, T., Su, D., Shanmukaraj, D., Rojo, T., Armand, M. & Wang, G. (2018). Electrochem. Energy Rev. 1, 200–237.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZviedre, I. I. & Belyakov, S. V. (2007). Russ. J. Inorg. Chem. 52, 686–690.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds