research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks, and DFT calculations of 1-(4-methyl­benz­yl)in­do­line-2,3-dione

crossmark logo

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco
*Correspondence e-mail: Nohaila.rharmili@usmba.ac.ma

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 4 January 2024; accepted 19 January 2024; online 31 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The in­do­line portion of the title mol­ecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Isatin derivatives have a biologically active heterocyclic moiety that comprises two cyclic rings, one of which is six-membered and the other is five-membered (Rharmili et al., 2023a[Rharmili, N., Abdellaoui, O., Haoudi, A., Mague, J. T., Hökelek, T., Ouazzani Chahdi, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023a). Acta Cryst. E79, 1033-1036.]). Both the rings are planar. It constitutes an important class of heterocyclic compounds which, even when part of a complex mol­ecule, possess a wide spectrum of biological activities (Rharmili et al., 2023b[Rharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023b). Polycyclic Aromat. Compd. 43, 8989-9006.]), such as anti­cancer (Esmaeelian et al., 2013[Esmaeelian, B., Abbott, C. A., Le Leu, R. K. & Benkendorff, K. (2013). Marine Drugs, 12, 17-35.]), anti­oxidant (Andreani et al., 2010[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Cremonini, M. A., Placucci, G., Cervellati, R. & Greco, E. (2010). Eur. J. Med. Chem. 45, 1374-1378.]), anti­malarial (Chiyanzu et al., 2005[Chiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthal, P. J. & Chibale, K. (2005). Bioorg. Med. Chem. 13, 3249-3261.]), anti-inflammatory (Sharma et al., 2016[Sharma, P. K., Balwani, S., Mathur, D., Malhotra, S., Singh, B. K., Prasad, A. K., Len, C., Van der Eycken, E. V., Ghosh, B., Richards, N. G. J. & Parmar, V. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 1520-1526.]), analgesic (Prakash et al., 2012[Prakash, C. R., Raja, S. & Saravanan, G. (2012). Chin. Chem. Lett. 23, 541-544.]) and anti-anxiety (Medvedev et al., 2005[Medvedev, A., Igosheva, N., Crumeyrolle-Arias, M. & Glover, V. (2005). Stress, 8, 175-183.]). They have also been studied and been reported as efficient inhibitors against aluminium and steel corrosion (Abdellaoui et al., 2021[Abdellaoui, O., Skalli, M. K., Haoudi, A., Rodi, Y. K., Arrousse, N., Taleb, M. & Senhaji, O. (2021). Moroccan J. Chem. 9, 9-10.]). In a continuation of our ongoing research work devoted to the study of O-alkyl­ation and N-alkyl­ation reactions involving isatin derivatives (Rharmili et al., 2023b[Rharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023b). Polycyclic Aromat. Compd. 43, 8989-9006.]), we report herein the synthesis and the mol­ecular and crystal structures of 1-(4-methyl­benz­yl)in­do­line-2,3-dione (Scheme 1) obtained by an alkyl­ation reaction of 1H-in­do­line-2,3-dione using an excess of 4-methyl­benzyl bromide as an alkyl­ating reagent and potassium carbonate in the presence of tetra-n-butyl­ammonium bromide as catalyst in phase-transfer catalysis (PTC). Moreover, a Hirshfeld surface analysis, crystal voids, and inter­action energy and energy frameworks calculations were performed. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The in­do­line portion (Fig. 1[link]) is planar to within 0.0097 (10) Å (r.m.s. deviation of the fitted atoms = 0.0050 Å) and the mean plane of the C10–C15 ring is inclined to the above plane by 79.03 (3)°. The C7—C8 bond, at 1.5555 (18) Å, is longer than expected for that between two sp2 C atoms but apppears typical for in­do­line-2,3-diones. Otherwise, the metrical parameters are unremarkable.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, C9—H9B⋯O2iii hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the a-axis direction which are elaborated along the b-axis direction by C4—H4⋯O2i hydrogen bonds (Table 1[link]) to form layers parallel to the ab plane (Fig. 2[link]). The layer formation is reinforced by C9—H9ACg3ii and C16—H16BCg3iv inter­actions (Table 1[link]), as well as slipped π-stacking inter­actions between the C1–C6 and C1/C6/N1/C7/C8 rings related by unit translations along the b-axis direction [centroid–centroid = 3.6004 (8) Å, dihedral angle = 0.42 (6)° and slippage = 1.39 Å, where Cg3 is the centroid of the C10–C15 benzene ring]. Also present are C7=O1⋯Cg1 inter­actions in the same direction [Cg1 is the centroid of the C1–C6 ring; O1⋯Cg1 = 3.4793 (12) Å, C7⋯Cg1 = 4.0442 (15) Å and C7=O1⋯Cg1 = 109.34 (9)°]. A portion of one layer is shown in Fig. 2[link], while the packing of the layers is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.41 3.2192 (16) 142
C9—H9ACg3ii 0.99 2.61 3.4936 (15) 148
C9—H9B⋯O2iii 0.99 2.58 3.5208 (17) 158
C16—H16BCg3iv 0.98 2.85 3.5685 (16) 131
Symmetry codes: (i) [x-1, y-1, z]; (ii) [x, y+1, z]; (iii) [x-1, y, z]; (iv) [x, y-1, z].
[Figure 2]
Figure 2
A portion of one layer, viewed along the c-axis direction, with C—H⋯O hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions depicted, respectively, by black, green and orange dashed lines. The C= O⋯π(ring) inter­actions are depicted by pink dashed lines and non-inter­acting H atoms have been omitted for clarity.
[Figure 3]
Figure 3
The packing viewed along the b-axis direction giving edge views of four layers. C—H⋯O hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions are depicted, respectively, by black, green and orange dashed lines, while the C=O⋯π(ring) inter­actions and non-inter­acting H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. https://crystalexplorer.net/.]), as shown in Fig. 5[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggests that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 7[link](a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯C, N⋯C/C⋯N, N⋯O/O⋯N and H⋯N/N⋯H (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 7[link](b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing 43.0% to the overall crystal packing, which is reflected in Fig. 7[link](b) as the widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.20 Å. In the presence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts, contributing 25.0% to the overall crystal packing, are reflected in Fig. 7[link](c) with the tips at de + di = 2.71 Å. The symmetrical pair of spikes resulting in the fingerprint plot delineated into H⋯O/O⋯H contacts [Fig. 7[link](d)] has a 22.8% contribution to the HS with the tips at de + di = 2.29 Å. The symmetrical pair of tiny wings resulting in the fingerprint plot delineated into C⋯O/O⋯C contacts [Fig. 7[link](e)], with a 4.1% contribution to the HS, is viewed with the tips at de + di = 3.29 Å. The C⋯C contacts [Fig. 7[link](f)] have an arrow-shaped distribution of points, with the tip at de = di = 1.68 Å. Finally, the C⋯N/N⋯C [Fig. 7[link](g)], N⋯O/O⋯N [Fig. 7[link](h)] and H⋯N/N⋯H [Fig. 7[link](i)] contacts with 1.0, 0.2 and 0.1% contributions, respectively, to the HS have very low distributions of points.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape index.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯O/O⋯C, (f) C⋯C, (g) C⋯N/N⋯C, (h) N⋯O/O⋯N and (i) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The nearest-neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯N/N⋯H inter­actions in Figs. 8[link](a)–(c), res­pectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function fragment patch plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. For checking the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids [Figs. 9[link](a) and 9(b)] and the percentage of free space in the unit cell are calculated as 120.52 Å3 and 9.64%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 9]
Figure 9
Graphical views of voids in the crystal packing of (I)[link] (a) along the a-axis direction and (b) along the b-axis direction.

6. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies are calculated using the CE-B3LYP/6-31G(d,p) energy model available in CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be [−11.6 (Eele), −4.3 (Epol), −71.9 (Edis), 46.4 (Erep) and −49.4 (Etot)] for the C4—H4⋯O2 and [−5.4 (Eele), −3.9 (Epol), −24.7 (Edis), 14.3 (Erep) and −21.3 (Etot)] for the C9—H9B⋯O2 hydrogen-bonding inter­action. Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) [Figs. 10[link](a), 10(b) and 10(c)]. The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contribution in the crystal structure of (I)[link].

[Figure 10]
Figure 10
The energy frameworks for a cluster of mol­ecules of the title compound, viewed down the a-axis direction, showing (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

7. Database survey

We searched the Cambridge Structural Database (CSD) for N-substituted isatin derivatives using Version 5.42, which was last updated in May 2023 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Our search yielded 58 results, five of which were reports on the structure of isatin itself, and four of which focused on the structure of N-methyl­isatin. Out of these findings, 13 structures contained an alkyl chain with two or more C atoms. The compound that showed the closest resemblance to the title compound was indole-2,3-dione (Wang et al., 2010[Wang, Y., Cao, S.-L., Wan, C.-Q. & Yuan, J.-L. (2010). Acta Cryst. E66, o1569-o1570.]).

8. DFT calculations

The gas-phase mol­ecular structure was theoretically optimized using density functional theory (DFT) with the B3LYP functional and 6-311++G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/.]). The resulting optimized parameters, including bond lengths and angles, exhibited satisfactory agreement with the experimental structural data (Table 2[link]). The most significant disparities between the calculated and experimental values were observed for the O1—C7 and N1—C9 (0.04 Å), and C1—C2 and O2—C8 (0.03 Å) bond lengths. Additionally, notable disparities were noted in the O1—C7—C8 bond angle (3.05°) and the C7—N1—C9—C10 torsion angle (0.85°). For instance, some reported bond lengths for O1—C7 and N1—C9 were fuond to vary by 0.03 and 0.01 Å, respectively, for 1-(12-bromo­dodec­yl)in­do­line-2,3-dione (Rharmili et al., 2023a[Rharmili, N., Abdellaoui, O., Haoudi, A., Mague, J. T., Hökelek, T., Ouazzani Chahdi, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023a). Acta Cryst. E79, 1033-1036.]). These differences may be attributed to the fact that these calculations pertain to the isolated mol­ecule, while the experimental results correspond to inter­acting mol­ecules in the crystal lattice, where intra- and inter­molecular inter­actions with neighbouring mol­ecules are present.

Table 2
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6-311G(d,p)
O1—C7 1.2094 (16) 1.253
O2—C8 1.2110 (15) 1.242
N1—C7 1.3684 (16) 1.381
N1—C6 1.4108 (15) 1.395
N1—C9 1.4610 (15) 1.510
C1—C2 1.3835 (17) 1.414
C7—N1—C6 110.91 (10) 110.6
C7—N1—C9 124.13 (11) 124.25
C6—N1—C9 124.65 (10) 124.85
O1—C7—N1 127.83 (12) 127.65
O1—C7—C8 126.45 (12) 129.51
N1—C7—C8 105.72 (10) 105.60
O2—C8—C1 130.74 (13) 130.12
C7—N1—C9—C10 114.84 (13) 113.99
N1—C9—C10—C11 125.40 (13) 125.86
C7—N1—C9—C10 114.84 (13) 114.23
N1—C7—C8—O2 178.78 (12) 178.52
O1—C7—C8—C1 178.80 (13) 178.36

9. Synthesis and crystallization

To a solution of 1H-in­do­line-2,3-dione (2 mmol) in di­methyl­formamide (DMF, 20 ml) were added 4-methyl­benzyl bromide (2.2 mmol), K2CO3 (1.5 mmol) and tetra-n-butyl­ammonium bromide (TBAB; 0.5 mmol). The reaction mixture was stirred at room temperature in DMF for 12 h. After removal of the formed salts, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. A pure compound was obtained after recrystallization from ethanol/hexane (3:1 v/v) (yield 92%; m.p. 356 K). 1H NMR (300 MHz, d6-DMSO): δ 7.62 (2H, m); 7.33 (2H, m); 7.18 (3H, dt, 3J = 8.4 Hz); 6.97 (1H, t, 3J = 7.5 Hz); 4.86 (2H, s); 2.27 (3H, s). 13C NMR (75 MHz, d6-DMSO): δ 183.62 (–C=O); 158.73 (N—C=O); 150.83 (Cq); 140.47 (CHAr); 138.44 (CHAr); 137.42(Cq); 133.48 (CHAr); 132.90 (Cq); 129.27 (CHAr); 127.85 (CHAr); 126.61 (CHAr); 126.56 (CHAr); 124.94 (Cq); 123.78 (CHAr); 43.7 (CH2); 21.13 (CH3).

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 3
Experimental details

Crystal data
Chemical formula C16H13NO2
Mr 251.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.6126 (4), 4.8680 (3), 38.924 (2)
β (°) 94.118 (2)
V3) 1249.74 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.37 × 0.29 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.97, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 41604, 4846, 3359
Rint 0.056
(sin θ/λ)max−1) 0.773
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.03
No. of reflections 4846
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4, SAINT and SHELXTL. Bruker AXS LLC, Madison, Wisconsin, USA.]), SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT and SHELXTL. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2021[Bruker (2021). APEX4, SAINT and SHELXTL. Bruker AXS LLC, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

1-(4-Methylbenzyl)indoline-2,3-dione top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6126 (4) ÅCell parameters from 9960 reflections
b = 4.8680 (3) Åθ = 3.1–32.6°
c = 38.924 (2) ŵ = 0.09 mm1
β = 94.118 (2)°T = 150 K
V = 1249.74 (13) Å3Plate, orange
Z = 40.37 × 0.29 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
4846 independent reflections
Radiation source: fine-focus sealed tube3359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 7.3910 pixels mm-1θmax = 33.3°, θmin = 2.1°
φ and ω scansh = 1010
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.97, Tmax = 1.00l = 5960
41604 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.4692P]
where P = (Fo2 + 2Fc2)/3
4846 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 7 sets of frames, each of width 0.5° in ω, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 7.5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83652 (16)1.2777 (2)0.62976 (3)0.0407 (3)
O21.08789 (14)1.0379 (2)0.68782 (3)0.0388 (2)
N10.60620 (15)0.9544 (2)0.64653 (3)0.0256 (2)
C10.78827 (17)0.7578 (2)0.69329 (3)0.0252 (2)
C20.82166 (19)0.5820 (3)0.72105 (3)0.0288 (2)
H20.9465240.5847330.7347370.035*
C30.6679 (2)0.4016 (3)0.72839 (3)0.0303 (3)
H30.6867760.2788530.7473270.036*
C40.48593 (19)0.4006 (3)0.70795 (3)0.0286 (2)
H40.3827520.2747920.7132080.034*
C50.45014 (18)0.5784 (3)0.67999 (3)0.0258 (2)
H50.3249780.5768430.6663870.031*
C60.60429 (17)0.7564 (2)0.67298 (3)0.0234 (2)
C70.78645 (19)1.0935 (3)0.64820 (3)0.0291 (2)
C80.91639 (18)0.9665 (3)0.67911 (3)0.0288 (3)
C90.43199 (19)1.0233 (3)0.62289 (3)0.0286 (2)
H9A0.4610891.1958780.6107310.034*
H9B0.3129381.0562620.6363660.034*
C100.37999 (19)0.8018 (3)0.59657 (3)0.0266 (2)
C110.1851 (2)0.6927 (3)0.59296 (3)0.0335 (3)
H110.0860910.7535300.6077710.040*
C120.1334 (2)0.4962 (3)0.56801 (4)0.0364 (3)
H120.0005690.4245910.5659790.044*
C130.2747 (2)0.4027 (3)0.54597 (3)0.0337 (3)
C140.4703 (2)0.5080 (3)0.55005 (3)0.0339 (3)
H140.5701450.4439870.5356060.041*
C150.5222 (2)0.7055 (3)0.57492 (3)0.0305 (3)
H150.6566020.7754970.5771280.037*
C160.2171 (3)0.1907 (3)0.51890 (4)0.0460 (4)
H16A0.1209280.2709800.5013700.069*
H16B0.1540470.0331580.5296000.069*
H16C0.3387790.1299390.5081030.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (6)0.0403 (6)0.0417 (6)0.0093 (4)0.0079 (4)0.0080 (4)
O20.0248 (4)0.0454 (6)0.0457 (6)0.0087 (4)0.0005 (4)0.0040 (5)
N10.0258 (5)0.0251 (5)0.0253 (5)0.0025 (4)0.0012 (4)0.0006 (4)
C10.0232 (5)0.0254 (5)0.0268 (5)0.0004 (4)0.0002 (4)0.0036 (4)
C20.0279 (6)0.0286 (6)0.0289 (6)0.0013 (5)0.0043 (4)0.0024 (5)
C30.0348 (6)0.0269 (6)0.0287 (6)0.0013 (5)0.0013 (5)0.0016 (5)
C40.0308 (6)0.0259 (5)0.0293 (6)0.0042 (5)0.0035 (5)0.0010 (5)
C50.0246 (5)0.0256 (5)0.0270 (5)0.0019 (4)0.0003 (4)0.0027 (4)
C60.0234 (5)0.0229 (5)0.0236 (5)0.0001 (4)0.0001 (4)0.0032 (4)
C70.0284 (6)0.0295 (6)0.0299 (6)0.0040 (5)0.0047 (5)0.0017 (5)
C80.0245 (5)0.0305 (6)0.0313 (6)0.0024 (5)0.0021 (4)0.0056 (5)
C90.0297 (6)0.0279 (6)0.0275 (6)0.0013 (5)0.0032 (4)0.0008 (4)
C100.0294 (6)0.0264 (5)0.0233 (5)0.0013 (4)0.0030 (4)0.0028 (4)
C110.0289 (6)0.0394 (7)0.0320 (6)0.0024 (5)0.0006 (5)0.0022 (5)
C120.0327 (6)0.0393 (7)0.0358 (7)0.0103 (6)0.0073 (5)0.0036 (6)
C130.0448 (7)0.0274 (6)0.0273 (6)0.0057 (5)0.0080 (5)0.0036 (5)
C140.0401 (7)0.0338 (6)0.0276 (6)0.0017 (5)0.0006 (5)0.0014 (5)
C150.0298 (6)0.0328 (6)0.0286 (6)0.0048 (5)0.0002 (5)0.0005 (5)
C160.0660 (10)0.0355 (7)0.0342 (7)0.0107 (7)0.0118 (7)0.0005 (6)
Geometric parameters (Å, º) top
O1—C71.2094 (16)C9—C101.5098 (17)
O2—C81.2110 (15)C9—H9A0.9900
N1—C71.3684 (16)C9—H9B0.9900
N1—C61.4108 (15)C10—C151.3886 (18)
N1—C91.4610 (15)C10—C111.3917 (18)
C1—C21.3835 (17)C11—C121.388 (2)
C1—C61.4026 (16)C11—H110.9500
C1—C81.4567 (18)C12—C131.390 (2)
C2—C31.3886 (18)C12—H120.9500
C2—H20.9500C13—C141.390 (2)
C3—C41.3943 (17)C13—C161.5040 (19)
C3—H30.9500C14—C151.3895 (18)
C4—C51.3973 (17)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.3798 (17)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C7—C81.5555 (18)C16—H16C0.9800
C7—N1—C6110.91 (10)C10—C9—H9A108.9
C7—N1—C9124.13 (11)N1—C9—H9B108.9
C6—N1—C9124.65 (10)C10—C9—H9B108.9
C2—C1—C6121.38 (11)H9A—C9—H9B107.7
C2—C1—C8131.50 (11)C15—C10—C11118.21 (12)
C6—C1—C8107.12 (11)C15—C10—C9121.45 (11)
C1—C2—C3118.28 (11)C11—C10—C9120.33 (12)
C1—C2—H2120.9C12—C11—C10120.87 (13)
C3—C2—H2120.9C12—C11—H11119.6
C2—C3—C4119.96 (12)C10—C11—H11119.6
C2—C3—H3120.0C11—C12—C13121.00 (13)
C4—C3—H3120.0C11—C12—H12119.5
C3—C4—C5122.23 (12)C13—C12—H12119.5
C3—C4—H4118.9C12—C13—C14118.03 (12)
C5—C4—H4118.9C12—C13—C16120.64 (13)
C6—C5—C4117.18 (11)C14—C13—C16121.32 (14)
C6—C5—H5121.4C15—C14—C13121.06 (13)
C4—C5—H5121.4C15—C14—H14119.5
C5—C6—C1120.98 (11)C13—C14—H14119.5
C5—C6—N1128.22 (11)C10—C15—C14120.81 (12)
C1—C6—N1110.80 (10)C10—C15—H15119.6
O1—C7—N1127.83 (12)C14—C15—H15119.6
O1—C7—C8126.45 (12)C13—C16—H16A109.5
N1—C7—C8105.72 (10)C13—C16—H16B109.5
O2—C8—C1130.74 (13)H16A—C16—H16B109.5
O2—C8—C7123.82 (12)C13—C16—H16C109.5
C1—C8—C7105.44 (10)H16A—C16—H16C109.5
N1—C9—C10113.23 (10)H16B—C16—H16C109.5
N1—C9—H9A108.9
C6—C1—C2—C30.24 (18)C2—C1—C8—C7179.07 (13)
C8—C1—C2—C3179.89 (12)C6—C1—C8—C70.82 (13)
C1—C2—C3—C40.10 (19)O1—C7—C8—O21.4 (2)
C2—C3—C4—C50.5 (2)N1—C7—C8—O2178.78 (12)
C3—C4—C5—C60.58 (18)O1—C7—C8—C1178.80 (13)
C4—C5—C6—C10.23 (17)N1—C7—C8—C11.02 (13)
C4—C5—C6—N1179.90 (11)C7—N1—C9—C10114.84 (13)
C2—C1—C6—C50.17 (18)C6—N1—C9—C1072.24 (15)
C8—C1—C6—C5179.93 (11)N1—C9—C10—C1555.98 (16)
C2—C1—C6—N1179.55 (11)N1—C9—C10—C11125.40 (13)
C8—C1—C6—N10.35 (13)C15—C10—C11—C121.03 (19)
C7—N1—C6—C5179.35 (12)C9—C10—C11—C12177.63 (12)
C9—N1—C6—C55.62 (19)C10—C11—C12—C130.1 (2)
C7—N1—C6—C10.34 (14)C11—C12—C13—C141.1 (2)
C9—N1—C6—C1174.07 (11)C11—C12—C13—C16179.70 (13)
C6—N1—C7—O1178.98 (13)C12—C13—C14—C151.4 (2)
C9—N1—C7—O15.2 (2)C16—C13—C14—C15179.46 (13)
C6—N1—C7—C80.84 (13)C11—C10—C15—C140.78 (19)
C9—N1—C7—C8174.60 (11)C9—C10—C15—C14177.87 (12)
C2—C1—C8—O21.2 (2)C13—C14—C15—C100.4 (2)
C6—C1—C8—O2178.96 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10···C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.413.2192 (16)142
C9—H9A···Cg3ii0.992.613.4936 (15)148
C9—H9B···O2iii0.992.583.5208 (17)158
C16—H16B···Cg3iv0.982.853.5685 (16)131
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1–C71.2094 (16)1.253
O2–C81.2110 (15)1.242
N1–C71.3684 (16)1.381
N1–C61.4108 (15)1.395
N1–C91.4610 (15)1.510
C1–C21.3835 (17)1.414
C7–N1–C6110.91 (10)110.6
C7–N1–C9124.13 (11)124.25
C6–N1–C9124.65 (10)124.85
O1–C7–N1127.83 (12)127.65
O1–C7–C8126.45 (12)129.51
N1–C7–C8105.72 (10)105.60
O2–C8–C1130.74 (13)130.12
C7–N1–C9–C10114.84 (13)113.99
N1–C9–C10–C11125.40 (13)125.86
C7–N1–C9–C10114.84 (13)114.23
N1–C7–C8–O2178.78 (12)178.52
O1–C7–C8–C1178.80 (13)178.36
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbdellaoui, O., Skalli, M. K., Haoudi, A., Rodi, Y. K., Arrousse, N., Taleb, M. & Senhaji, O. (2021). Moroccan J. Chem. 9, 9–10.  Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Cremonini, M. A., Placucci, G., Cervellati, R. & Greco, E. (2010). Eur. J. Med. Chem. 45, 1374–1378.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4, SAINT and SHELXTL. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthal, P. J. & Chibale, K. (2005). Bioorg. Med. Chem. 13, 3249–3261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEsmaeelian, B., Abbott, C. A., Le Leu, R. K. & Benkendorff, K. (2013). Marine Drugs, 12, 17–35.  CrossRef PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. https://crystalexplorer.net/Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMedvedev, A., Igosheva, N., Crumeyrolle-Arias, M. & Glover, V. (2005). Stress, 8, 175–183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrakash, C. R., Raja, S. & Saravanan, G. (2012). Chin. Chem. Lett. 23, 541–544.  CrossRef CAS Google Scholar
First citationRharmili, N., Abdellaoui, O., Haoudi, A., Mague, J. T., Hökelek, T., Ouazzani Chahdi, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023a). Acta Cryst. E79, 1033–1036.  CrossRef IUCr Journals Google Scholar
First citationRharmili, N., Thiruvalluvar, A. A., Anouar, E. H., Rodi, Y. K., Chahdi, F. O., Haoudi, A., Mague, J. T., Mazzah, A., Sebbar, N. K. & Essassi, E. M. (2023b). Polycyclic Aromat. Compd. 43, 8989–9006.  CrossRef CAS Google Scholar
First citationSharma, P. K., Balwani, S., Mathur, D., Malhotra, S., Singh, B. K., Prasad, A. K., Len, C., Van der Eycken, E. V., Ghosh, B., Richards, N. G. J. & Parmar, V. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 1520–1526.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, Y., Cao, S.-L., Wan, C.-Q. & Yuan, J.-L. (2010). Acta Cryst. E66, o1569–o1570.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds