research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine N-oxide)cobalt(II) and diiso­thio­cyanato­tris­­(4-methyl­pyridine N-oxide)cobalt(II) showing two different metal coordination polyhedra

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 10 January 2024; accepted 12 January 2024; online 26 January 2024)

The reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide (C6H7NO) leads to the formation of two compounds, namely, tetra­kis­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)4] (1), and tris­(4-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3] (2). The asymmetric unit of 1 consists of one CoII cation located on a centre of inversion, as well as one thio­cyanate anion and two 4-methyl­pyridine N-oxide coligands in general positions. The CoII cations are octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions in trans positions and four 4-methyl­pyridine N-oxide ligands. In the extended structure, these complexes are linked by C—H⋯O and C—H⋯S inter­actions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the CoII cations are coordinated in a trigonal–bipyramidal manner by two terminal N-bonding thio­cyanate anions in axial positions and by three 4-methyl­pyridine N-oxide ligands in equatorial positions. In the crystal, these complex mol­ecules are linked by C—H⋯S inter­actions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA–TG) show that compound 2 start to decompose at about 518 K.

1. Chemical context

Complexes based on transition-metal thio­cyanates are an important class of compounds in coordination chemistry. Because of their versatile coordination behaviour they show a variety of coordination modes and a large structural variability, which can lead to networks of different dimensionality (Buckingham, 1994[Buckingham, D. A. C. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Kabešová et al., 1995[Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115-135.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640-1641.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Neumann et al., 2018[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]). In this context, compounds based on paramagnetic metal cations are of special inter­est, because they show very versatile magnetic behaviour. We have been inter­ested in the structural, thermal and magnetic behaviour of thio­cyanate compounds with 3d-metal cations for several years. In terms of magnetic properties, compounds based on CoII, in which the cations are linked into chains, are of special inter­est, because they show a variety of magnetic properties, including ferro- or single-chain magnetism (Mautner et al., 2018b[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436-442.]; Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.], 2023[Rams, M., Lohmiller, T., Böhme, M., Jochim, A., Foltyn, M., Schnegg, A., Plass, W. & Näther, C. (2023). Inorg. Chem. 62, 10420-10430.]; Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.]).

[Scheme 1]

Concerning the coordination behaviour of cobalt thio­cyanates, in the majority of compounds the CoII cations are sixfold coordinated within a slightly distorted octa­hedral geometry and more than 1000 such structures can be found in the Cambridge Structural Database (CSD; Version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Depending on the nature of the coligand, in some cases, the CoII cations are tetra­hedrally coordinated and about 280 of such structures are reported in the CSD. In very rare cases, a compound with an octa­hedral coordination and another compound with a tetra­hedral coordination were obtained in a synthesis using the same coligand (Mautner et al., 2018b[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436-442.]). In contrast, Co(NCS)2 compounds with a fivefold coordination are uncommon and only about 60 structures have been reported. In this context, it is noted that we have reported the first CoII chain compound, in which the CoII cations shows an alternating five- and sixfold coordination (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]).

In our recent work, however, we exclusively used N-donor coligands, such as pyridine derivatives, for the synthesis of new thio­cyanate coordination polymers, but in the course of our systematic work we started to use also O- or S-donor coligands (Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]). For O-donor coligands, pyridine N-oxide derivatives might be suitable, for which only 11 compounds with cobalt are reported in the CSD (see Database survey section). In this context, it is noted that we recently reported on new compounds with the composition Co(NCS)2(2-methyl­pyridine N-oxide) and Co(NCS)2(3-cyano­pyridine N-oxide)4. In the first compound, the cations are octa­hedrally coordinated by two O-bonding 2-methyl­pyridine N-oxide ligands, as well as by two thio­cyanate anions, and are con­nected by μ-1,3(N,S)-bridging thio­cyanate anions into chains that are further linked into layers by pairs of μ-1,1(O,O) bridging coligands (Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 67-71.]). In contrast, the second compound consists of discrete octa­hedral complexes (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.]). In continuation of this work, we tried to prepare similar compounds with 4-methyl­pyridine N-oxide (C6H7NO), for which only one compound with the composition Co(NCS)2(C6H7NO)(methanol) is reported, in which the CoII cations are also sixfold coordinated by two O atoms of the coligand, one methanol mol­ecule, as well as by one terminal and two bridging thio­cyanate anions, and linked into chains by alternating pairs of thio­cyanate anions and 4-methyl­pyridine N-oxide coligands (CSD refcode REKBUF; Shi et al., 2006a[Shi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]). Within our synthetic work, crystals of two different crystalline phases were obtained. Single-crystal structure analysis shows that discrete complexes had formed, in which the CoII cations shows either a sixfold or a fivefold coordination. We note that some transition-metal thio­cyanate compounds with pyridine N-oxide derivatives are reported in the literature that also form discrete complexes, but in none of them are the cations fivefold coordinated (see Database survey section).

2. Structural commentary

The reactions of different molar ratios of Co(NCS)2 and 4-methyl­pyridine N-oxide leads to the formation of crystals of two compounds with the compositions Co(NCS)2(C6H7NO)4 (1) and Co(NCS)2(C6H7NO)3 (2). Compound 2 can be prepared in larger amounts, whereas a few crystals of compound 1 were accidently obtained in only one batch (see Synthesis and crystallization section). The asymmetric unit of compound 1 consists of one CoII cation located on a crystallographic centre of inversion, as well as one thio­cyanate anion and two 4-methyl­pyridine N-oxide coligands in general positions (Fig. 1[link]). The cations are sixfold coordinated by two terminal N-bonded thio­cyanate anions in trans positions and by four O atoms of the 4-methyl­pyridine N-oxide coligands. From the bond lengths and angles it is apparent that the trans-CoN2O4 octa­hedra are slightly distorted (Table 1[link]). It is noted that numerous similar complexes with a distorted octa­hedral coordination are reported in the literature.

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Co1—N1 2.0910 (14) Co1—O21 2.1266 (11)
Co1—O11 2.1005 (12)    
       
N1i—Co1—O11i 92.39 (5) O11i—Co1—O21i 87.15 (5)
N1—Co1—O11i 87.61 (5) O11i—Co1—O21 92.85 (5)
N1—Co1—O21i 87.56 (5) Co1—N1—C1 165.56 (14)
N1i—Co1—O21i 92.44 (5)    
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
Crystal structure of compound 1, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y, −z + 1.]

In compound 2, all the atoms are in general positions and two crystallographically independent discrete complexes are present (Fig. 2[link]). In each of them, the CoII cations are fivefold coordinated by two terminal N-bonded thio­cyanate anions and three 4-methyl­pyridine N-oxide coligands, and the coordination polyhedra around the Co centres can be described as slightly distorted trigonal pyramids with the anionic ligands in the axial and the coligands in the equatorial positions (Fig. 2[link] and Table 2[link]). Within each complex, two of the coligands point `up' (roughly parallel to the axis of the Co—NCS grouping) and one points `down'. Bond lengths and angles are comparable in both complexes (Table 2[link]). As mentioned above, Co(NCS)2 complexes with a fivefold coordination are relatively rare and, therefore, it is surprising that compound 2 can be prepared easily, which is not the case for 1 with an octa­hedral coordination (see Synthesis and crystallization section).

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Co1—N1 2.0767 (16) Co2—N3 2.0804 (16)
Co1—N2 2.0895 (15) Co2—N4 2.0844 (16)
Co1—O11 1.9949 (13) Co2—O41 1.9999 (13)
Co1—O21 1.9989 (14) Co2—O51 1.9880 (14)
Co1—O31 2.0045 (14) Co2—O61 1.9941 (14)
       
N1—Co1—N2 179.11 (7) O41—Co2—N3 93.31 (6)
O11—Co1—N1 93.86 (6) O41—Co2—N4 88.08 (6)
O11—Co1—N2 86.87 (6) O51—Co2—N3 86.15 (6)
O11—Co1—O21 122.93 (6) O51—Co2—N4 92.14 (6)
O11—Co1—O31 121.98 (6) O51—Co2—O41 122.04 (6)
O21—Co1—N1 87.05 (6) O51—Co2—O61 115.95 (6)
O21—Co1—N2 92.13 (6) O61—Co2—N3 87.50 (6)
O21—Co1—O31 115.07 (6) O61—Co2—N4 92.75 (6)
O31—Co1—N1 87.43 (6) O61—Co2—O41 121.94 (6)
O31—Co1—N2 92.62 (6) Co2—N3—Co3 168.81 (15)
Co1—N1—Co 167.85 (16)    
[Figure 2]
Figure 2
Crystal structure of the two crystallographically independent complexes mol­ecules in compound 2, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the extended structure of 1, the discrete complex mol­ecules are arranged into columns that proceed along the a-axis direction (Fig. 3[link]). Between the complexes, weak inter­molecular C—H⋯O and C—H⋯S inter­actions are observed (Table 3[link]). In compound 2, numerous C—H⋯O, C—H⋯N and C—H⋯S inter­actions are observed, but in most of them, the X⋯H distances are long and the angles vary far from linearity, indicating that these are very weak inter­actions (Table 4[link]). Some C—H⋯S contacts seems to be stronger, and if they are considered, the discrete complexes are linked into chains (Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1ii 0.95 2.83 3.7271 (17) 157
C15—H15⋯O21iii 0.95 2.40 3.295 (2) 157
C21—H21⋯O21iii 0.95 2.62 3.520 (2) 158
C24—H24⋯S1iv 0.95 2.87 3.7591 (18) 156
C25—H25⋯O11i 0.95 2.25 3.090 (2) 147
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-1, y, z]; (iii) [-x, -y, -z+1]; (iv) [-x+1, -y, -z].

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S4i 0.95 2.88 3.8088 (19) 166
C21—H21⋯S2ii 0.95 2.87 3.739 (2) 153
C24—H24⋯S1iii 0.95 2.90 3.841 (2) 169
C25—H25⋯O31iii 0.95 2.63 3.259 (2) 124
C31—H31⋯O21iii 0.95 2.44 3.277 (2) 146
C34—H34⋯S3 0.95 2.99 3.754 (2) 138
C41—H41⋯S3iv 0.95 2.97 3.6966 (19) 134
C45—H45⋯S2 0.95 2.89 3.6082 (19) 133
C55—H55⋯O61v 0.95 2.46 3.184 (2) 133
C61—H61⋯O51v 0.95 2.48 3.233 (2) 136
C62—H62⋯S3v 0.95 2.98 3.900 (2) 162
C64—H64⋯N4vi 0.95 2.64 3.484 (2) 148
C65—H65⋯S4vi 0.95 3.00 3.870 (2) 154
Symmetry codes: (i) [x+1, y+1, z]; (ii) [-x+1, -y+1, -z]; (iii) [-x+2, -y+1, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y, -z+1]; (vi) [-x, -y, -z+1].
[Figure 3]
Figure 3
Crystal structure of compound 1, viewed along the crystallographic a axis. Inter­molecular C—H⋯S and C—H⋯O contacts are shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of compound 2, viewed along the crystallographic a axis. Inter­molecular C—H⋯S contacts are shown as dashed lines.

4. Database survey

A CSD search for cobalt thio­cyanate compounds with pyridine N-oxide derivatives revealed that only a few structures have been reported. These include discrete complexes with the composition Co(NCS)2(pyridine N-oxide)2(H2O)2 (FONBIU; Shi et al., 2005b[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005b). Acta Cryst. E61, m871-m872.]) and Co(NCS)2(3-hy­droxy­pyridine N-oxide)2(H2O)2 (IDOYEG; Shi et al., 2006e[Shi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577-m1578.]), in which the Co cations are octa­hedrally coordinated by two thio­cyanate anions, two water mol­ecules and two terminal 3-hy­droxy­pyridine N-oxide ligands. Discrete dinuclear complexes are observed in Co(NCS)2(2-pyridine­carboxaldehyde-1-oxido 2′-pyridinylhydrazone), in which the thio­cyanate anions are only terminally N-bonded and two CoII cations are linked by two μ-1,1-bridging O atoms of the coligands (VAZDAB; Craig et al., 1989[Craig, D. C., Phillips, D. J. & Kaifi, F. M. Z. (1989). Inorg. Chim. Acta, 161, 247-251.]).

In Co(NCS)2[N,N′-ethane-1,2-diylbis(pyridine-4-carboxamide) 1,1-dioxide](H2O)2 dihydrate (FATJAN; Cao et al., 2012[Cao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19-22.]) and in Co(NCS)2[N,N′-hexane-1,6-diylbis(pyridine-4-carboxamide) 1,1′-dioxide](H2O)2 (FATJER; Cao et al., 2012[Cao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19-22.]), the Co cations are also octa­hedrally coordinated but linked into chains by the pyridine N-oxide coligands.

In Co(NCS)2(4-nitro­pyridine N-oxide)2, the CoII cations are octa­hedrally coordinated by four bridging thio­cyanate anions and two terminal O-bonded 4-nitro­pyridine N-oxide coligands and linked by pairs of thio­cyanate anions into chains (TILHIG; Shi et al., 2007[Shi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 1637-1644.]). Chains are also observed in Co(NCS)2(4-methyl­pyridine N-oxide)(methanol) (REKBUF; Shi et al., 2006a[Shi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]).

A layered structure is observed in Co(NCS)2(4-meth­oxy­pyridine)2 (TERRAK; Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398-m3400.]). In this structure, the CoII cations are octa­hedrally coordinated by four bridging anionic ligands and two coligands. As in Co(NCS)2(2-methyl­pyridine N-oxide)(methanol), the cations are con­nected into chains by alternating pairs of thio­cyanate anions and 2-methyl­pyridine N-oxide coligands, and the chains are are further linked into layers by additional pairs of thio­cyanate anions. A further layered structure is found in Co(NCS)2(4-methyl­pyridine N-oxide), in which the CoII cations are octa­hedrally coordinated by two N- and two S-bonding thio­cyanate anions, and two bridging 4-methyl­pyridine N-oxide coligand (MEQKOJ; Zhang et al., 2006b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506-m3608.]). The cations are connected by pairs of bridging thio­cyanate anions into corrugated chains, that are further linked into layers by bridging 4-methyl­pyridine N-oxide coligands.

In Co(NCS)2(1,3-bis­(4-pyrid­yl)propane N,N′-dioxide)(H2O)2, each two CoII cations are further linked by μ-1,1-bridging atoms of the N-oxide ligands into dinuclear units that are futher connected into layers by the 1,3-bis­(4-pyrid­yl)propane N,N′-dioxide coligands (UMAVAF; Zhang et al., 2003[Zhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830-2831.]). Layers are also observed in Co(NCS)2(1,3-bis­(4-pyrid­yl)propane N,N′-dioxide)2, in which the CoII cations are also linked by the N-oxide coligands (UMAVUZ; Zhang et al., 2003[Zhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830-2831.]).

Finally we note that some compounds with 4-methyl­pyridine N-oxide and other transition-metal cations are reported in the CSD. These include discrete octa­hedral complexes with the composition M(NCS)2(4-methyl­pyridine N-oxide)2(H2O)2, with M = Mn (KESSEJ; Mautner et al., 2018a[Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17-24.]) and Ni (GAMDOO; Shi et al., 2005a[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005a). Acta Cryst. E61, m1133-m1134.]). These also include Ni(NCS)2(4-methyl­pyridine N-oxide) [PEDSUN (Shi et al., 2006c[Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006c). Chem. Phys. Lett. 418, 84-89.]) and PETSUN01 (Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.])]. There is also one Cu compound with the composition Cu(NCS)2(4-methyl­pyridine) (TEBTAW; Shi et al., 2006d[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. pp. 376-380.]) and one Cd compound with the composition Cd(NCS)2(4-methyl­pyridine) (TEQKAC; Shi et al., 2006b[Shi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006b). J. Coord. Chem. 59, 1883-1889.]), in which the cations are linked into chains.

5. Additional investigations

Based on the single-crystal data, a powder pattern was calculated and compared with the experimental pattern, which revealed that compound 2 was nearly obtained as a pure phase (Fig. S1 in the supporting information). There are a few additional reflections of very low intensity that cannot be assigned to a known phase.

The thermal behaviour of compound 2 was investigated by thermogravimetry and differential thermoanalysis (TG–DTA) measurements. Upon heating at a rate of 8 K min−1, one mass loss is observed, accompanied by an exothermic event in the DTA curve (Fig. S2). The experimental mass loss of 68.1% is in reasonable agreement with that calculated for the removal of all three 4-methyl­pyridine N-oxide coligands of 65.2%. The exothermic signal, however, indicates that the coligand decompose as already observed for compounds with other pyridine N-oxide derivatives (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.]). There is one endothermic signal at 438 K, where the sample mass does not change, which might originate from a melting of the complex before decomposition is observed.

6. Synthesis and crystallization

Co(NCS)2 (99%) was purchased from Sigma–Aldrich and 4-methyl­pyridine N-oxide (98%) from Fisher Chemical. Single crystals of compound 2 were obtained by the reaction of Co(SCN)2 (0.500 mmol, 87.5 mg) and 4-methyl­pyridine N-oxide (1.500 mmol, 163.7 mg) in methanol (1 ml). Within 2 d, crystals suitable for structure analysis were obtained. If the same reaction conditions are used and the batch is stirred for 1 d, a microcrystalline powder of 2 is obtained.

For compound 1, a few crystals were obtained accidentally in a mixture with 2, using the same conditions as described above. It is noted that 2 is also obtained if Co(NCS)2 is reacted with 4-methyl­pyridine N-oxide in a 1:4 ratio. We also used larger ratios and other solvents, e.g. ethanol or n-butanol, but in none of these batches was compound 1 obtained as a pure phase. It seems that compound 2, with a fivefold coordination, is more stable. Finally, it is noted that in some batches where methanol and ethanol was used as solvent, powder X-ray diffraction (PXRD) measurements prove that additional and unknown crystalline phases were obtained.

The PXRD data were collected using an XtaLAB Synergy, Dualflex, Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed under a dynamic nitro­gen atmosphere in Al2O3 crucibles using an STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

The H atoms were positioned with idealized geometry (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

The crystal of 2 chosen for data collection was found to be twinned. Both components were indexed separately (Fig. S3) and afterwards a twin-refinement with data in HKLF-5 format using the twin matrix −0.9998 0.0004 −0.0001/−0.0006 −1.0001 −0.0006/0.2122 0.2564 1.0002 was performed. Therefore, no inter­nal R value is reported. The ratio between domains refined to 0.8273 (7):0.1727 (7). Crystal data, data collection and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

For both structures: triclinic, P[\overline{1}]. Experiments were carried out at 100 K with Cu Kα radiation using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. Absorption was corrected for by multi-scan methods, (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H-atom parameters were constrained.

  1 2
Crystal data
Chemical formula [Co(NCS)2(C6H7NO)4] [Co(NCS)2(C6H7NO)3]
Mr 611.59 502.47
a, b, c (Å) 7.0709 (3), 9.6651 (5), 11.0401 (4) 11.70330 (8), 12.55284 (9), 17.5256 (2)
α, β, γ (°) 90.609 (3), 96.346 (3), 108.090 (4) 93.5044 (8), 91.8625 (8), 115.0705 (7)
V3) 712.00 (6) 2322.89 (4)
Z 1 4
μ (mm−1) 6.45 7.74
Crystal size (mm) 0.12 × 0.08 × 0.04 0.2 × 0.18 × 0.1
 
Data collection
Tmin, Tmax 0.859, 1.000 0.024, 0.116
No. of measured, independent and observed [I > 2σ(I)] reflections 7433, 2950, 2935 11225, 11225, 10980
Rint 0.017 See Refinement section
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.11 0.029, 0.081, 1.07
No. of reflections 2950 11225
No. of parameters 181 566
Δρmax, Δρmin (e Å−3) 0.34, −0.48 0.33, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tetrakis(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) (1) top
Crystal data top
[Co(NCS)2(C6H7NO)4]Z = 1
Mr = 611.59F(000) = 317
Triclinic, P1Dx = 1.426 Mg m3
a = 7.0709 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.6651 (5) ÅCell parameters from 5312 reflections
c = 11.0401 (4) Åθ = 4.0–78.4°
α = 90.609 (3)°µ = 6.45 mm1
β = 96.346 (3)°T = 100 K
γ = 108.090 (4)°Block, violet
V = 712.00 (6) Å30.12 × 0.08 × 0.04 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
2950 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2935 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.0000 pixels mm-1θmax = 79.9°, θmin = 4.0°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 1212
Tmin = 0.859, Tmax = 1.000l = 1314
7433 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3098P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.34 e Å3
2950 reflectionsΔρmin = 0.47 e Å3
181 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0030 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.0000000.5000000.01633 (12)
N10.4838 (2)0.09719 (16)0.32743 (12)0.0207 (3)
C10.4728 (2)0.17698 (19)0.24550 (14)0.0205 (3)
S10.45856 (6)0.29171 (5)0.13159 (4)0.02849 (13)
O110.29908 (17)0.18891 (13)0.55992 (10)0.0207 (2)
N110.1767 (2)0.28091 (15)0.47249 (12)0.0177 (3)
C110.2312 (3)0.39113 (19)0.42796 (16)0.0232 (3)
H110.3544820.4041510.4601930.028*
C120.1101 (3)0.48501 (19)0.33621 (16)0.0252 (4)
H120.1497980.5627640.3058690.030*
C130.0708 (3)0.46695 (19)0.28735 (15)0.0231 (3)
C140.1231 (2)0.35312 (19)0.33727 (15)0.0216 (3)
H140.2464040.3385630.3072920.026*
C150.0012 (2)0.26130 (18)0.42952 (15)0.0193 (3)
H150.0366250.1841810.4628780.023*
C160.2018 (3)0.5642 (2)0.18404 (18)0.0328 (4)
H16A0.1301070.5525060.1118470.049*
H16B0.3246110.5378570.1654660.049*
H16C0.2362670.6658310.2072450.049*
O210.24737 (17)0.07014 (13)0.44699 (10)0.0207 (2)
N210.1883 (2)0.09747 (15)0.33301 (12)0.0186 (3)
C210.0100 (2)0.06152 (18)0.29449 (15)0.0202 (3)
H210.1049650.0140600.3473110.024*
C220.0750 (2)0.09351 (19)0.17864 (15)0.0217 (3)
H220.2146440.0675560.1526420.026*
C230.0608 (3)0.16314 (19)0.09945 (15)0.0226 (3)
C240.2635 (3)0.1974 (2)0.14277 (16)0.0258 (4)
H240.3609770.2441840.0912010.031*
C250.3255 (2)0.1652 (2)0.25860 (16)0.0236 (4)
H250.4644950.1902920.2864000.028*
C260.0054 (3)0.2016 (2)0.02611 (16)0.0284 (4)
H26A0.1315700.1281740.0588610.043*
H26B0.0974340.2043620.0795280.043*
H26C0.0252900.2973920.0218750.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01222 (18)0.0232 (2)0.01451 (18)0.00671 (14)0.00198 (12)0.00032 (13)
N10.0185 (7)0.0275 (7)0.0160 (6)0.0071 (5)0.0021 (5)0.0012 (5)
C10.0131 (7)0.0322 (9)0.0179 (7)0.0095 (6)0.0013 (6)0.0045 (6)
S10.0247 (2)0.0448 (3)0.0193 (2)0.01733 (19)0.00083 (15)0.00852 (17)
O110.0159 (5)0.0261 (6)0.0171 (5)0.0032 (4)0.0003 (4)0.0014 (4)
N110.0152 (6)0.0216 (7)0.0152 (6)0.0042 (5)0.0022 (5)0.0016 (5)
C110.0197 (8)0.0276 (9)0.0261 (8)0.0118 (7)0.0054 (6)0.0047 (7)
C120.0284 (9)0.0233 (8)0.0269 (8)0.0107 (7)0.0085 (7)0.0015 (7)
C130.0263 (9)0.0223 (8)0.0193 (8)0.0050 (7)0.0039 (6)0.0026 (6)
C140.0190 (8)0.0250 (8)0.0206 (8)0.0076 (6)0.0004 (6)0.0026 (6)
C150.0178 (7)0.0227 (8)0.0187 (7)0.0080 (6)0.0026 (6)0.0012 (6)
C160.0377 (11)0.0256 (9)0.0305 (9)0.0055 (8)0.0017 (8)0.0054 (7)
O210.0191 (5)0.0319 (6)0.0146 (5)0.0127 (5)0.0026 (4)0.0039 (4)
N210.0172 (6)0.0250 (7)0.0160 (6)0.0101 (5)0.0011 (5)0.0017 (5)
C210.0145 (7)0.0241 (8)0.0240 (8)0.0085 (6)0.0040 (6)0.0004 (6)
C220.0174 (8)0.0263 (8)0.0236 (8)0.0115 (6)0.0006 (6)0.0008 (6)
C230.0224 (8)0.0269 (9)0.0222 (8)0.0133 (7)0.0016 (6)0.0014 (6)
C240.0197 (8)0.0359 (10)0.0229 (8)0.0096 (7)0.0052 (6)0.0060 (7)
C250.0148 (7)0.0334 (9)0.0233 (8)0.0081 (7)0.0036 (6)0.0063 (7)
C260.0269 (9)0.0390 (10)0.0228 (8)0.0157 (8)0.0008 (7)0.0055 (7)
Geometric parameters (Å, º) top
Co1—N12.0910 (14)C15—H150.9500
Co1—N1i2.0910 (14)C16—H16A0.9800
Co1—O112.1005 (12)C16—H16B0.9800
Co1—O11i2.1005 (12)C16—H16C0.9800
Co1—O21i2.1266 (11)O21—N211.3369 (17)
Co1—O212.1266 (11)N21—C211.352 (2)
N1—C11.163 (2)N21—C251.356 (2)
C1—S11.6414 (18)C21—H210.9500
O11—N111.3381 (17)C21—C221.382 (2)
N11—C111.346 (2)C22—H220.9500
N11—C151.348 (2)C22—C231.391 (2)
C11—H110.9500C23—C241.393 (2)
C11—C121.374 (3)C23—C261.501 (2)
C12—H120.9500C24—H240.9500
C12—C131.394 (3)C24—C251.376 (2)
C13—C141.392 (3)C25—H250.9500
C13—C161.498 (2)C26—H26A0.9800
C14—H140.9500C26—H26B0.9800
C14—C151.377 (2)C26—H26C0.9800
N1—Co1—N1i180.00 (8)N11—C15—H15120.0
N1i—Co1—O11i92.39 (5)C14—C15—H15120.0
N1—Co1—O11i87.61 (5)C13—C16—H16A109.5
N1i—Co1—O1187.61 (5)C13—C16—H16B109.5
N1—Co1—O1192.39 (5)C13—C16—H16C109.5
N1—Co1—O21i87.56 (5)H16A—C16—H16B109.5
N1i—Co1—O21i92.44 (5)H16A—C16—H16C109.5
N1i—Co1—O2187.56 (5)H16B—C16—H16C109.5
N1—Co1—O2192.44 (5)N21—O21—Co1125.03 (9)
O11—Co1—O11i180.00 (5)O21—N21—C21119.16 (13)
O11i—Co1—O21i87.15 (5)O21—N21—C25120.30 (13)
O11—Co1—O2187.15 (5)C21—N21—C25120.50 (14)
O11i—Co1—O2192.85 (5)N21—C21—H21119.9
O11—Co1—O21i92.85 (5)N21—C21—C22120.29 (15)
O21i—Co1—O21180.0C22—C21—H21119.9
Co1—N1—C1165.56 (14)C21—C22—H22119.5
N1—C1—S1178.94 (16)C21—C22—C23121.07 (15)
N11—O11—Co1115.97 (9)C23—C22—H22119.5
O11—N11—C11119.50 (14)C22—C23—C24116.66 (15)
O11—N11—C15119.60 (14)C22—C23—C26122.24 (16)
C11—N11—C15120.90 (14)C24—C23—C26121.09 (16)
N11—C11—H11119.7C23—C24—H24119.3
N11—C11—C12120.53 (16)C25—C24—C23121.49 (16)
C12—C11—H11119.7C25—C24—H24119.3
C11—C12—H12119.8N21—C25—C24119.99 (15)
C11—C12—C13120.48 (16)N21—C25—H25120.0
C13—C12—H12119.8C24—C25—H25120.0
C12—C13—C16121.54 (17)C23—C26—H26A109.5
C14—C13—C12117.17 (16)C23—C26—H26B109.5
C14—C13—C16121.28 (16)C23—C26—H26C109.5
C13—C14—H14119.5H26A—C26—H26B109.5
C15—C14—C13120.93 (16)H26A—C26—H26C109.5
C15—C14—H14119.5H26B—C26—H26C109.5
N11—C15—C14119.97 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1ii0.952.833.7271 (17)157
C15—H15···O21iii0.952.403.295 (2)157
C21—H21···O21iii0.952.623.520 (2)158
C24—H24···S1iv0.952.873.7591 (18)156
C25—H25···O11i0.952.253.090 (2)147
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z.
Tris(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) (2) top
Crystal data top
[Co(NCS)2(C6H7NO)3]Z = 4
Mr = 502.47F(000) = 1036
Triclinic, P1Dx = 1.437 Mg m3
a = 11.70330 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.55284 (9) ÅCell parameters from 22375 reflections
c = 17.5256 (2) Åθ = 3.9–79.4°
α = 93.5044 (8)°µ = 7.74 mm1
β = 91.8625 (8)°T = 100 K
γ = 115.0705 (7)°Block, violet
V = 2322.89 (4) Å30.2 × 0.18 × 0.1 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
11225 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source11225 independent reflections
Mirror monochromator10980 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 2.5°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 1515
Tmin = 0.024, Tmax = 0.116l = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.045P)2 + 0.8076P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
11225 reflectionsΔρmax = 0.33 e Å3
566 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.87727 (3)0.63471 (2)0.08404 (2)0.03107 (7)
N11.05248 (15)0.77002 (14)0.06799 (10)0.0364 (3)
C11.14327 (17)0.85769 (17)0.06745 (11)0.0340 (4)
S11.27208 (4)0.98014 (4)0.06637 (3)0.04113 (11)
N20.70108 (14)0.49727 (14)0.09855 (9)0.0336 (3)
C20.61353 (17)0.40560 (16)0.09628 (10)0.0332 (4)
S20.49072 (4)0.27783 (4)0.09380 (3)0.03765 (10)
O110.81378 (12)0.74195 (11)0.13747 (8)0.0370 (3)
N110.89135 (14)0.85821 (13)0.14616 (9)0.0333 (3)
C110.97058 (18)0.90240 (17)0.20938 (11)0.0359 (4)
H110.9701600.8519900.2477570.043*
C121.05192 (18)1.02021 (17)0.21838 (11)0.0367 (4)
H121.1073901.0508560.2631170.044*
C131.05383 (18)1.09533 (17)0.16239 (11)0.0346 (4)
C140.96919 (18)1.04603 (17)0.09893 (11)0.0350 (4)
H140.9666891.0948460.0601730.042*
C150.88907 (18)0.92801 (17)0.09118 (11)0.0354 (4)
H150.8321260.8955510.0471950.042*
C161.1468 (2)1.22268 (18)0.16920 (13)0.0432 (4)
H16A1.1604651.2535180.2230870.065*
H16B1.1134631.2678420.1391770.065*
H16C1.2271121.2299380.1497760.065*
O210.85790 (12)0.59878 (11)0.02960 (8)0.0387 (3)
N210.75725 (15)0.49966 (14)0.05742 (9)0.0345 (3)
C210.64766 (19)0.50453 (18)0.07788 (11)0.0380 (4)
H210.6423510.5781010.0746440.046*
C220.54344 (19)0.40278 (18)0.10347 (12)0.0393 (4)
H220.4667360.4066270.1187400.047*
C230.54960 (18)0.29452 (18)0.10714 (11)0.0380 (4)
C240.66481 (18)0.29383 (17)0.08511 (12)0.0373 (4)
H240.6720890.2211930.0865440.045*
C250.76740 (18)0.39666 (17)0.06148 (11)0.0365 (4)
H250.8460420.3954080.0478940.044*
C260.4372 (2)0.1817 (2)0.13225 (15)0.0506 (5)
H26A0.4146100.1305130.0898870.076*
H26B0.4574440.1416970.1759430.076*
H26C0.3657470.1988530.1473500.076*
O310.96976 (12)0.55822 (12)0.14100 (9)0.0401 (3)
N310.89880 (15)0.45128 (14)0.16484 (10)0.0355 (3)
C310.88804 (18)0.35399 (18)0.12180 (12)0.0383 (4)
H310.9355740.3616290.0778930.046*
C320.8084 (2)0.24428 (18)0.14168 (12)0.0404 (4)
H320.8002780.1761880.1108910.048*
C330.73886 (19)0.23121 (17)0.20659 (12)0.0387 (4)
C340.75831 (19)0.33383 (18)0.25114 (12)0.0393 (4)
H340.7159860.3283560.2970910.047*
C350.83775 (19)0.44285 (17)0.22969 (11)0.0376 (4)
H350.8496410.5121520.2604760.045*
C360.6449 (2)0.1123 (2)0.22542 (14)0.0521 (5)
H36A0.5761760.0797700.1851750.078*
H36B0.6103130.1197390.2746050.078*
H36C0.6866150.0593800.2288160.078*
Co20.35615 (3)0.11924 (2)0.41874 (2)0.03115 (7)
N30.53440 (15)0.25825 (14)0.44106 (10)0.0361 (3)
C30.62725 (17)0.34432 (16)0.44440 (10)0.0333 (4)
S30.75865 (4)0.46580 (4)0.44927 (3)0.03878 (10)
N40.18025 (14)0.02361 (14)0.39579 (9)0.0343 (3)
C40.09849 (17)0.11823 (16)0.39280 (10)0.0330 (4)
S40.01714 (5)0.25075 (4)0.38844 (3)0.04076 (11)
O410.28977 (12)0.21590 (11)0.36094 (8)0.0358 (3)
N410.37181 (14)0.32772 (14)0.35101 (9)0.0330 (3)
C410.38679 (18)0.41538 (17)0.40442 (11)0.0350 (4)
H410.3385880.3984040.4483410.042*
C420.47149 (18)0.52902 (17)0.39546 (11)0.0362 (4)
H420.4820200.5900670.4336580.043*
C430.54250 (18)0.55631 (17)0.33101 (11)0.0353 (4)
C440.52331 (18)0.46289 (17)0.27734 (11)0.0361 (4)
H440.5693780.4776140.2325250.043*
C450.43865 (18)0.34961 (17)0.28823 (11)0.0351 (4)
H450.4273690.2867080.2513450.042*
C460.6381 (2)0.67946 (18)0.32134 (14)0.0467 (5)
H46A0.6044210.7357220.3382900.070*
H46B0.6563530.6871830.2672490.070*
H46C0.7160300.6959570.3521490.070*
O510.44472 (13)0.03239 (12)0.36803 (9)0.0428 (3)
N510.37995 (15)0.08235 (14)0.34244 (10)0.0372 (3)
C510.30902 (19)0.11292 (18)0.27584 (11)0.0380 (4)
H510.3047670.0535710.2462990.046*
C520.24278 (19)0.22988 (18)0.25057 (11)0.0382 (4)
H520.1920850.2510610.2038030.046*
C530.24931 (18)0.31784 (17)0.29300 (11)0.0375 (4)
C540.32194 (19)0.28153 (18)0.36173 (12)0.0400 (4)
H540.3266320.3391020.3928480.048*
C550.38710 (19)0.16438 (18)0.38572 (12)0.0407 (4)
H550.4371670.1411480.4327620.049*
C560.1801 (2)0.44603 (19)0.26705 (14)0.0520 (5)
H56A0.1012100.4804070.2930840.078*
H56B0.2328950.4866010.2794910.078*
H56C0.1607650.4551400.2115500.078*
O610.34565 (13)0.11125 (12)0.53174 (8)0.0410 (3)
N610.25378 (15)0.01407 (14)0.55669 (9)0.0355 (3)
C610.27566 (18)0.08185 (18)0.56382 (11)0.0386 (4)
H610.3563160.0787820.5540420.046*
C620.18226 (18)0.18381 (18)0.58510 (12)0.0391 (4)
H620.1982130.2514490.5893580.047*
C630.06403 (18)0.18932 (18)0.60056 (11)0.0375 (4)
C640.04626 (18)0.08750 (18)0.59427 (11)0.0386 (4)
H640.0324990.0874450.6057250.046*
C650.14146 (19)0.01333 (18)0.57162 (11)0.0380 (4)
H650.1278670.0820730.5665630.046*
C660.0390 (2)0.3012 (2)0.62263 (15)0.0505 (5)
H66A0.0682650.3596160.5782540.076*
H66B0.1095160.2854170.6399360.076*
H66C0.0065650.3317540.6641540.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02863 (14)0.02864 (14)0.03621 (15)0.01222 (11)0.00333 (11)0.00390 (11)
N10.0305 (8)0.0337 (8)0.0446 (9)0.0128 (6)0.0041 (6)0.0059 (6)
C10.0335 (9)0.0349 (9)0.0376 (9)0.0181 (8)0.0016 (7)0.0061 (7)
S10.0309 (2)0.0339 (2)0.0544 (3)0.00922 (18)0.00113 (19)0.0089 (2)
N20.0308 (7)0.0336 (8)0.0355 (8)0.0128 (6)0.0040 (6)0.0033 (6)
C20.0351 (9)0.0358 (9)0.0326 (9)0.0186 (8)0.0055 (7)0.0031 (7)
S20.0334 (2)0.0321 (2)0.0426 (2)0.00919 (17)0.00627 (18)0.00218 (18)
O110.0343 (6)0.0293 (6)0.0458 (7)0.0120 (5)0.0058 (5)0.0012 (5)
N110.0318 (7)0.0315 (7)0.0372 (8)0.0143 (6)0.0035 (6)0.0018 (6)
C110.0391 (9)0.0367 (9)0.0347 (9)0.0184 (8)0.0023 (7)0.0063 (7)
C120.0365 (9)0.0401 (10)0.0336 (9)0.0167 (8)0.0000 (7)0.0021 (7)
C130.0341 (9)0.0349 (9)0.0370 (9)0.0166 (7)0.0054 (7)0.0037 (7)
C140.0370 (9)0.0380 (9)0.0351 (9)0.0202 (8)0.0042 (7)0.0076 (7)
C150.0354 (9)0.0408 (10)0.0335 (9)0.0198 (8)0.0011 (7)0.0030 (7)
C160.0413 (10)0.0371 (10)0.0482 (11)0.0134 (8)0.0023 (8)0.0073 (8)
O210.0351 (7)0.0347 (7)0.0387 (7)0.0074 (5)0.0061 (5)0.0018 (5)
N210.0335 (8)0.0355 (8)0.0328 (7)0.0131 (6)0.0049 (6)0.0022 (6)
C210.0405 (10)0.0393 (10)0.0389 (10)0.0211 (8)0.0056 (8)0.0062 (8)
C220.0350 (9)0.0451 (11)0.0418 (10)0.0209 (8)0.0027 (8)0.0040 (8)
C230.0348 (9)0.0402 (10)0.0399 (10)0.0172 (8)0.0033 (7)0.0012 (8)
C240.0372 (9)0.0375 (9)0.0405 (10)0.0190 (8)0.0054 (8)0.0029 (8)
C250.0324 (9)0.0406 (10)0.0396 (10)0.0184 (8)0.0034 (7)0.0038 (8)
C260.0358 (10)0.0445 (11)0.0670 (15)0.0142 (9)0.0017 (10)0.0034 (10)
O310.0314 (6)0.0334 (7)0.0546 (8)0.0116 (5)0.0033 (6)0.0134 (6)
N310.0310 (7)0.0346 (8)0.0424 (8)0.0147 (6)0.0029 (6)0.0089 (6)
C310.0381 (10)0.0429 (10)0.0399 (10)0.0222 (8)0.0087 (8)0.0069 (8)
C320.0448 (11)0.0369 (10)0.0430 (10)0.0206 (8)0.0061 (8)0.0038 (8)
C330.0380 (10)0.0375 (10)0.0411 (10)0.0158 (8)0.0036 (8)0.0077 (8)
C340.0407 (10)0.0436 (10)0.0368 (9)0.0203 (8)0.0061 (8)0.0067 (8)
C350.0403 (10)0.0386 (9)0.0377 (9)0.0207 (8)0.0015 (8)0.0019 (7)
C360.0555 (13)0.0411 (11)0.0532 (13)0.0131 (10)0.0079 (10)0.0102 (9)
Co20.02840 (14)0.03116 (15)0.03437 (15)0.01296 (12)0.00080 (11)0.00492 (11)
N30.0315 (8)0.0350 (8)0.0408 (8)0.0132 (7)0.0009 (6)0.0040 (6)
C30.0341 (9)0.0363 (9)0.0330 (9)0.0186 (8)0.0012 (7)0.0021 (7)
S30.0320 (2)0.0347 (2)0.0445 (2)0.00978 (17)0.00310 (18)0.00029 (18)
N40.0303 (7)0.0372 (8)0.0359 (8)0.0149 (6)0.0018 (6)0.0033 (6)
C40.0320 (9)0.0371 (9)0.0327 (9)0.0171 (8)0.0017 (7)0.0049 (7)
S40.0360 (2)0.0351 (2)0.0443 (2)0.00832 (18)0.00144 (19)0.00562 (19)
O410.0312 (6)0.0328 (6)0.0418 (7)0.0119 (5)0.0004 (5)0.0077 (5)
N410.0310 (7)0.0338 (8)0.0358 (8)0.0151 (6)0.0001 (6)0.0055 (6)
C410.0352 (9)0.0416 (10)0.0340 (9)0.0219 (8)0.0018 (7)0.0038 (7)
C420.0381 (9)0.0379 (9)0.0368 (9)0.0209 (8)0.0022 (7)0.0005 (7)
C430.0335 (9)0.0359 (9)0.0381 (9)0.0164 (7)0.0017 (7)0.0037 (7)
C440.0355 (9)0.0382 (10)0.0350 (9)0.0160 (8)0.0034 (7)0.0040 (7)
C450.0376 (9)0.0371 (9)0.0327 (9)0.0184 (8)0.0014 (7)0.0009 (7)
C460.0456 (11)0.0375 (10)0.0518 (12)0.0129 (9)0.0024 (9)0.0023 (9)
O510.0306 (6)0.0349 (7)0.0607 (9)0.0129 (5)0.0022 (6)0.0025 (6)
N510.0306 (8)0.0367 (8)0.0462 (9)0.0164 (6)0.0036 (6)0.0006 (7)
C510.0393 (10)0.0420 (10)0.0380 (10)0.0219 (8)0.0055 (8)0.0071 (8)
C520.0406 (10)0.0448 (10)0.0332 (9)0.0222 (8)0.0004 (7)0.0023 (8)
C530.0357 (9)0.0384 (10)0.0388 (10)0.0165 (8)0.0007 (7)0.0017 (8)
C540.0395 (10)0.0411 (10)0.0425 (10)0.0205 (8)0.0027 (8)0.0046 (8)
C550.0373 (10)0.0439 (11)0.0432 (10)0.0204 (8)0.0056 (8)0.0002 (8)
C560.0575 (13)0.0397 (11)0.0535 (13)0.0169 (10)0.0128 (10)0.0027 (9)
O610.0366 (7)0.0384 (7)0.0380 (7)0.0060 (6)0.0000 (5)0.0072 (6)
N610.0331 (8)0.0383 (8)0.0327 (7)0.0127 (6)0.0013 (6)0.0054 (6)
C610.0314 (9)0.0472 (11)0.0416 (10)0.0201 (8)0.0037 (7)0.0100 (8)
C620.0358 (10)0.0427 (10)0.0443 (10)0.0209 (8)0.0030 (8)0.0104 (8)
C630.0331 (9)0.0444 (10)0.0359 (9)0.0168 (8)0.0028 (7)0.0077 (8)
C640.0345 (9)0.0484 (11)0.0379 (10)0.0221 (8)0.0049 (7)0.0043 (8)
C650.0388 (10)0.0430 (10)0.0360 (9)0.0213 (8)0.0016 (8)0.0029 (8)
C660.0348 (10)0.0507 (12)0.0633 (14)0.0140 (9)0.0064 (9)0.0161 (10)
Geometric parameters (Å, º) top
Co1—N12.0767 (16)Co2—N32.0804 (16)
Co1—N22.0895 (15)Co2—N42.0844 (16)
Co1—O111.9949 (13)Co2—O411.9999 (13)
Co1—O211.9989 (14)Co2—O511.9880 (14)
Co1—O312.0045 (14)Co2—O611.9941 (14)
N1—C11.162 (2)N3—C31.160 (2)
C1—S11.6362 (19)C3—S31.6388 (19)
N2—C21.170 (2)N4—C41.164 (2)
C2—S21.6352 (19)C4—S41.6353 (19)
O11—N111.348 (2)O41—N411.3494 (19)
N11—C111.348 (2)N41—C411.348 (2)
N11—C151.348 (2)N41—C451.345 (2)
C11—H110.9500C41—H410.9500
C11—C121.374 (3)C41—C421.372 (3)
C12—H120.9500C42—H420.9500
C12—C131.396 (3)C42—C431.397 (3)
C13—C141.388 (3)C43—C441.392 (3)
C13—C161.499 (3)C43—C461.500 (3)
C14—H140.9500C44—H440.9500
C14—C151.372 (3)C44—C451.375 (3)
C15—H150.9500C45—H450.9500
C16—H16A0.9800C46—H46A0.9800
C16—H16B0.9800C46—H46B0.9800
C16—H16C0.9800C46—H46C0.9800
O21—N211.349 (2)O51—N511.351 (2)
N21—C211.348 (2)N51—C511.346 (3)
N21—C251.345 (3)N51—C551.344 (3)
C21—H210.9500C51—H510.9500
C21—C221.376 (3)C51—C521.373 (3)
C22—H220.9500C52—H520.9500
C22—C231.389 (3)C52—C531.395 (3)
C23—C241.394 (3)C53—C541.385 (3)
C23—C261.496 (3)C53—C561.495 (3)
C24—H240.9500C54—H540.9500
C24—C251.367 (3)C54—C551.369 (3)
C25—H250.9500C55—H550.9500
C26—H26A0.9800C56—H56A0.9800
C26—H26B0.9800C56—H56B0.9800
C26—H26C0.9800C56—H56C0.9800
O31—N311.346 (2)O61—N611.349 (2)
N31—C311.352 (3)N61—C611.345 (3)
N31—C351.348 (3)N61—C651.345 (2)
C31—H310.9500C61—H610.9500
C31—C321.371 (3)C61—C621.368 (3)
C32—H320.9500C62—H620.9500
C32—C331.397 (3)C62—C631.392 (3)
C33—C341.392 (3)C63—C641.389 (3)
C33—C361.497 (3)C63—C661.495 (3)
C34—H340.9500C64—H640.9500
C34—C351.373 (3)C64—C651.377 (3)
C35—H350.9500C65—H650.9500
C36—H36A0.9800C66—H66A0.9800
C36—H36B0.9800C66—H66B0.9800
C36—H36C0.9800C66—H66C0.9800
N1—Co1—N2179.11 (7)N3—Co2—N4178.20 (6)
O11—Co1—N193.86 (6)O41—Co2—N393.31 (6)
O11—Co1—N286.87 (6)O41—Co2—N488.08 (6)
O11—Co1—O21122.93 (6)O51—Co2—N386.15 (6)
O11—Co1—O31121.98 (6)O51—Co2—N492.14 (6)
O21—Co1—N187.05 (6)O51—Co2—O41122.04 (6)
O21—Co1—N292.13 (6)O51—Co2—O61115.95 (6)
O21—Co1—O31115.07 (6)O61—Co2—N387.50 (6)
O31—Co1—N187.43 (6)O61—Co2—N492.75 (6)
O31—Co1—N292.62 (6)O61—Co2—O41121.94 (6)
Co1—N1—Co167.85 (16)Co2—N3—Co3168.81 (15)
N1—C1—S1179.28 (19)N3—C3—S3179.8 (2)
C2—N2—Co1164.31 (15)C4—N4—Co2161.93 (15)
N2—C2—S2179.49 (19)N4—C4—S4179.57 (19)
N11—O11—Co1117.79 (10)N41—O41—Co2117.09 (10)
C11—N11—O11119.39 (15)C41—N41—O41119.69 (16)
C11—N11—C15121.18 (16)C45—N41—O41119.27 (15)
C15—N11—O11119.44 (15)C45—N41—C41121.03 (16)
N11—C11—H11120.0N41—C41—H41119.9
N11—C11—C12120.10 (17)N41—C41—C42120.12 (18)
C12—C11—H11120.0C42—C41—H41119.9
C11—C12—H12119.7C41—C42—H42119.5
C11—C12—C13120.61 (18)C41—C42—C43120.98 (18)
C13—C12—H12119.7C43—C42—H42119.5
C12—C13—C16121.34 (18)C42—C43—C46121.69 (18)
C14—C13—C12117.13 (17)C44—C43—C42116.75 (18)
C14—C13—C16121.49 (17)C44—C43—C46121.53 (18)
C13—C14—H14119.4C43—C44—H44119.5
C15—C14—C13121.15 (17)C45—C44—C43120.98 (18)
C15—C14—H14119.4C45—C44—H44119.5
N11—C15—C14119.83 (17)N41—C45—C44120.12 (17)
N11—C15—H15120.1N41—C45—H45119.9
C14—C15—H15120.1C44—C45—H45119.9
C13—C16—H16A109.5C43—C46—H46A109.5
C13—C16—H16B109.5C43—C46—H46B109.5
C13—C16—H16C109.5C43—C46—H46C109.5
H16A—C16—H16B109.5H46A—C46—H46B109.5
H16A—C16—H16C109.5H46A—C46—H46C109.5
H16B—C16—H16C109.5H46B—C46—H46C109.5
N21—O21—Co1116.67 (10)N51—O51—Co2120.20 (11)
C21—N21—O21119.83 (16)C51—N51—O51120.45 (17)
C25—N21—O21118.85 (16)C55—N51—O51118.22 (17)
C25—N21—C21121.27 (17)C55—N51—C51121.32 (17)
N21—C21—H21120.0N51—C51—H51120.0
N21—C21—C22119.92 (18)N51—C51—C52120.03 (18)
C22—C21—H21120.0C52—C51—H51120.0
C21—C22—H22119.8C51—C52—H52119.7
C21—C22—C23120.48 (18)C51—C52—C53120.55 (18)
C23—C22—H22119.8C53—C52—H52119.7
C22—C23—C24117.52 (18)C52—C53—C56122.25 (18)
C22—C23—C26121.97 (19)C54—C53—C52117.00 (18)
C24—C23—C26120.49 (19)C54—C53—C56120.74 (18)
C23—C24—H24119.7C53—C54—H54119.3
C25—C24—C23120.64 (18)C55—C54—C53121.34 (19)
C25—C24—H24119.7C55—C54—H54119.3
N21—C25—C24120.14 (18)N51—C55—C54119.73 (18)
N21—C25—H25119.9N51—C55—H55120.1
C24—C25—H25119.9C54—C55—H55120.1
C23—C26—H26A109.5C53—C56—H56A109.5
C23—C26—H26B109.5C53—C56—H56B109.5
C23—C26—H26C109.5C53—C56—H56C109.5
H26A—C26—H26B109.5H56A—C56—H56B109.5
H26A—C26—H26C109.5H56A—C56—H56C109.5
H26B—C26—H26C109.5H56B—C56—H56C109.5
N31—O31—Co1116.49 (10)N61—O61—Co2117.27 (11)
O31—N31—C31118.85 (16)C61—N61—O61118.81 (16)
O31—N31—C35119.84 (16)C61—N61—C65121.31 (17)
C35—N31—C31121.29 (17)C65—N61—O61119.85 (16)
N31—C31—H31120.1N61—C61—H61119.9
N31—C31—C32119.83 (18)N61—C61—C62120.28 (18)
C32—C31—H31120.1C62—C61—H61119.9
C31—C32—H32119.5C61—C62—H62119.7
C31—C32—C33120.92 (19)C61—C62—C63120.57 (18)
C33—C32—H32119.5C63—C62—H62119.7
C32—C33—C36121.11 (19)C62—C63—C66120.74 (19)
C34—C33—C32116.96 (18)C64—C63—C62117.33 (18)
C34—C33—C36121.90 (19)C64—C63—C66121.93 (18)
C33—C34—H34119.5C63—C64—H64119.6
C35—C34—C33121.01 (19)C65—C64—C63120.77 (18)
C35—C34—H34119.5C65—C64—H64119.6
N31—C35—C34119.84 (18)N61—C65—C64119.70 (18)
N31—C35—H35120.1N61—C65—H65120.1
C34—C35—H35120.1C64—C65—H65120.1
C33—C36—H36A109.5C63—C66—H66A109.5
C33—C36—H36B109.5C63—C66—H66B109.5
C33—C36—H36C109.5C63—C66—H66C109.5
H36A—C36—H36B109.5H66A—C66—H66B109.5
H36A—C36—H36C109.5H66A—C66—H66C109.5
H36B—C36—H36C109.5H66B—C66—H66C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S4i0.952.883.8088 (19)166
C21—H21···S2ii0.952.873.739 (2)153
C24—H24···S1iii0.952.903.841 (2)169
C25—H25···O31iii0.952.633.259 (2)124
C31—H31···O21iii0.952.443.277 (2)146
C34—H34···S30.952.993.754 (2)138
C41—H41···S3iv0.952.973.6966 (19)134
C45—H45···S20.952.893.6082 (19)133
C55—H55···O61v0.952.463.184 (2)133
C61—H61···O51v0.952.483.233 (2)136
C62—H62···S3v0.952.983.900 (2)162
C64—H64···N4vi0.952.643.484 (2)148
C65—H65···S4vi0.953.003.870 (2)154
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x, y, z+1.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.  Web of Science CSD CrossRef Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. C. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Google Scholar
First citationCao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19–22.  CSD CrossRef CAS Google Scholar
First citationCraig, D. C., Phillips, D. J. & Kaifi, F. M. Z. (1989). Inorg. Chim. Acta, 161, 247–251.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135.  Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17–24.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436–442.  CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2023). Acta Cryst. E79, 867–871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024). Acta Cryst. E80, 67–71.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Lohmiller, T., Böhme, M., Jochim, A., Foltyn, M., Schnegg, A., Plass, W. & Näther, C. (2023). Inorg. Chem. 62, 10420–10430.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005a). Acta Cryst. E61, m1133–m1134.  CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005b). Acta Cryst. E61, m871–m872.  CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237–242.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006b). J. Coord. Chem. 59, 1883–1889.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 1637–1644.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006c). Chem. Phys. Lett. 418, 84–89.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. pp. 376–380.  CSD CrossRef CAS Google Scholar
First citationShi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577–m1578.  CSD CrossRef IUCr Journals Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947–12957.  Web of Science PubMed Google Scholar
First citationZhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830–2831.  CSD CrossRef Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398–m3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506–m3608.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds