AfCA collection\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

crossmark logo

aChemistry Department, University of Dschang, PO Box 67, Dschang, Cameroon, bPhysics Department, Faculty of Science of Structure of Matter and Technology, Université Félix Houphouet-Boigny, Abidjan, 08 BP 582 Abidjan, Cote d'Ivoire, cChemistry Department, Faculty of Science, University of Nazi BONI, 01 BP 1091 Bobo Dioulasso 01, Burkina Faso, dDepartment of Medicine, Traditional Pharmacopeias and Pharmacy, Institute for Health Sciences Research, 03 BP 7192 Ouagadougou 03, Burkina Faso, ePhysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt, fChemistry Department, Faculty of Science, Masuku University of Science and Technology, Franceville, Gabon, gPhysics Department, Faculty of Science, University of Lomé, Togo, and hCRM2, CNRS Université de Lorraine, Vandoeuvre-lès-Nancy CEDEX BP 70239, France
*Correspondence e-mail: patrice.kenfack@univ-dschang.org, claude.lecomte@univ-lorraine.fr

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 December 2023; accepted 24 December 2023; online 5 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic ππ stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.

1. AFRAMED and chemical context

The AFRAMED (Supporting research and training in Africa through remote measurements; Abdel-Aal et al., 2023[Abdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www. iucr. org/news/newsletter/volume-31/number-1/appui-a-la-formation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa.]) CNRS project was developed by the Chair of the IUCr Africa Initiative (Professor Claude Lecomte) and his team for Crystallography Education in Africa. The project is based on the remote control by an African laboratory of a diffractometer based in France (in fact now at CRM2) to perform X-ray single-crystal diffraction measurements for research and teaching purposes. Selected crystals are sent to the French partner by African researchers who control the data collection remotely and then receive the intensity data by e-mail. The project was launched in August 2022 and is co-financed by the French Centre National de la Recherche Scientifique (CNRS), the United Nations Educational, Scientific and Cultural Organization (UNESCO), and the Inter­national Union of Crystallography (IUCr). Two main steps define AFRAMED: first, four weeks training of African Partners (young lecturers with permanent positions) on a single-crystal diffractometer, and in the second step, the African researchers' laboratories are focal points to assist their colleagues for remote measurements. To date, representatives of Algeria, Cameroon; Congo Brazzaville; Cote d'Ivoire, Egypt, Gabon and Senegal have been trained at the CRM2 laboratory of the Université de Lorraine, France.

This paper presents one of the results of this training: the synthesis, crystal structure and Hirshfeld surface analysis of the title coumarin derivative, I, synthesized by colleagues from Burkina Faso. Such coumaruin derivatives have various biological activities such as anti­cancer (Lacy et al., 2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]; Kostova, 2005[Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.]), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti­viral (Borges et al., 2005[12]), anti-malarial (Agarwal et al., 2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645-4650.]), anti-glaucoma (Ziki et al., 2023[Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). Pharm. Res. Int. 35, 10-33.]) and anti­coagulant (Maurer et al., 1998[Maurer, H. H. & Arlt, J. W. J. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181-195.]) properties.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the C1–C9/O1/O2 2H-chromen-2-one ring system of I is almost planar (r.m.s. deviation = 0.044 Å) and the dihedral angle between this ring system and the C11–C16 phenyl group in the 4-tert-butyl­benzoate moiety is 89.12 (5)°. This near perpendicular orientation has been observed in other coumarin derivatives with the same motif (Ji et al., 2016[Ji, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188-5195.]). The dihedral angles between the linking C10/C11/O3/O4 ester group and the pendant C1–C9/O1/O2 and C11–C16 groupings are 64.38 (5) and 25.05 (6)°, respectively, indicating that the major twist in the mol­ecule occurs about the C8—O3 bond. An inspection of the bond lengths shows that there is a slight asymmetry of electronic distribution around the coumarin ring: the difference between the C2=C3 [1.343 (2) Å] and C1—C2 [1.449 (2) Å] separations confirms the double-bond character of the former as indicated in the chemical scheme. Atom C20 of the tert-butyl group lies close to the plane of its attached ring [deviation = 0.226 (2) Å] whereas C18 and C19 are displaced either side of the ring [deviations = −1.465 (1) and 0.964 (1) Å, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules of I are connected by C—H⋯O hydrogen bonds (Table 1[link]) to build double chains propagating in the [010] direction: this motif results in two adjacent R22(8)loops between each pair of mol­ecules in one chain formed by the C3, C6 and C9 hydrogen bonds (Fig. 2[link]). The C16 hydrogen bond provides the linkage to the second chain (Fig. 3[link]). The pendant 4-tert-butyl­benzoate moieties are parallel and shifted by translation along the b axis. Aromatic ππ stacking inter­actions between centrosymmetric pairs of C4–C9 rings reinforce the cohesion of the double chains [centroid–centroid separation = 3.6301 (8), slippage = 1.579 Å]. The unit-cell packing of I can be described as a tilted herringbone motif (Fig. 4[link]), as also observed in the crystal structure of 1-(1,2-di­hydro­phthalazin-1-yl­idene)-2-[1-(thio­phen-2-yl)eth­ylidene]hydrazine (Majoumo-Mbe et al., 2019[Majoumo-Mbe, F., Ngwang Nfor, E., Kenfack Tsobnang, P., Nguepmeni Eloundou, V. B., Ngwain Yong, J. & Iris Efeti, I. (2019). Acta Cryst. E75, 251-254.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C6—H6⋯O3ii 0.985 (14) 2.603 (15) 3.5835 (14) 173.9 (12)
C9—H9⋯O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C16—H16⋯O2iii 0.968 (14) 2.416 (15) 3.2628 (16) 146.0 (11)
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z]; (iii) [-x, -y+1, -z].
[Figure 2]
Figure 2
Fragment of a [010] chain in the structure of I showing the hydrogen bonds involving C3, C6 and C9 as black dashed lines.
[Figure 3]
Figure 3
Partial packing diagram for I showing [010] double chains arising from C—H⋯O hydrogen bonds (black dashed lines in one chain, magenta dashed lines in the other and the C16 cross-linking bonds in blue).
[Figure 4]
Figure 4
The unit-cell packing for I viewed down [010].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43; update 3, September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having a coumarin motif similar to that of I returned five hits for to the following mol­ecules: 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-2-carboxyl­ate (CSD refcode ATOROT; Ji et al., 2016[Ji, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188-5195.]), 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-3-carboxyl­ate (ATORUZ; Ji et al., 2016[Ji, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188-5195.]), 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-4-carboxyl­ate (ATOSAG; Ji et al., 2016[Ji, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188-5195.]), 6-acet­oxy­coumarin (GASXON; Murthy et al., 1988[Murthy, G. S., Ramamurthy, V. & Venkatesan, K. (1988). Acta Cryst. C44, 307-311.]) and 4-methyl-2-oxo-2H-chromen-6-yl benzoate (YEFSOU; Ji et al., 2017[Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790-7795.]). ATORUZ only features a C6—H6⋯O3 hydrogen bond because a methyl group is bonded to C9 (according to the numbering scheme of I). This prevents the formation of layers like those found in the packing of I, although similar layers are found in GASXON.

5. Hirshfeld surface and Fingerprint plots

The inter­actions mentioned above are confirmed by the two-dimensional fingerprint plots of I (Fig. 5[link]). The greatest contributions are the H⋯H and H⋯O/O⋯H contacts with 46.7 and 24.2%, respectively. The H⋯C/C⋯H and C⋯C contacts contribute 16.7 and 7.6%, respectively. The contributions of the H⋯H inter­actions in I to Hirshfeld surface are greater than those found in 2-oxo-2H-chromen-3-yl 4-chloro­benzoate (Ziki et al. 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]); this can be related to the packing of the 2H-1-chromen-6-yl moieties of I. The H⋯O/O⋯H contacts are related to the C—H⋯O1 hydrogen bonds shown in Fig. 2[link]. Their contact points are shown in red and are labelled on the Hirshfeld surface (see Fig. 5[link]a).

[Figure 5]
Figure 5
(a) Hirshfeld surface of I mapped over dnorm and (b) two-dimensional fingerprint plots of (b) overall and delineated into contributions from different contacts: (c) H—H, (d) H—O/O—H, (e) H—C/C—H and (f) C—C.

6. Synthesis and crystallization

To 30 ml solution of 4-tert-butyl­benzoyl chloride (1.2 g; 6.17 mmol) in dry tetra­hydro­furan, were added dry tri­ethyl­amine (2.6 ml; 3.1 mmol) and 6-hy­droxy­coumarin (1.00 g; 6.17 mmol) in small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2.5. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate was suction filtered, washed with petroleum ether and recrystallized from chloro­form solution to give colorless prismatic crystals of I in a yield of 84%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were located in difference maps and their positions and Uiso values were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C20H18O4
Mr 322.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 35.908 (4), 6.8473 (6), 13.2661 (11)
β (°) 98.915 (4)
V3) 3222.3 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.731, 0.895
No. of measured, independent and observed [I > 2σ(I)] reflections 60054, 4940, 3518
Rint 0.061
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.11
No. of reflections 4940
No. of parameters 289
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2-Oxo-2H-chromen-6-yl 4-tert-butylbenzoate top
Crystal data top
C20H18O4F(000) = 1360
Mr = 322.34Dx = 1.329 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4940 reflections
a = 35.908 (4) Åθ = 2.3–30.6°
b = 6.8473 (6) ŵ = 0.09 mm1
c = 13.2661 (11) ÅT = 100 K
β = 98.915 (4)°Prism, colourless
V = 3222.3 (5) Å30.20 × 0.15 × 0.08 mm
Z = 8
Data collection top
Bruker D8 Venture
diffractometer
4940 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.061
φ and ω scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 5151
Tmin = 0.731, Tmax = 0.895k = 99
60054 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.124All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.7544P]
where P = (Fo2 + 2Fc2)/3
4940 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01365 (2)0.14244 (11)0.13861 (6)0.02265 (19)
O30.07925 (2)0.77690 (11)0.03962 (6)0.02359 (19)
C90.01929 (3)0.65096 (16)0.10952 (8)0.0204 (2)
O20.06636 (3)0.00843 (12)0.21536 (7)0.0293 (2)
O40.11921 (2)0.70415 (12)0.15117 (7)0.0276 (2)
C50.00869 (3)0.30453 (15)0.11373 (8)0.0195 (2)
C20.06565 (3)0.35501 (17)0.20298 (9)0.0225 (2)
C60.04569 (3)0.26950 (17)0.07004 (9)0.0219 (2)
C40.00547 (3)0.49326 (15)0.13275 (8)0.0192 (2)
C10.05017 (3)0.15982 (17)0.18837 (9)0.0227 (2)
C100.11073 (3)0.80567 (16)0.08412 (9)0.0222 (2)
C30.04453 (3)0.51431 (17)0.17689 (9)0.0211 (2)
C110.13230 (3)0.97493 (16)0.03591 (9)0.0221 (2)
C70.06982 (3)0.42622 (17)0.04737 (9)0.0221 (2)
C80.05615 (3)0.61479 (16)0.06872 (9)0.0207 (2)
C160.12922 (3)1.03226 (17)0.06341 (9)0.0231 (2)
C140.17523 (3)1.28898 (17)0.05714 (9)0.0235 (2)
C150.15077 (3)1.18512 (17)0.10943 (9)0.0236 (2)
C120.15665 (4)1.07610 (18)0.08908 (10)0.0272 (3)
C130.17742 (4)1.23237 (18)0.04322 (10)0.0280 (3)
C170.19912 (3)1.45327 (17)0.11186 (10)0.0263 (3)
C190.17461 (4)1.58787 (19)0.16687 (12)0.0327 (3)
C200.21829 (5)1.5761 (2)0.03849 (13)0.0402 (4)
C180.22939 (4)1.3594 (2)0.19155 (13)0.0375 (3)
H90.0100 (4)0.7858 (19)0.1225 (9)0.018 (3)*
H30.0540 (4)0.644 (2)0.1881 (10)0.022 (3)*
H20.0923 (4)0.3644 (18)0.2369 (9)0.019 (3)*
H60.0534 (4)0.132 (2)0.0585 (11)0.031 (4)*
H160.1128 (4)0.963 (2)0.1025 (11)0.028 (4)*
H70.0961 (4)0.4084 (19)0.0178 (10)0.024 (3)*
H150.1483 (4)1.220 (2)0.1788 (11)0.028 (4)*
H120.1584 (4)1.038 (2)0.1596 (12)0.033 (4)*
H130.1935 (4)1.302 (2)0.0848 (12)0.040 (4)*
H19A0.1646 (5)1.519 (2)0.2236 (13)0.042 (4)*
H18A0.2457 (5)1.460 (2)0.2292 (12)0.042 (4)*
H19B0.1528 (5)1.642 (2)0.1159 (13)0.046 (5)*
H20A0.2378 (4)1.495 (2)0.0068 (12)0.038 (4)*
H18B0.2453 (5)1.273 (3)0.1618 (14)0.054 (5)*
H20B0.1987 (4)1.634 (2)0.0198 (12)0.041 (4)*
H20C0.2317 (5)1.687 (3)0.0776 (13)0.051 (5)*
H19C0.1898 (5)1.702 (2)0.1991 (12)0.045 (4)*
H18C0.2170 (5)1.281 (3)0.2455 (14)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (4)0.0180 (4)0.0272 (4)0.0017 (3)0.0023 (3)0.0003 (3)
O30.0218 (4)0.0213 (4)0.0278 (4)0.0041 (3)0.0043 (3)0.0037 (3)
C90.0228 (6)0.0186 (5)0.0200 (5)0.0004 (4)0.0039 (4)0.0008 (4)
O20.0292 (5)0.0237 (4)0.0349 (5)0.0074 (3)0.0046 (4)0.0034 (4)
O40.0293 (5)0.0255 (4)0.0289 (5)0.0011 (4)0.0069 (4)0.0031 (3)
C50.0218 (5)0.0173 (5)0.0197 (5)0.0018 (4)0.0044 (4)0.0010 (4)
C20.0200 (5)0.0251 (6)0.0227 (6)0.0001 (4)0.0042 (4)0.0004 (4)
C60.0250 (6)0.0184 (5)0.0223 (6)0.0014 (4)0.0035 (4)0.0009 (4)
C40.0215 (5)0.0182 (5)0.0178 (5)0.0005 (4)0.0033 (4)0.0007 (4)
C10.0219 (5)0.0245 (6)0.0225 (6)0.0027 (4)0.0058 (4)0.0003 (4)
C100.0210 (5)0.0211 (5)0.0239 (6)0.0005 (4)0.0017 (4)0.0027 (4)
C30.0223 (6)0.0215 (5)0.0199 (5)0.0023 (4)0.0045 (4)0.0003 (4)
C110.0197 (5)0.0206 (5)0.0256 (6)0.0001 (4)0.0023 (4)0.0012 (4)
C70.0206 (6)0.0226 (5)0.0226 (6)0.0012 (4)0.0021 (4)0.0005 (4)
C80.0226 (6)0.0188 (5)0.0209 (5)0.0038 (4)0.0042 (4)0.0017 (4)
C160.0211 (6)0.0227 (5)0.0258 (6)0.0020 (4)0.0043 (4)0.0019 (4)
C140.0190 (5)0.0207 (5)0.0297 (6)0.0001 (4)0.0010 (4)0.0014 (4)
C150.0233 (6)0.0240 (6)0.0228 (6)0.0007 (4)0.0015 (4)0.0001 (4)
C120.0288 (6)0.0282 (6)0.0257 (6)0.0037 (5)0.0072 (5)0.0014 (5)
C130.0275 (6)0.0277 (6)0.0299 (6)0.0067 (5)0.0081 (5)0.0014 (5)
C170.0232 (6)0.0229 (6)0.0318 (7)0.0041 (5)0.0008 (5)0.0002 (5)
C190.0331 (7)0.0242 (6)0.0396 (8)0.0013 (5)0.0017 (6)0.0042 (5)
C200.0427 (9)0.0341 (7)0.0451 (9)0.0169 (7)0.0104 (7)0.0018 (6)
C180.0288 (7)0.0307 (7)0.0482 (9)0.0014 (6)0.0094 (6)0.0017 (6)
Geometric parameters (Å, º) top
O1—C11.3789 (14)C7—H70.973 (13)
O1—C51.3791 (13)C16—C151.3858 (16)
O3—C101.3680 (14)C16—H160.967 (14)
O3—C81.4036 (13)C14—C151.3956 (17)
C9—C81.3724 (16)C14—C131.4005 (18)
C9—C41.4023 (15)C14—C171.5281 (16)
C9—H90.987 (13)C15—H150.967 (14)
O2—C11.2150 (14)C12—C131.3895 (17)
O4—C101.2047 (14)C12—H120.983 (15)
C5—C61.3855 (16)C13—H130.983 (16)
C5—C41.3972 (15)C17—C201.5286 (19)
C2—C31.3430 (16)C17—C191.5347 (19)
C2—C11.4490 (16)C17—C181.5348 (18)
C2—H20.993 (13)C19—H19A0.999 (17)
C6—C71.3829 (16)C19—H19B1.021 (17)
C6—H60.985 (14)C19—H19C1.007 (17)
C4—C31.4410 (16)C20—H20A1.034 (16)
C10—C111.4829 (16)C20—H20B1.040 (16)
C3—H30.956 (13)C20—H20C0.999 (18)
C11—C121.3903 (17)C18—H18A0.990 (16)
C11—C161.3955 (17)C18—H18B0.948 (18)
C7—C81.3949 (16)C18—H18C1.047 (18)
C1—O1—C5121.32 (9)C11—C16—H16120.8 (8)
C10—O3—C8119.20 (9)C15—C14—C13117.63 (11)
C8—C9—C4119.17 (10)C15—C14—C17119.29 (11)
C8—C9—H9121.0 (7)C13—C14—C17123.04 (11)
C4—C9—H9119.8 (7)C16—C15—C14121.16 (11)
O1—C5—C6116.43 (9)C16—C15—H15118.5 (8)
O1—C5—C4121.28 (10)C14—C15—H15120.3 (8)
C6—C5—C4122.28 (10)C13—C12—C11119.91 (12)
C3—C2—C1121.66 (11)C13—C12—H12120.9 (8)
C3—C2—H2122.0 (7)C11—C12—H12119.2 (8)
C1—C2—H2116.3 (7)C12—C13—C14121.60 (11)
C7—C6—C5118.98 (10)C12—C13—H13116.8 (9)
C7—C6—H6123.8 (8)C14—C13—H13121.6 (9)
C5—C6—H6117.2 (8)C14—C17—C20112.19 (11)
C5—C4—C9118.16 (10)C14—C17—C19110.30 (10)
C5—C4—C3118.03 (10)C20—C17—C19108.67 (11)
C9—C4—C3123.80 (10)C14—C17—C18107.72 (10)
O2—C1—O1116.33 (10)C20—C17—C18109.17 (12)
O2—C1—C2126.25 (11)C19—C17—C18108.73 (12)
O1—C1—C2117.41 (10)C17—C19—H19A111.9 (9)
O4—C10—O3123.78 (10)C17—C19—H19B109.9 (9)
O4—C10—C11126.47 (11)H19A—C19—H19B110.0 (13)
O3—C10—C11109.74 (10)C17—C19—H19C110.8 (9)
C2—C3—C4119.92 (10)H19A—C19—H19C106.1 (13)
C2—C3—H3122.8 (8)H19B—C19—H19C107.9 (13)
C4—C3—H3117.2 (8)C17—C20—H20A111.2 (9)
C12—C11—C16119.14 (11)C17—C20—H20B111.4 (9)
C12—C11—C10119.88 (11)H20A—C20—H20B109.1 (13)
C16—C11—C10120.97 (10)C17—C20—H20C108.3 (10)
C6—C7—C8119.02 (11)H20A—C20—H20C108.6 (14)
C6—C7—H7121.8 (8)H20B—C20—H20C108.1 (13)
C8—C7—H7119.2 (8)C17—C18—H18A110.9 (9)
C9—C8—C7122.33 (10)C17—C18—H18B112.4 (11)
C9—C8—O3117.29 (10)H18A—C18—H18B107.1 (14)
C7—C8—O3120.12 (10)C17—C18—H18C110.8 (10)
C15—C16—C11120.53 (11)H18A—C18—H18C107.2 (13)
C15—C16—H16118.6 (8)H18B—C18—H18C108.3 (14)
C1—O1—C5—C6175.80 (10)C5—C6—C7—C80.31 (17)
C1—O1—C5—C43.67 (16)C4—C9—C8—C71.38 (17)
O1—C5—C6—C7177.35 (10)C4—C9—C8—O3175.41 (10)
C4—C5—C6—C72.11 (17)C6—C7—C8—C91.43 (18)
O1—C5—C4—C9177.29 (10)C6—C7—C8—O3175.30 (10)
C6—C5—C4—C92.15 (17)C10—O3—C8—C9120.25 (11)
O1—C5—C4—C31.60 (16)C10—O3—C8—C765.57 (14)
C6—C5—C4—C3178.97 (10)C12—C11—C16—C151.48 (18)
C8—C9—C4—C50.39 (16)C10—C11—C16—C15177.09 (10)
C8—C9—C4—C3179.21 (10)C11—C16—C15—C141.79 (18)
C5—O1—C1—O2173.38 (10)C13—C14—C15—C160.42 (17)
C5—O1—C1—C26.99 (15)C17—C14—C15—C16178.56 (11)
C3—C2—C1—O2175.08 (12)C16—C11—C12—C130.18 (18)
C3—C2—C1—O15.34 (17)C10—C11—C12—C13178.76 (11)
C8—O3—C10—O43.51 (16)C11—C12—C13—C141.6 (2)
C8—O3—C10—C11175.37 (9)C15—C14—C13—C121.26 (18)
C1—C2—C3—C40.26 (17)C17—C14—C13—C12176.81 (12)
C5—C4—C3—C23.21 (16)C15—C14—C17—C20168.91 (12)
C9—C4—C3—C2175.60 (11)C13—C14—C17—C2013.06 (17)
O4—C10—C11—C1224.57 (18)C15—C14—C17—C1947.60 (15)
O3—C10—C11—C12156.59 (11)C13—C14—C17—C19134.37 (13)
O4—C10—C11—C16153.99 (12)C15—C14—C17—C1870.93 (15)
O3—C10—C11—C1624.85 (15)C13—C14—C17—C18107.11 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.987 (13)2.584 (13)3.5682 (14)174.8 (10)
C6—H6···O3ii0.985 (14)2.603 (15)3.5835 (14)173.9 (12)
C9—H9···O1i0.987 (13)2.584 (13)3.5682 (14)174.8 (10)
C16—H16···O2iii0.968 (14)2.416 (15)3.2628 (16)146.0 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the PMD2XX-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support to AFRAMED project.

References

First citationAbdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www. iucr. org/news/newsletter/volume-31/number-1/appui-a-la-formation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa.  Google Scholar
First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650.  Web of Science CrossRef PubMed CAS Google Scholar
First citation12  Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJi, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJi, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188–5195.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMajoumo-Mbe, F., Ngwang Nfor, E., Kenfack Tsobnang, P., Nguepmeni Eloundou, V. B., Ngwain Yong, J. & Iris Efeti, I. (2019). Acta Cryst. E75, 251–254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurer, H. H. & Arlt, J. W. J. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurthy, G. S., Ramamurthy, V. & Venkatesan, K. (1988). Acta Cryst. C44, 307–311.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). Pharm. Res. Int. 35, 10–33.  CrossRef Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds